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Abstract— Serial-section transmission electron microscopy
(TEM) is an important imaging modality for studying neuronal
connectivity patterns. However, before serial-section THl images
can be used to reconstruct connectivities of neurons, sewr
image registration problems must be addressed. The first pfolem L Electron Beam L
arises due to the large sample size and limited field of view:
each section must be assembled from many overlapping tiles, e .
process also referred to as mosaicing. The second problemtlse Thin Section
co-registration of slice mosaics into a single three-dimesional

volume. In both problems, non-linear distortions of individual Specimen
images must be corrected. We present a carefully engineered

solution to these problems making by modifying existing reis-
tration paradigms to better fit the requirements of serial-section
TEM images. Fig. 1. Ultra-thin serial-section TEM.
I. INTRODUCTION in three-dimensional (3D) volume assembly. However, the

Detailed, data-driven descriptions of microscopic sties image resolution is not adequate for certain problems sach a
are very important in neurobiology. While neural modelinganglion-cell connectivity reconstruction, which is dissed
is critical to our understanding of the central nervouseayst in Section I-B. The image acquisition method we address in
state-of-the-art models are relatively unconstrainedriatem- this paper, transmission electron microscopy (TEM) [10]]]
ical data. Very little is known about the physical orgariaat [3], captures the slice itself by suspending it in an electro
and connectivities of neurons. Motivated by this lack ofagatbeam to obtain a single projection of electron dense and
a number of researchers [1], [2], [3] have undertaken extelfi@nsparent structures transverse to the plane of the skee
sive imaging projects, to produce detailed maps of neuror@gure 1. TEM offers good resolutior<(1 nm in plane) and
structure and connectivity. Magnetic resonance imagingIM relatively high signal-to-noise ratio.
can only provide information at a macroscopic level. Many An alternative to serial-sectioning is electron microseop
imaging needs can be met with traditional light microscop@mography (EMT) [6], [7]. The resolution of this method is
(LM) and confocal microscopes, but resolution issues |t similar to TEM, but reconstructions often suffer from aatifs
ability to resolve smaller structures such as synapseghese due to limited acquisition angles and low signal-to-noéteos.
problems, electron microscopy (EM) approaches can help to
define structures smaller than the wavelength of white Bgitt B. Ganglion-cell connectivity in the retina

as such, EM is the primary method for resolving sub cellular The driving application for our work is the reconstruction

anatomy and cellular connectivity. of ganglion-cell connectivity in the retina. The mammalian
retina contains at least 55-80 classes of neurons [4], [5].
A. Electron Microscopy Photoreceptors drive horizontal cells and bipolar cell€$B

Electron microscopy can produce 3D data in several dffCs drive amacrine cells (ACs) and 15-20 ganglion cell (GC)

ferent ways. The method underlying the proposed work classes that project to the brain. Ganglion cells play araent

ultra-thin serial-sectioning which removes 40-90 nanometef©l€ in visual pe.rception..The connectivities of most AC and
(nm) slices, one at a time, from a solid specimen. ThefeC classes are inferred (incompletely) from optically e

are two methods for forming and imaging the slices. THy€reomorphology or limited physiology. To fully understa
first method is serial block-face scanning EM [9]. In thi§he r(_)l_e of GCs,_or_le needs to reconstruct a complete map of
method, each slice is cut away and discarded, and the ehecﬁ%e_nt'f'ed _synaptl_c inputs to egch G(_: c_Ia_ss n th? mammalian
beam is scanned over the remaining block face to prodlf,@éma' .Th|s requires the tracking of individual retinaunens
electron “reflectance” images. The solid block is dimensioff’ EM Images.

ally stable hence no slice-to-slice registration is regmir aPbit retinal tissue are serially sectioned parallel te th
retinal plane (90 nm slice thickness) through the inneriplex
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of all GC types, an area no smaller than 0.2 x 0.2 mm hasThe fields of image processing and computer vision have
to be imaged to ensure that a sufficient number of samplesde significant progress in the quantitative analysis of
of each GC will be present in the dataset [4]. Each sliddomedical images such as MRI and CT over the last 20 years;
is film-imaged as 270-330 overlapping tiles on a TEM at laowever, progress has been much slower in EM image process-
true magnification of 5300, and 8-bit scanned at 1200 dpi,ng. In this methods paper, we outline a complete algorithm
which yields adequate resolution to identify synapses ap gfor assembling 3D volumes from stacks of serial-section EM
junctions. data. This is an essential first step in automated processing
Large parts of our solution relies on existing methods from
the image processing and computer vision literature; hewev
we focus on the specific properties and unique requirements
Several types of image registration problems are encowf-very large datasets of serial-section EM images.
tered in the application described in Section I-B. The fisst i
the mosaicing of a large number of individual images (tiles). Il. RELATED WORK
Due to the large field of view (0.2mrD.2 mm), and the high-
magnification requirements, each slice is composed of & lar,
number of overlapping tiles (270-330). The same proble

is also encountered in CCD camera based microscopy im - . e
Py ethods can be classified according to three criteria: the

acquisition. The limited field of view imposed by CCD chip . : . :
H{gage-matchlng metric, the type of coordinate transfoiomat

tend to constrain what can be seen in any one digital fra d th timizati d For inst intensi
versus what can be seen with the eye and this limitation 3Qd the optimization procedure. For instance, in ensityed

only made more severe at higher magnifications. The soluti ethods compute tran_sformauons using image intensity in-
to this has been the implementation of image mosaici rmation [15], [13] while landmark-based methods match a

approaches which stitch or tile adjacent images togethe t of f|dUC|_aI p_omts _between 'mages [1(.5]’ [17], [18], [1.9]'
], [21]. Fiducial points can be anatomical or geometrica

r
create a seamless complete image. There are a variety[ ! ature and are either automatically detected or entead m
methods for mosaicing images ranging from encoding stage u ! u ically

information and syncing image capture with stage positmn agy byfa usehr. Mor? cot:nplex Iar:jd?warks,.stuc? as zcgntozu:;s
coarse optical matching of intensities to tile images, hase and surfaces have also been used for registration [22], [23]

approaches tend to work best with confocal data that ha&lbrj%tagj' A rknored r_e(t:ent_treiearc; dlrect|0rrl1 IS t;) 4co_|r_1t11b ine both ¢
contrast and loose z-axis focus requirements. For micgysc andmark and intensity based approaches [24]. The range o

- . . : allowed transformations can be rigid, affine, polynomilin+
requiring high contrast work with narrowly constrained dbc ) :
planes, current approaches tend to fail at image edges wh%l?gte splines or large deformations [25], [13], [26], [2[Z0].

errors in the range of 100-250 nm corrupt data making some erial-section EM registration methods in the literature

projects designed to reconstruct entire networks of nm”ox?.'rlmarily have been manual or semi-automatic [28]. In alyear
impossible work, Carlbomet al. propose a manual method [29]. Fiala

However, regardless of whether a pure digital work-flow oarnd Hauris also propose a manual method which estimates

a hybrid film/digital imagery work-flow is followed, therer a polynomial transformation from fiducial points entered by

) . s . : user [30]. Randalét al. propose an automatic method for
inherent problems with mosaicing EM images in that ea%oregistering EM images acquired with a CCD camera [31].

image has within it a microscope specific image aberrati?—?owever they assume that the successive slices are ver
that typically presents itself as a polynomial warp from the ' y y

. T . _similar and use rigid transformations.

center to the periphery of the resulting image. Any one image

is perfectly interpretable, but when one attempts to mosaic

several images lining up structures becomes a difficult. task Il. I MAGE MOSAICING

Efforts attempting to define complete neuronal circuitstigh Each section is imaged in overlapping tiles in scan-line

the use of hundreds of image mosaics in numerous layerslering. Digital electron microscopes can provide pmecis

are made impossible unless images can be warped withnformation about location of individual tiles which can be

polynomial transformation to match one another. Furtheenoused in the mosaicing process; however, analog electron mi-

due to the large number of tiles per slice, user interaction droscopes can provide only coarse positioning information

not feasible at this stage. On the other hand, digital EM imaging has poor intrinsic
The second registration problem is that each section igesolution defined by the density of optical fiber bundles;

physically separate section that maintains for the most, parence, the method of choice is to use analog film processing

its dimensional stability. There are in reality, subtle atef followed by digital film scanning at high resolution allowgin

mations on the nanometer scale that are introduced through resolution to be preserved. During analog film captane,

the preparation of these sections and these deformatiens aperator manually adjusts the position of each tile aimig f

have to be taken into account when digitally reconstructireg 20% overlap between adjacent tiles. Due to the imprecise

serial sections. This problem is also further complicatgd mature of this operation, exact position information foctetile

the change in the visible structures going from one 2D sliég not available. The mosaicing algorithm addresses thib-pr

to the next. In this paper, we describe a carefully engirceeriem. Furthermore, every section undergoes an unpredétabl

solution to these problems. rotation when placed in the microscope; hence, the number of

C. Image registration problems in serial-section TEM

Medical image registration is a very active research area,
d an extensive review is beyond the scope of this paper.
an in-depth survey, the reader is referred to [13], [14].



whereF ! denotes the inverse Fourier transform [32]. Notice
F\\\\ that, under assumptions of periodicity, if the image pdiieds
] exactly by a translation then the PDF computed by (1) will
/ have non-zero probability for a single displacement vedtor
practice, finding the maximum of the displaceménbF is
non-trivial. ThePDF is very noisy due to the textured nature
of electron microscopy images. Also, tlieDF' of two non-
overlapping images may contain several maxima, or none at
all. These problems are not addressed in [32].
Four main steps are necessary to identify the location of the
Fig. 2.  First two rows of tiles in imaging two section with féifent _correct maxima in the PDF. The first_step Is to pre-smooth .the
orientations. The number of tiles in each row depend on thwadhictable iMmages to reduce the amount of noise. The second step is to
orientation of the slice in the electron microscope. select and apply a threshold to the PDF image to isolate fjloba
peaks. We choose a threshold so th#t of the total pixels
are considered. In the third step, we look for a cluster of at
tiles in each scan-line will differ, see Figure 2. Theref@een |east five 8-connected pixels that indicate a strong maximum
though the order in which tiles were imaged is known , we d@ the pixels are scattered across tRDF, it is likely the
not know which tiles are neighbors in the tile collectionesd ppr does not have a strong maximum. Once all of the
the microscope operator records this information. To make ac|ysters have been identified, the clusters that are broken u
algorithm as general as possible, we propose an algorit@oss the? DF boundary are merged together. This step is
which deduces the tile ordering automatically. Hence thgquired because the Discrete Fourier Transform assuraes th
problem can be stated as: Given a large number of tilgge signal is periodic; therefore, theDF is also periodic.
specified in no particular order, a mosaic must be constiluctehe coordinates of the? DEF maxima are calculated as the
and individual tiles must be corrected for radial distamtio centers of mass of the corresponding clusters. The final step
The problem that can be split up into more manageable syd1o verify which, if any, of the maxima found in the previous
problems: step is the true displacement between the image pair. Non-
A) Find pairs of overlapping tiles and estimate the relativeverlapping image pairs typically producé’a@ F' with several
displacement between them. maxima points at roughly the same value, while tA® F
B) Deduce the tile ordering and build a rough estimate aff two overlapping tiles produces one maximum significantly
the mosaic without radial distortion correction. higher than the rest. If the strongest maxima is at leastetwic
C) lteratively refine the mosaic by alternating the refineas strong as the rest, it is marked as a good match; otherwise,
ment of the radial distortion correction and position ofve determine that the tiles do not overlap.
each tile in the mosaic. In order to find the displacement vector, it is not enough
to simply find the maximum of the displacememDF.

The coordinateq a4z, Ymaz) are always positive, yet the
displacement vector may very well have negative coordi-
The first sub-problem is to find pairs of overlapping tilemates. As mentioned earlier, the Discrete Fourier Transfor
The main constraint at this stage of the algorithm is comassumes that the signal is periodic whereas the actual snage
putational complexity because this procedure is applied &e not. Therefore, once the coordinates of the maximum
approximatelyn? tile pairs (number of potential matching(z,,az, ¥maz) are known, there are four possible permutations
pairs) wheren is the total number of tiles in a slice. Henceof the displacement vector that could produce the correspon

methods that incrementally improve cross-correlationior s ing high cross-correlation between the tiles. The pernmriat
ilar measures by iterative optimization are not feasible. are (Tmaz, Ymaz)s (Tmaz — Wy Ymaz )y @maz, Ymaz — 1) @nd

If we restrict the class of allowed coordinate transformagi (.. — w, Yma: — h) Wherew andh denote the image width
between pairs of tiles to only translation, a closed-forrand height, respectively. We choose the best permutatitreas
solution exists [32]. LetF; denote the Fourier transform ofone with the minimum squared image difference normalized
image S;. The cross-correlatio;; betweenS; and S; is by the overlap area. Also, displacement vectors resulting
calculated as in less than5% of overlap are discarded without further

®;; = FF;, consideration. This decision is based on the fact that the mi

croscope operator aims for approximateipbo overlap along

whereF’; denotes the complex conjugate Bf. Similarly the e eqges of the tile, and approximatd§% overlap at the
auto-correlation terms (the power spectral density) ispod  corners. These overlap amounts provide a near optimal-trade

as &;; = Fil7. _T‘P;(zn using the Fourier transform property petween matching algorithm robustness vs. redundamcy i
F[S(z—x,)] = e/ F[S(z)], a probability density function jmages, wasted storage space and extra microscope operatio
(PDF) for the displacement vector between image®ndS:  ime, Matching becomes unreliable for image pairs with less

is calculated as than 10% overlap. Successful results of our image matching

A. Matching pairs of tiles

P on two tiles with approximately0% overlap is demonstrated
~1 10 pp ) p
PDF (z,y) = Real [F [7%0@11” (1) in Figure 3.



bad matches which might result from the previous stage. It
is also worth mentioning that any tile can be chosen as the
anchor for the mosaic without significantly changing thelfina
performance. The gross tile placements in the mosaick are
used as the initialization to the iterative non-linear refirent
discussed next.

C. Nonlinear distortion correction

As mentioned earlier, each tile undergoes a nonlinear warp-
ing due to bending of the electron beam. The warping is well
approximated by a radial distortion if the image coordisate
of the center of the microscope is known, which is not
necessarily the center of the image itself. Unfortunatelig
information is not available and can not easily be inferredf
the image. Therefore, we choose to model the warping with
bivariate Legendre polynomials. This is a more generakaiés
transformations than radial distortion and the unknowrteren
of the electron beam can be handled through the additional
degrees of freedom.

Correcting the radial distortion is important because it ca
amount to mismatches upto tens of pixels between overlgppin
tiles in areas far from the electron beam center. If uncéerkc
this large mismatch is likely to cause neuron segmentatioin a
tracking algorithms to fail. We have found that a bivariate ¢
bic Legendre polynomial provides very high quality matches
The transformation from the mosaic image coordingte®)
to the coordinate frame of tilé is given by

N i _ _
u—u v —7
Tl (u, ’U) = Xk E E ak’jﬂ;ij (Tkk> F)ifj < Yk k:>

i=0 j=0
_ 2
SR U — ug v — T
D X e e
(C) i=0 7=0
Fig. 3. [COLOR image] (a,b) Two overlapping images, (c) tesimatching. 3)

where P are the Legendre polynomial basis functions. The
transform for the k'th tile is parameterized by polynomial
coefficientsay, ; ,—; andbg; ,—;. The normalization constants
X and Y, correspond to the half-width and half-height of
Matches between tiles found by the algorithm describdle K'th tile. The image center of the K'th tile in the mosaic
in Section Ill-A are used as the basis for deducing the tikpordinate frame is located &tix,v); this center is given
ordering. The mappings between the tiles found with tHey the displacement vectors and the tile ordering computed
method described in Section IlI-A are stored as connectiopeviously. Note that the zero’th degree coefficients of the
in a graph of tiles. Each mapping (connection) is weighdtansformation allow further shifts in the tile displacemtee
according to the normalized squared image differencesienes necessary. Also, if the center of electron beam is noteat th
mentioned earlier. image center, the radial distortion can still be modeled tdue
After selection of an anchor tile, our algorithm tries tdhe larger degree of freedom available.
find the best possible mapping from the image space of anyfhe polynomial coefficients are found iteratively us-
tile into the image space of the anchor til,, ... This INg the ITK [33] optimization framework, specifically the
is accomplished by cascading the mappings via intermedi&i#e :Regular SepGradientDescentOptimizer class. Since more
tiles. For example, there may exist a mappiig S; between than one tile may overlap the same pixel, the average irtfensi
tiles Sy and Sy, and another mapping; : Siarge: between vgriance within_ overlapping regions was chosen as the tile
tiles S1 and Siurget- A Mapping Sy : S1 1 Starger betWeen mismatch metric:

B. Deducing the tile ordering

tiles Sy and Siurger Can be created via the intermediate  WorH-ol )
tile S;. The mapping with the least cost (normalized square V= SN AP(u,) (4)
intensity difference) is preferred even when it has greater u=0 v=0

cascade length. Redundant mappings allow us to select WieerelV andH are the dimensions of the entire mosaic ahd
best mapping possible and avoid problems due to occasioisathe area of the overlapping regions. The functidh(u, v)



e N ‘,‘h‘ N matched using only global displacement vectors. Figures 4
. ' (c) and (d) show the same areas after applying the nonlinear
N w distortion correction algorithm outlined in this sectidtotice
i that the blurring in the overlapping region due to non-linea
coordinate distortions are not present in Figures 4 (c) and
(d). Two mosaicked sections (including nonlinear distorti
correction) are shown in Figure 5. Both of these sectiongwer
/’ assembled from 12 tiles. The size of the mosaicked sections
are approximatelyt0,000 x 11,000 pixels. The computation
- of each mosaic takes approximately 2 hours on a high-end
o i & : PC. However, it is important to note that the computation
d . a0 \ o time effectively scales linearly with the number of tiles in
o y A the slicen. The only portion of the algorithm that scales with
s » !‘, . ‘ ‘V L O(n?) (image pair matching) is computationally very cheap;
| ] ; z("'"" v . this portion takes only 3 minutes of the 2 hour computation
‘ p ’ required to assemble the slice.

,'7 IV. SLICE-TO-SLICE MATCHING

© d) After mosaiciljg individual tiles into s!ices, _the goal isfited
the transformation between consecutive slices to asseable
Fig. 4. Overlapping tiles before (a,b) and after (c,d) rmuedr distortion registered stack of images, or in other words a 3D volume.
correction. Note that the ordering of the slices in the stack is known. The
transformation between adjacent slices is composed ofaeve
factors: (i) nonlinear warping due to the physical sectigni

is the variance at mosaic pixel locati¢n, v): process, (i) the physical changes in the structure beirgéd

1 N(u,v)—1 due to the 90nm gap between consecutive slices and (iii) an
AQ(% v) = o o) Z (Sk(zr, yx) — p (u, v))Q (5) _unknovyn rotatipn and displgcement when the seqtion_is pla\_ce
(u,v) k=0 in the field of view of the microscope. We use a fiducial-point

N (u,v) is the number of tiles overlapping a pixel at the giveﬁaseOI approach as outlined below:

mosaic coordinate$u,v). The functionsz, and y, are as A) For each slice, a gradient vector image pyramid and a
defined in equations (2) and (3). The mean intensity value at  Difference-of-Gaussian (DoG) image pyramid is con-

the specified mosaic coordinates is computed as structed. The extrema points of the DoG pyramid are
N(u)—1 determined.

o 1 6 B) The dominant gradient vector orientations in the neigh-

plno) =5 (u,v) ];) Sk (@, Yr) ©) borhood of each extrema point are detected. A descriptor

o . ) o for every detected gradient vector orientation of the

a shared set of transform parametérsand b for all tiles.  c) For each pair of adjacent slices, matching descriptors
Note that,u, and v, which define the gross tile placement are found.
are still unique to each tile and are treated as fixed. Sincgy) Gjven the matching descriptors, a transform that best

the properties of the electron beam remains constant, the maps the extrema points from the image space of slice
distortions of the various tiles are similar. Hence, thizgst A into the image space of slice B is calculated.

compensates for large scale radial distortion common to all

tiles. The remaining variance in the mosaic is due to unique

distortions present in_ each tile_such as small shifts in ﬂAe_ Detecting extrema points

center of the electron in terms of image coordinates. Tohesef

in the second stage, we restart the optimization with theThe specifics of the construction of the image pyramids are

initialization set to the common parameters, but optimilee t thoroughly covered by David G. Lowe[34] and will not be

transforms without sharing the parameters. This produoes tepeated here. Suffice it to say, that a pyramid is a collectio

unique transform parameters for each tile and is found to b&octaves, where each octave represents a reduction otimag

more robust than optimizing unique parameters directhe Thesolution by a factor of 2. Each octave is partitioned into a

variance minimization iterates until it converges or exiseset of scales where each successive image is convolved with a

the maximum number of iterations. Gaussian filter of increasing sigma value. The extrema point
Figure 4 illustrates the importance of nonlinear distartioare the local minima and maxima points of the DoG image

correction in EM image mosaicing. Figures 4 (a) and (b) shopyramids. Lowe[34] proposed looking for an extrema point in

close-up views of two areas of the section where two tilesewea 3 x 3 x 3 neighborhood within a DoG pyramid.



neighborhood properties. We partition the neighborhotal @
set of concentric annuli, where each annulus is partitionted

a set of cells of equal area. This strategy is found to perform
slightly better for EM images than the rectangular grid used
for sampling in [34]. Each histogram cell holds a gradient
vector orientation histogram.

C. Descriptor matching

The matching process is slightly different from the one
outlined in [34]. That work addresses a more general compute
vision problem, where detection of the same object at differ
scales is important. The electron transmission microscopy
images are taken at the same scale, and undergo minor
deformation on the global scale, making the scale invariant
feature matching unnecessary. Therefore, for the purpoises
TEM image registration, the descriptors are matched agains
other descriptors selected from the same octave and scale of
the pyramid. We use an optimized kd-tree [35] with a best-
bin-first nearest neighbor search algorithm [36].

The number of mismatched descriptors can be reduced
effectively for TEM images based on the ratio of the distance
(in image space) between nearest extrema points in the two
sections. Since the scales are the same, the distance betwee
nearest neighbors in one image and the matching image should
be nearly identical. If the ratio of the two distances desgat
significantly from 1.0, it can be assumed that one of the
matches is wrong. Figure 6 shows the descriptors remaining
after this filtering for matching the two sections shown in
Figure 5. In this case, 4601 possible matches are filterechdow
to 459 matches.

D. Estimating the transform

The remaining set of matches may still contain some errors.
Brown and Lowe [37] propose the use of RANSAC [38] to
select a set of matches that define a consistent transform.
Essentially, a few matches are selected at random to solve
for the transform parameters. The number of initially sildc
Fig. 5. Two consecutive slices. Each slice was mosaickerh fi@ high matches depends on the number of transform parameters. For
ir;z‘ggt'i‘;"a;’rﬁgiﬁgfécl’;()'i']%'grg"1Qf'gg%sgﬁ(pe{s'.mages ofbiretina. Each oy ample, a 2nd order (linear) bi-variate Legendre polymbmi

transform has 6 parameters, it requires 3 distinct matches.
A 4th-order (cubic) bi-variate Legendre polynomial trasf
has 20 parameters, it requires 10 distinct matches.

Once a transform has been estimated, the rest of the matches

The descriptors are based on neighborhood propertiesapé verified as inliers or outliers. For each match point,pair
the gradient image at the extrema points. The descriptdhe point expressed in the space of imafjeis mapped via
have to be rotationally invariant, therefore it is necegsathe transform into the space of image,;. The distance of
to select a consistent frame of reference for sampling ttiee mapped point to its match is used to classify the match
neighborhood around each extrema point. The neighborhaslan inlier or an outlier based on some threshold. The flier
gradient orientation angles are accumulated into a 1D h&nad the original set of matches are then used to re-estimate
togram. Each contribution is weighed by the gradient mathe transform. This can be an iterative process, where &t eac
nitude and a 2D Gaussian weighting function centered at theration the matches are classified as inliers and outligrtl
extrema point. The peaks of the histogram define the featw@nvergence or a maximum number of iterations is reached.
vector orientation angles [34]. After determining the angl Since the goal is to maximize the number of inliers, the psece
the neighborhood gradient orientations are sampled withinis repeated with a new set of initial random matches, and the
local coordinate system based on the descriptor orientatioest results are kept. As shown in Figure 7, this proceskdurt
angle. It is important to note that the radius of the samplingduces the number of potentially matching descriptorthig
window has to be large enough (in pixels) to capture tlemse 165 matching descriptors remain for the final transform

B. Descriptors



Fig. 6. [COLOR image] Remaining descriptors after distarat® filtering to  Fig. 7. [COLOR image] Final matching descriptors after ation
reduce the number of mismatches. Descriptor locationsteers as colored of RANSAC. Descriptor locations are shown as colored dotsitctiing
dots; matching descriptors share the same color in bothémag descriptors share the same color in both images.

estimation. Finally, figure 8 illustrates the results ofiségring of digital image data to bioscience laboratories. Whileitellg

the two sections. image based microscopy has been almost a universally appre-
While the section mosaicking stage of the algorithm hasated convenience, for some users pushing the bounddries o

been extensively tested, more testing is still needed idat@ projects requiring imaging, there are some unique chadleng

the slice-to-slice matching. Certain slices which haveyveThe method described in this paper address two of these

different contrast properties than other slices in thekstawd challenges: section assembly from thin-sections captured

slices which have major artifacts (tears, folds) have beend tiles with high-resolution analog TEM and section-to-gmtt

to cause the slice-to-slice matching stage to fail. Thesges matching. Future work will focus on tracking neurons in the

will be addressed in future work. assembled 3D volumes. While the methods described in this
paper are fine-tuned for the specific requirements of serial-
V. CONCLUSION section TEM imaging, the high-level approach, in princjpal

Microscopy is undergoing a new renaissance as molecufar@pplicable to any imaging method that captures a volume
biology and genetics begin to require and rediscover LM afgfially as a stack of 2D images.
EM based histological and anatomical approaches to validat
and inform their science and methodologies. The advent of ACKNOWLEDGMENTS
affordable CCD cameras combined with easy to implementThis work was supported in part by NIH RO1 EB005832-
interfaces such as Firewire have resulted in wider acaéigsib 01, NIH EY0015128, EY002576 and NEI Vision Core
higher throughput and easier interpretation and visutidiza EY014800.
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[COLOR figure] Visualization of the slice-to-slicegistration results.
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