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Abstract— Large scale scientific simulations routinely produce 
data of increasing resolution. Analyzing this data is key to 
scientific discovery. A critical bottleneck facing the analysis is the 
I/O time to access the data. One method of addressing this 
problem is to reorganize the data in a manner that simplifies 
analysis and visualization.  The IDX file format is an example of 
this approach.  It orders data points so that they can be accessed 
at multiple resolution levels with favorable spatial locality and 
caching properties.  IDX has been used successfully in fields such 
as digital photography and visualization of large scientific data, 
and is a promising approach for analysis of HPC data.  
Unfortunately, the existing tools for writing data in this format 
only provide a serial interface.  HPC applications must therefore 
either write all data from a single process or convert existing data 
as a post-processing step, in either case failing to utilize available 
parallel I/O resources. 

In this work, we provide an overview of the IDX file format and 
the existing ViSUS library that provides serial access to IDX 
data. We investigate methods for writing IDX data in parallel 
and demonstrate that it is possible for HPC applications to write 
data directly into IDX format with scalable performance. Our 
preliminary results demonstrate 60% of the peak I/O throughput 
when reorganizing and writing the data from 512 processes on an 
IBM BG/P system.  We also analyze the remaining bottlenecks 
and propose future work towards a more flexible and efficient 
implementation. 
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I.  INTRODUCTION 
The increase in computational power of supercomputers is 
enabling unprecedented opportunities to advance science in 
numerous fields such as climate science, astrophysics, 
cosmology and material science. These simulations routinely 
produce larger quantities of raw data. A key requirement is to 
analyze this data and transform it into useful insight. A critical 
bottleneck being faced by analysis applications is the I/O time 
to read and write data to storage.   

IDX provides efficient, cache oblivious, and progressive access 
to large-scale scientific data by storing the data in a hierarchical 
Z order [1]. It makes it possible for scientists to interactively 
analyze and visualize data of the order of several terabytes [2]. 
IDX has been used successfully in fields such as digital 
photography [3] and visualization of large scientific data [2] 
and is promising for analysis of HPC data as well [4]. 

ViSUS, an IDX API, is serial in nature which limits the use of 
IDX to relatively small scale datasets. To overcome this 
problem, we have developed a parallel API to transform large-
scale scientific data to IDX format. It utilizes the computation 
resources of each compute node to efficiently calculate the HZ 
ordering.  It then coordinates file system access using collective 
communication to write the data set in parallel. 

Development of the parallel IDX API is the culmination of 
observations and experiments made over different versions of a 
prototype API.  We began by evaluating the use of the existing 
ViSUS library in a parallel environment.  We then constructed 
a prototype API, called PIDX, that allows data to be written in 
parallel.  By analyzing this prototype, we were able to identify 
and address inefficiencies in both the I/O strategy and data 
order computation.  The prototype API demonstrates that it is 
possible for HPC applications to write data directly into IDX 
format with scalable performance.  We will use this prototype 
as a platform for future work in developing a more flexible and 
efficient implementation. 

The remainder of this paper is organized as follows: We 
present relevant background information on the IDX Data 
format in Section 2 and describe ViSUS, a serial IDX API, in 
Section 3. We present our work on writing IDX data in parallel 
in Section 4 and discuss performance optimization next. We 
evaluate the performance of our parallel IDX prototype in 
Section 6 and finally conclude and discuss our plans for further 
research.   

II. IDX DATA FORMAT 
IDX enables fast and efficient access to large scale scientific 
data. In IDX, data is organized into multiple levels of 
resolution, making it easy to query data of any desired size and 
dimension. Figure 1 depicts screenshots of a visualization tool 
based on IDX being used to visualize a 530 MB IDX data set 
of a rat’s retina scan. Figure 1(a) corresponds to visualizing 
data at the lowest resolution. This case requires querying a very 
small set of data. Figure 1(d) corresponds to visualizing data at 
higher resolution. This requires querying at multiple 
resolutions for a clipped viewing area. Figure 1(b) is the case 
where data visualized in (c) is zoomed with progressive 
increase in resolution whereas (c) corresponds to zooming 
without any progressive increase of detail, producing holes in 
images. Figure 1(e) and (f) are zoomed cross-sections from (b) 
and (c), and here the holes are clearly visible detectable. 



Hierarchical Z (HZ) ordering is the key idea behind IDX data 
format. IDX supports multi-dimensional data of arbitrary 
dimensions and sizes.  HZ order computation requires the 
spatial coordinates of data samples. For instance, it requires the 
x, y and z coordinates for a three dimensional data set. Exact 
formulation of HZ ordering can be found at [1]. Data is then 
reorganized into levels corresponding to the following 
formulation: 

Level = floor ((log2 (HZ index))) + 1 

These levels correspond to different resolutions the data is 
rearranged into. Level-wise data is then stored in IDX format 
data files. From file structure point of view, IDX file format 
has an .idx file that has all the required metadata (dimension, 
sample type, variable names and some more). The raw data is 
stored into a hierarchical level of binary files. The number of 
files and the size of the files are configurable. 

Table I demonstrates the conversion for a simple 2x2x2 volume 
of data. The conversion of data to IDX format can be 
considered as converting n dimensional data to one dimension. 
This conversion to HZ ordering is a bijective function, which is 
a required condition for parallelization. As a result of HZ 
ordering and corresponding distribution of data into different 
levels of resolution, it becomes increasingly fast to query just 
the required data set for analysis and visualization. For 
instance, there is little lag when zooming or panning a large 
scaled data at any desired rate. This is extremely critical for 
interactive visualization and analysis of data. 

III. VISUS: A SERIAL IDX WRITER 
The experiments in this paper were conducted on the Surveyor 
IBM Blue Gene/P (BG/P) system at the Argonne Leadership 
Computing Facility (ALCF) at Argonne National 
Laboratory.  Surveyor is a 4,096-core research and 
development system.  Its storage subsystem consists of four file 
servers running PVFS and a DataDirect Networks S2A9550 
SAN. 

The first goal in our effort to utilize IDX in this HPC 
environment was to develop a parallel application that would 
use ViSUS I/O to write directly into IDX format. We 
developed a microbenchmark that divides an entire data 
volume into smaller 3D chunks, which each process 
independently writes to an IDX data set. MPI barriers and 
tokens are used to maintain order amongst processes; a process 
with rank r can write to an IDX file only after the process with 
rank r–1 has finished writing. The processes cannot write 
concurrently due to conflicts in updating metadata and block 
layouts.  
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Figure 1.  (a) lowest resolution data; (b) progressive zoomed data at high resolution (c) zoomed data at low resolution (d) data at high resolution 

(e) zoomed cross-section from b, hence high resolution (f) zoomed cross-section from c, hence low resolution with equally placed holes 

TABLE I.  TABLE SHOWING CONVERSION FROM X,Y,Z COORDINATES TO 
HZ COORDINATES 

X Y Z XYZ 
value 

Z 
order 

HZ 
order 

Level 

0 0 0 0 0 0 0 
0 0 1 1 1 1 1 
0 1 0 2 2 2 2 
0 1 1 3 3 3 2 
1 0 0 4 4 4 3 
1 0 1 5 5 6 3 
1 1 0 6 6 5 3 
1 1 1 7 7 7 3 



We used MPE and Jumpshot [5] to understand the I/O patterns 
of the ViSUS microbenchmark,. Figure 2 depicts the Jumpshot 
profile of 64 processes writing an IDX file using ViSUS. Each 
horizontal line represents a process, where the yellow regions 
correspond to MPI barrier waits and black regions correspond 
to time spent writing data. As expected, we notice that a large 
portion of the runtime for each process is spent waiting for the 
I/O token.  

The aggregate bandwidth for this benchmark on 64 processes 
as we increase the amount of data is illustrated in Figure 3.  
The efficiency improves as the aggregate volume to write is 
increased to 8 GiB, but its maximum performance is only 9.5 
MiB/s. Using IOR, a widely adopted benchmark for parallel 
filesystems, we obtain a peak performance of 218MiB/s for 64 
processes writing a total of 8GiB. Thus, we are able to achieve 
only 4% of the maximum throughput. This is expected as 
ViSUS is serial in nature and the various processes take turns 
to write the data out.  

 

 

Figure 3.  Performance of serialized ViSUS IDX writer using 64 processes as 
the volume of data is varied. The ViSUS IDX writer is able to achieve only 

4% of the throughput achieved by IOR 

 

IV. PIDX : PROTOTYPE API FOR PARALLEL IDX 
WRITES 

Based on our experience with the serialized ViSUS writer, we 
then developed a prototype API for performing concurrent I/O 
to an IDX data set.  This API is called Parallel IDX (PIDX) and 
includes functions patterned after ViSUS for creating, opening, 
reading, and writing IDX data sets.  Each of the PIDX 
functions is a collective operation that accepts an MPI 
communicator as an argument. 

In both the ViSUS and PIDX API’s, the dimensions and 
maximum volume of the data set is defined when the file is 
created.  We therefore use the collective create function as an 
opportunity to pre-create all of the metadata file, subdirectories, 
and (initially empty) binary files that constitute the IDX data 
set.  The rank 0 process is responsible for populating the 
metadata file and directory hierarchy.  The work of creating the 
empty binary files is then distributed across all processes.   

Once the data set is created, the PIDX write function can be 
used to collectively write arbitrary sub-volumes of data from 
each process.  The data in this case is provided in the form of a 
contiguous, row-major ordered data buffer.  Each process must 
calculate an HZ ordering for this sub-volume, reorder the data 
points accordingly, and write those data points to interleaved 
portions of the IDX data set.  For prototype purposes, the PIDX 
library simply copies the sub-volume into an intermediate 
buffer when reordering.  It also generates an index into that 
buffer indicating each level of the HZ hierarchy.  Each level is 
then written in turn to the IDX data set using independent MPI-
I/O write operations.  Data within a single level is typically 
contiguous in file. 

 

V. OPTIMIZATION STRATEGIES 
The PIDX prototype described in the previous section greatly 
improved I/O performance over serial use of the ViSUS 

 

Figure 2.  Jumpshot Image for the serialized ViSUS IDX writer using 64 
nodes and a 64 MiB data set 

 

Figure 4.  Jumpshot profile of  a  process writing IDX file without File 
Descriptor Caching. Pink depicts the file open time and the last three pink 

columns depict the redundant file opens being performed.  

 

Figure 5.  Jumpshot profile of a  Process writing IDX file with File 
Descriptor Caching. The redundant file opens are eliminated via file descriptor 

caching 



library.  Jumpshot analysis revealed a number of inefficiencies, 
however.  Figure 4 illustrates one example.  This view 
highlights the time spent by rank 0 when writing data into the 
four initial HZ levels.  The pink regions represent file open 
time.  There is an initial expensive file open corresponding to 
creation of a binary file at PIDX create time, which cannot be 
avoided.  However, it is also evident that a significant amount 
of time is spent in a sequence of four subsequent file open 
operations.  This is because for each HZ level, PIDX identifies 
the appropriate binary file, opens it, writes a contiguous set of 
samples, and closes the file.  However, the first two HZ levels 
only contain a single data point, the third level contains 2 data 
points, the fourth level contains 4 data points, and the number 
of data points doubles every successive level. In the initial HZ 
levels, the I/O cost was dominated by time spent opening the 
file.  

In order to mitigate this overhead, we implemented a file 
handle caching mechanism in our prototype.  When any 
process opens an underlying binary file, it holds the MPI file 
descriptor open for future use and does not close it until all I/O 
is complete.  The result of this optimization is shown in Figure 
5 for the same data set.  There is now only one file open 
operation in the main write path, and performance is improved 
accordingly. Figure 6 depicts the performance improvement 
achieved with file handle caching over the default 
implementation for 64 cores as we increase the total data 
volume.  We notice a significant improvement of up to 7-fold 
for data volumes of 128MiB. However, we notice only a 
marginal improvement with higher data volumes. This is 
because a significant amount of the I/O time was spent in the 
computation to generate the HZ ordering. We performed a 
detailed analysis of the HZ computation using the IBM BG/P 
universal performance counters and indentified bottlenecks 
associated with redundant computations as well as inadequate 
use of the floating point double hummers. By overcoming 
these, as depicted in Figure 6,we are able to achieve up to 75% 
improvement in I/O throughput over the file handle 
improvements and up to a 10-fold improvement over the 
default implementation. 

 

Figure 6.  The achievable PIDX throughput on 64 cores as we vary the total 
data volume written with the various optimizations. File Caching and HZ 
Computation optimizations yield significant improvement in performance 

Figure 7 shows the Jumpshot visualization of the PIDX 
microbenchmark when writing an IDX data set. The PIDX 
regions correspond to computation time, the pink regions 
correspond to file open time, and the purple regions correspond 
to I/O time.  In contrast to Figure 2, which showed the 
serialized ViSUS writer, we are now able to efficiently utilize 
all processes when writing. 

 

Figure 7.  Jumpshot Image for the Parallel IDX (PIDX) writer using 64 nodes 
and a 16 MiB data set 

 

VI. PERFORMANCE ANALYSIS OF PARALLEL IDX 
WRITER 
In this section we evaluate the scalability of the PIDX 
prototype, both in terms of data volume and number of 
processes.  We begin by investigating the weak scaling 
behavior of the PIDX library on Surveyor. 

For weak scaling, we used a constant load of 128 MB per 
process. The total load was then gradually increased linearly as 
the number of processes was varied from 1 to 512, and the 
results are shown in Figure 8.  From these results we see that a 
single process achieves approximately 6.85 MiB/s, comparable 
to the speed achieved by a serial writer for an equal volume of 
data.  The peak aggregate performance of 406 MiB/s is reached 
with 512 processes.   This is approximately 60% of the peak 
IOR throughput achievable (667MiB/s) on 512 cores of 
surveyor. 

 

Figure 8.  PIDX write throughput with weak scaling 



Table II depicts the results of an experiment investigating 
strong scaling properties.  In this case, the total data volume 
written was fixed at 8 GiB and we varied the number or 
processes writing from 8 to 512. The Surveyor compute nodes 
possess only 2 GiB of ram per 4 cores, so we were unable to 
evaluate smaller examples.  As depicted in the figure the 
maximum performance is reached when using 512 processes. 

TABLE II.  PIDX STRONG SCALING FOR A TOTAL DATA 
VOLUME OF 8GIB 

Number of Processes PIDX Throughput in 
MiB/s 

64 120.3 

512 143.9 

 

In both the weak and strong scaling examples, we found that 
we hit a limit on scalability with our current implementation, 
falling short of the peak surveyor write performance achieved 
by IOR.  To investigate this issue further, we instrumented the 
time required to write each level of the HZ ordering.  Table III 
depicts the time taken to write the various levels in the HZ 
hierarchy for a 8 GiB total volume on 64 nodes. A 8 GiB data 
volume consists of 30 HZ levels.  We found that contention 
and metadata overhead caused levels 0 through 6 to take a 
disproportionate amount of time relative to the amount of data 
that they were writing.  We plan to leverage aggregation 
strategies to better coordinate I/O in the first few cases where 
many processes contribute data to the same level of the IDX 
data set. 

VII. CONCLUSIONS AND FUTURE WORK 
In this work we have shown that the IDX file format is a 
promising technology for analysis in scientific computing.  We 
have also demonstrated that it is possible for simulation data to 
be written directly into IDX format via a parallel API that 

provides similar functionality to the ViSUS implementation but 
with an order of magnitude improvement in performance.  We 
have also identified multiple optimizations that can be used to 
improve performance on the BG/P platform. 

As noted in the previous section, we believe that further 
advances in PIDX efficiency can be achieved through the use 
of aggregation strategies that limit contention at the file system 
level.  However, our current API is not ideal for this purpose.  
In future work we plan to revise the API in a manner that 
decouples the data model from the I/O mechanism.  In 
particular, the application will describe the entire data set in its 
entirety (including support for multiple variables and 
discontiguous memory) up front before writing the data set.  
This will allow the PIDX library to take as much information 
as possible into account in order to schedule an efficient 
transfer mechanism. We will investigate multiple aggregation 
strategies using this platform. 
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TABLE III.  TIME TAKEN TO WRITE THE VARIOUS IDX 
LEVELS FOR A 8 GIB DATA VOLUME ON 64 PROCESSES  

Level Time 
(Sec) 

Level Time 
(Sec) 

Level Time 
(Sec) 

0 1.59693 11 0.1291 22 0.3044 
1 1.4441 12 0.1512 23 0.3630 
2 1.54467 13 0.1518 24 1.9796 
3 1.5309 14 0.1485 25 2.1405 
4 1.65302 15 0.1029 26 2.7064 
5 1.64074 16 0.085 27 4.605 
6 1.62843 17 0.077 28 6.7606 
7 0.1489 18 0.0869 29 10.533 
8 0.13264 19 0.0876 30 18.251 
9 0.13415 20 0.1406   

10 0.13281 21 0.2110   


