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Abstract:

We present three improvements to Perlin’s gradient noise algorithm. First, a small change in
the permutation hash function combined with separate pseudorandom tables yields significantly
better axial decorrelation. Second, a modification to the reconstruction kernel approximating a
global higher-order differencing operator produces better bandlimitation. Third, the quality of 2D
surfaces using solid 3D noise is improved by reconstructing the stencil projected onto a surface
normal. These three techniques are mutually orthogonal, generalize to higher dimensions, and are
applicable to nearly any gradient noise, including simplex noise. Combining them yields a desirable
Fourier spectrum for graphics applications.
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Figure 1: Detail of images and associated Fourier transforms of (a) 2D Perlin noise with standard hash function, quintic interpolant and
256-entry gradient table, (b) 2D Perlin noise with our xor hash function from Section 2, (c) 2D noise with our extended reconstruction kernel
from Section 3, (d) Slice of our 3D noise along plane normal to x = y = z, (e) Same planar slice with our projection method from Section 4,
(f) Same planar slice and projection method with faster half-resolution grid. All 2D transforms computed from full repetitions.

Abstract
We present three improvements to Perlin’s gradient noise algorithm.
First, a small change in the permutation hash function combined
with separate pseudorandom tables yields significantly better axial
decorrelation. Second, a modification to the reconstruction kernel
approximating a global higher-order differencing operator produces
better bandlimitation. Third, the quality of 2D surfaces using solid
3D noise is improved by reconstructing the stencil projected onto
a surface normal. These three techniques are mutually orthogonal,
generalize to higher dimensions, and are applicable to nearly any
gradient noise, including simplex noise. Combining them yields a
desirable Fourier spectrum for graphics applications.
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1 Introduction
The Perlin gradient noise [1989] function is a key component
in most rendering systems. Ideal synthetic noise should exhibit
no discernible periodicity, anisotropy or aliasing. This implies a
Fourier spectrum that is bandlimited and rotationally invariant. The
original implementation employs differenced separable cubic Her-
mite filters sampling from a regular grid, and exhibits noticeable
anisotropy. To remedy this, Perlin’s simplex noise [2001] sam-
ples from a simplicial grid and uses a radial reconstruction filter.
Perlin [2002] improved the results from the cubic grid and by us-
ing a higher-degree polynomial separable convolution filter. While
improvements, the latter work does not remove the axial corre-
lation responsible for most of the anisotropy, and neither signif-
icantly attenuates lower frequencies. An alternative to gradient
noise, wavelet noise [Cook and DeRose 2005] avoids the axially-
correlated periodicity, and ensures a desirable bandlimited spec-
trum. However, it displays anisotropy in the lower bandlimit which
affects the visual appearance when viewed closely. In this paper,
we first show how to remove axial correlation in standard Perlin
noise. We then present a modification that improves bandlimits as
in wavelet noise, while preserving the visual characteristics of the
classic Perlin noise. Finally, we show how to take 2D projections
of 3D Perlin noise to achieve desirable visual properties.

2 Hash Function
Perlin [1989] generates random unit vectors on the 3D integer lat-
tice indexed as i, j, k. To achieve finite storage, a single table P of
N randomly permuted integers 0 . . . (N−1) is hashed successively
using each axial coordinate, Hijk = P [P [P [i]+ j]+ k], where in-
dices are assumed to be modulo the table length. This provides the
index into another table G, containing unit-length gradient vectors.

The purpose of the hash is to decorrelate the indices. However, if i
and j are held constant and steps are taken along k, this will unfor-
tunately produce successive entries in P . For any values of {i, j, k}
that hash to P [0], the adjacent lattice point {i, j, k+1} will always
produce P [1]. In fact, each column will produce exactly the same
sequence of hash values as any other – the copies will simply be
shifted. This breaks the fundamental assumption that the samples
of the random noise process are uncorrelated. Given a sufficiently
large sampling of Perlin noise, the spectrum manifests strong stria-
tions perpendicular to the preferred axis, shown in Fig. 1A.

To fix this, we use a separate permutation table for each dimension,
Px, Py, Pz , and take the exclusive-or of the value from each:

Hijk = Px[i]⊕ Py[j]⊕ Pz[k]

Fig. 1B shows the improvement to the spectrum that this produces.
While requiring a slight increase in memory, this has the advantage
of eliminating dependent permutation table lookups and reducing
the total number of those lookups from 14 to 6 in the case of 3D
Perlin noise. In the case of ND noise, the number of lookups is
reduced from 2N+1 − 2 to 2N .

3 Filter Kernel
Though our hashing scheme spectrum fixes most of the anisotropy
of the Fourier spectrum, the bandlimits are quite weak: both low
and high frequencies remain. Provided that the random noise pro-
cess is truly uncorrelated, the overall shape of the frequency spec-
trum is determined by the reconstruction kernel.
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When considered in one dimension, Perlin noise uses an antisym-
metric kernel of the form s(x)x where s(x) is either an Hermite
cubic polynomial [Perlin and Hoffert 1989] or a quintic polyno-
mial [Perlin 2002]. The latter produces a pair of lobes with opposite
signs that peak at a distance of approximately 0.80 from each other
and then fall to zero beyond that.

We note that the separable Perlin filter very closely resembles a
continuous (smoothed) version of the discrete impulse response of
a first-order (forward or backward) difference operator. Moreover,
successive application of a difference operator k times to a given
impulse causes an impulse response of the k + 1 set of binomial
coefficients with alternating signs. Applied as a filter, this scales
frequency f by (2 sin(πf))k [Hamming 1998]. Effectively, differ-
encing attenuates the lower third of the Nyquist interval and am-
plifies the upper two-thirds, explaining the strong presence of high
frequencies and the near-linear attenuation of low frequencies in the
Perlin noise spectrum. The smoothing isolates the first replica and
eliminates the higher order harmonics (Fig. 1B).

Higher order differencing ensures better bandlimits, but at the cost
of a wider filter. The lowest k for which the stencil encloses the
next immediately neighboring samples is k = 3, a 4-point stencil
on [−2, 2]. The binomial coefficients of third-order forward differ-
encing are 1,-3,3,-1, so we desire additional opposing lobes one unit
away and 1/3 the amplitude of the inner pair. For computational ef-
ficiency our filter approximates this as a polynomial s(x); which
is again applied to the antisymmetric Perlin noise kernel of the
form s(x)x. In choosing s(x) we seek a symmetric (even-degree)
polynomial that makes s(x)x satisfy the previous constraint on the
lobes, and has s′ = s′′ = 0 at the stencil endpoints. Searching this
family of functions suggests the following:

s(x) = (2− x)4(2 + x)4(1− x)(1 + x)/256

= 4(1− x2/4)5 − 3(1− x2/4)4

We implement the function in the second form for efficiency. The
remaining question is whether this polynomial adequately approx-
imates the corrected differencing filter. Using a separable radial
filter of this function in 2D produces the results shown in Fig. 1c,
in which high frequencies are effectively attenuated. The disadvan-
tage of our method is that the 4-point stencil is costly, requiring
16 lookups in 2D and 64 in 3D. However, this larger kernel allows
contributions from the additional grid points to eliminate the reg-
ular zeroes of both classic Perlin noise and simplex noise, and is
clearly effective in producing a band-pass spectrum.

4 Projection to 2D
In their use as solid textures, 3D noises are frequently sampled
along 2D surfaces. However, Cook and DeRose [2005] showed that
even if a noise is 3D bandlimited, a planar slice will not be bandlim-
ited due to the consequences of the Fourier slice theorem. Instead,
low frequencies will be present and the Fourier transform will ap-
pear as a solid disk (Fig. 1D). To solve this problem, they project the
wavelet noise onto a surface by performing a weighted line integral
along the surface normal under the assumption that the curvature is
weak at the scale of the noise. Inspired by their method, we propose
a simple projection technique applicable to gradient noises.

Our method projects each of the neighboring points for which the
kernel is evaluated onto the plane tangent to the surface, and eval-
uates the kernel directly at those projected points. Because of the
radial nature of the kernel this results in a planar slice using a con-
volution kernel equivalent to the 2D kernel. To compensate for the
projection and to avoid popping, we weight the contribution from
each neighboring point with a cubic Hermite curve that falls off

with the distance above or below the plane. Fig. 1e shows our re-
sult: low frequencies are attenuated isotropically, yielding a more
radially symmetric spectrum than wavelet noise.

The following pseudocode employs our hash, filter, and projection
method (given unit-length surface normal N). Indices into the per-
mutation tables Px, Py , Pz are assumed to be modulo table size.
Table G contains vectors uniformly distributed on the unit sphere.

function ProjectedNoise(X, N)
I← {bXxc, bXyc, bXzc}
F← X− I
v ← 0
for k ← −1 to 2 do

for j ← −1 to 2 do
for i← −1 to 2 do

D← F− {i, j, k} . vector from lattice point
o← D ·N . offset from plane
A← D− oN . projection onto plane
d← A ·A . squared distance to projection
o← 1− |o|
if d < 4 and o > 0 then

h← Px[Ix + i]⊕ Py [Iy + j]⊕ Pz [Iz + k]
t← 1− d/4
v ← v + (A ·G[h])(4t5 − 3t4)(3o2 − 2o3)

return v
end

5 Discussion
We have shown how to improve the spectral properties of Perlin
noise with relatively minor changes. The hash method of Section 2
improves both visual quality and runtime (about 5%) with only a
modest increase in storage; we believe all standard noise imple-
mentations should adopt it. The kernel and projection method yield
a bandlimited spectrum attenuating high and low frequencies, re-
spectively. These methods are more expensive to evaluate (about
6× and 14× respectively), thus their use should be restricted to
applications where the visual benefits merit the penalty. While we
have focused on visual quality, we note that with our method we can
trade some visual appearance for speed and still retain the isotropic
bandlimits by sampling the grid at half-resolution—i.e., using only
the integer lattice points with even-valued coordinates (Fig. 1f).
This variant is well suited to summations over multiple octaves and
effectively returns to a 2-point stencil at an evaluation cost of only
2.4× with projection. In either case, the fewer dependent lookups
needed for the new hashing scheme implies opportunities for opti-
mization.
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