
Towards Parallel Access of Multi-dimensional, Multi-
resolution Scientific Data

Sidharth Kumar, Valerio Pascucci
SCI Institute, University of Utah

Salt Lake City, Utah

Venkatram Vishwanath, Philip Carns, Robert Latham,
Tom Peterka, Michael Papka, Robert Ross

Argonne National Laboratory
Argonne, Illinois

Abstract— Large scale scientific simulations routinely produce
data of increasing resolution. Analyzing this data is key to
scientific discovery. A critical bottleneck facing the analysis is the
I/O time to access the data. One method of addressing this
problem is to reorganize the data in a manner that simplifies
analysis and visualization. The IDX file format is an example of
this approach. It orders data points so that they can be accessed
at multiple resolution levels with favorable spatial locality and
caching properties. IDX has been used successfully in fields such
as digital photography and visualization of large scientific data,
and is a promising approach for analysis of HPC data.
Unfortunately, the existing tools for writing data in this format
only provide a serial interface. HPC applications must therefore
either write all data from a single process or convert existing data
as a post-processing step, in either case failing to utilize available
parallel I/O resources.

In this work, we provide an overview of the IDX file format and
the existing ViSUS library that provides serial access to IDX
data. We investigate methods for writing IDX data in parallel
and demonstrate that it is possible for HPC applications to write
data directly into IDX format with scalable performance. Our
preliminary results demonstrate 60% of the peak I/O throughput
when reorganizing and writing the data from 512 processes on an
IBM BG/P system. We also analyze the remaining bottlenecks
and propose future work towards a more flexible and efficient
implementation.

Keywords-Parallel IO, Multi dimensional data;

I. INTRODUCTION
The increase in computational power of supercomputers is
enabling unprecedented opportunities to advance science in
numerous fields such as climate science, astrophysics,
cosmology and material science. These simulations routinely
produce larger quantities of raw data. A key requirement is to
analyze this data and transform it into useful insight. A critical
bottleneck being faced by analysis applications is the I/O time
to read and write data to storage.

IDX provides efficient, cache oblivious, and progressive access
to large-scale scientific data by storing the data in a hierarchical
Z order [1]. It makes it possible for scientists to interactively
analyze and visualize data of the order of several terabytes [2].
IDX has been used successfully in fields such as digital
photography [3] and visualization of large scientific data [2]
and is promising for analysis of HPC data as well [4].

ViSUS, an IDX API, is serial in nature which limits the use of
IDX to relatively small scale datasets. To overcome this
problem, we have developed a parallel API to transform large-
scale scientific data to IDX format. It utilizes the computation
resources of each compute node to efficiently calculate the HZ
ordering. It then coordinates file system access using collective
communication to write the data set in parallel.

Development of the parallel IDX API is the culmination of
observations and experiments made over different versions of a
prototype API. We began by evaluating the use of the existing
ViSUS library in a parallel environment. We then constructed
a prototype API, called PIDX, that allows data to be written in
parallel. By analyzing this prototype, we were able to identify
and address inefficiencies in both the I/O strategy and data
order computation. The prototype API demonstrates that it is
possible for HPC applications to write data directly into IDX
format with scalable performance. We will use this prototype
as a platform for future work in developing a more flexible and
efficient implementation.

The remainder of this paper is organized as follows: We
present relevant background information on the IDX Data
format in Section 2 and describe ViSUS, a serial IDX API, in
Section 3. We present our work on writing IDX data in parallel
in Section 4 and discuss performance optimization next. We
evaluate the performance of our parallel IDX prototype in
Section 6 and finally conclude and discuss our plans for further
research.

II. IDX DATA FORMAT
IDX enables fast and efficient access to large scale scientific
data. In IDX, data is organized into multiple levels of
resolution, making it easy to query data of any desired size and
dimension. Figure 1 depicts screenshots of a visualization tool
based on IDX being used to visualize a 530 MB IDX data set
of a rat’s retina scan. Figure 1(a) corresponds to visualizing
data at the lowest resolution. This case requires querying a very
small set of data. Figure 1(d) corresponds to visualizing data at
higher resolution. This requires querying at multiple
resolutions for a clipped viewing area. Figure 1(b) is the case
where data visualized in (c) is zoomed with progressive
increase in resolution whereas (c) corresponds to zooming
without any progressive increase of detail, producing holes in
images. Figure 1(e) and (f) are zoomed cross-sections from (b)
and (c), and here the holes are clearly visible detectable.

Hierarchical Z (HZ) ordering is the key idea behind IDX data
format. IDX supports multi-dimensional data of arbitrary
dimensions and sizes. HZ order computation requires the
spatial coordinates of data samples. For instance, it requires the
x, y and z coordinates for a three dimensional data set. Exact
formulation of HZ ordering can be found at [1]. Data is then
reorganized into levels corresponding to the following
formulation:

Level = floor ((log2 (HZ index))) + 1

These levels correspond to different resolutions the data is
rearranged into. Level-wise data is then stored in IDX format
data files. From file structure point of view, IDX file format
has an .idx file that has all the required metadata (dimension,
sample type, variable names and some more). The raw data is
stored into a hierarchical level of binary files. The number of
files and the size of the files are configurable.

Table I demonstrates the conversion for a simple 2x2x2 volume
of data. The conversion of data to IDX format can be
considered as converting n dimensional data to one dimension.
This conversion to HZ ordering is a bijective function, which is
a required condition for parallelization. As a result of HZ
ordering and corresponding distribution of data into different
levels of resolution, it becomes increasingly fast to query just
the required data set for analysis and visualization. For
instance, there is little lag when zooming or panning a large
scaled data at any desired rate. This is extremely critical for
interactive visualization and analysis of data.

III. VISUS: A SERIAL IDX WRITER
The experiments in this paper were conducted on the Surveyor
IBM Blue Gene/P (BG/P) system at the Argonne Leadership
Computing Facility (ALCF) at Argonne National
Laboratory. Surveyor is a 4,096-core research and
development system. Its storage subsystem consists of four file
servers running PVFS and a DataDirect Networks S2A9550
SAN.

The first goal in our effort to utilize IDX in this HPC
environment was to develop a parallel application that would
use ViSUS I/O to write directly into IDX format. We
developed a microbenchmark that divides an entire data
volume into smaller 3D chunks, which each process
independently writes to an IDX data set. MPI barriers and
tokens are used to maintain order amongst processes; a process
with rank r can write to an IDX file only after the process with
rank r–1 has finished writing. The processes cannot write
concurrently due to conflicts in updating metadata and block
layouts.

(a) (b) (c) (d)

 (e) (f)
Figure 1. (a) lowest resolution data; (b) progressive zoomed data at high resolution (c) zoomed data at low resolution (d) data at high resolution

(e) zoomed cross-section from b, hence high resolution (f) zoomed cross-section from c, hence low resolution with equally placed holes

TABLE I. TABLE SHOWING CONVERSION FROM X,Y,Z COORDINATES TO
HZ COORDINATES

X Y Z XYZ
value

Z
order

HZ
order

Level

0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 1 0 2 2 2 2
0 1 1 3 3 3 2
1 0 0 4 4 4 3
1 0 1 5 5 6 3
1 1 0 6 6 5 3
1 1 1 7 7 7 3

We used MPE and Jumpshot [5] to understand the I/O patterns
of the ViSUS microbenchmark,. Figure 2 depicts the Jumpshot
profile of 64 processes writing an IDX file using ViSUS. Each
horizontal line represents a process, where the yellow regions
correspond to MPI barrier waits and black regions correspond
to time spent writing data. As expected, we notice that a large
portion of the runtime for each process is spent waiting for the
I/O token.

The aggregate bandwidth for this benchmark on 64 processes
as we increase the amount of data is illustrated in Figure 3.
The efficiency improves as the aggregate volume to write is
increased to 8 GiB, but its maximum performance is only 9.5
MiB/s. Using IOR, a widely adopted benchmark for parallel
filesystems, we obtain a peak performance of 218MiB/s for 64
processes writing a total of 8GiB. Thus, we are able to achieve
only 4% of the maximum throughput. This is expected as
ViSUS is serial in nature and the various processes take turns
to write the data out.

Figure 3. Performance of serialized ViSUS IDX writer using 64 processes as
the volume of data is varied. The ViSUS IDX writer is able to achieve only

4% of the throughput achieved by IOR

IV. PIDX : PROTOTYPE API FOR PARALLEL IDX
WRITES

Based on our experience with the serialized ViSUS writer, we
then developed a prototype API for performing concurrent I/O
to an IDX data set. This API is called Parallel IDX (PIDX) and
includes functions patterned after ViSUS for creating, opening,
reading, and writing IDX data sets. Each of the PIDX
functions is a collective operation that accepts an MPI
communicator as an argument.

In both the ViSUS and PIDX API’s, the dimensions and
maximum volume of the data set is defined when the file is
created. We therefore use the collective create function as an
opportunity to pre-create all of the metadata file, subdirectories,
and (initially empty) binary files that constitute the IDX data
set. The rank 0 process is responsible for populating the
metadata file and directory hierarchy. The work of creating the
empty binary files is then distributed across all processes.

Once the data set is created, the PIDX write function can be
used to collectively write arbitrary sub-volumes of data from
each process. The data in this case is provided in the form of a
contiguous, row-major ordered data buffer. Each process must
calculate an HZ ordering for this sub-volume, reorder the data
points accordingly, and write those data points to interleaved
portions of the IDX data set. For prototype purposes, the PIDX
library simply copies the sub-volume into an intermediate
buffer when reordering. It also generates an index into that
buffer indicating each level of the HZ hierarchy. Each level is
then written in turn to the IDX data set using independent MPI-
I/O write operations. Data within a single level is typically
contiguous in file.

V. OPTIMIZATION STRATEGIES
The PIDX prototype described in the previous section greatly
improved I/O performance over serial use of the ViSUS

Figure 2. Jumpshot Image for the serialized ViSUS IDX writer using 64
nodes and a 64 MiB data set

Figure 4. Jumpshot profile of a process writing IDX file without File
Descriptor Caching. Pink depicts the file open time and the last three pink

columns depict the redundant file opens being performed.

Figure 5. Jumpshot profile of a Process writing IDX file with File
Descriptor Caching. The redundant file opens are eliminated via file descriptor

caching

library. Jumpshot analysis revealed a number of inefficiencies,
however. Figure 4 illustrates one example. This view
highlights the time spent by rank 0 when writing data into the
four initial HZ levels. The pink regions represent file open
time. There is an initial expensive file open corresponding to
creation of a binary file at PIDX create time, which cannot be
avoided. However, it is also evident that a significant amount
of time is spent in a sequence of four subsequent file open
operations. This is because for each HZ level, PIDX identifies
the appropriate binary file, opens it, writes a contiguous set of
samples, and closes the file. However, the first two HZ levels
only contain a single data point, the third level contains 2 data
points, the fourth level contains 4 data points, and the number
of data points doubles every successive level. In the initial HZ
levels, the I/O cost was dominated by time spent opening the
file.

In order to mitigate this overhead, we implemented a file
handle caching mechanism in our prototype. When any
process opens an underlying binary file, it holds the MPI file
descriptor open for future use and does not close it until all I/O
is complete. The result of this optimization is shown in Figure
5 for the same data set. There is now only one file open
operation in the main write path, and performance is improved
accordingly. Figure 6 depicts the performance improvement
achieved with file handle caching over the default
implementation for 64 cores as we increase the total data
volume. We notice a significant improvement of up to 7-fold
for data volumes of 128MiB. However, we notice only a
marginal improvement with higher data volumes. This is
because a significant amount of the I/O time was spent in the
computation to generate the HZ ordering. We performed a
detailed analysis of the HZ computation using the IBM BG/P
universal performance counters and indentified bottlenecks
associated with redundant computations as well as inadequate
use of the floating point double hummers. By overcoming
these, as depicted in Figure 6,we are able to achieve up to 75%
improvement in I/O throughput over the file handle
improvements and up to a 10-fold improvement over the
default implementation.

Figure 6. The achievable PIDX throughput on 64 cores as we vary the total
data volume written with the various optimizations. File Caching and HZ
Computation optimizations yield significant improvement in performance

Figure 7 shows the Jumpshot visualization of the PIDX
microbenchmark when writing an IDX data set. The PIDX
regions correspond to computation time, the pink regions
correspond to file open time, and the purple regions correspond
to I/O time. In contrast to Figure 2, which showed the
serialized ViSUS writer, we are now able to efficiently utilize
all processes when writing.

Figure 7. Jumpshot Image for the Parallel IDX (PIDX) writer using 64 nodes
and a 16 MiB data set

VI. PERFORMANCE ANALYSIS OF PARALLEL IDX
WRITER
In this section we evaluate the scalability of the PIDX
prototype, both in terms of data volume and number of
processes. We begin by investigating the weak scaling
behavior of the PIDX library on Surveyor.

For weak scaling, we used a constant load of 128 MB per
process. The total load was then gradually increased linearly as
the number of processes was varied from 1 to 512, and the
results are shown in Figure 8. From these results we see that a
single process achieves approximately 6.85 MiB/s, comparable
to the speed achieved by a serial writer for an equal volume of
data. The peak aggregate performance of 406 MiB/s is reached
with 512 processes. This is approximately 60% of the peak
IOR throughput achievable (667MiB/s) on 512 cores of
surveyor.

Figure 8. PIDX write throughput with weak scaling

Table II depicts the results of an experiment investigating
strong scaling properties. In this case, the total data volume
written was fixed at 8 GiB and we varied the number or
processes writing from 8 to 512. The Surveyor compute nodes
possess only 2 GiB of ram per 4 cores, so we were unable to
evaluate smaller examples. As depicted in the figure the
maximum performance is reached when using 512 processes.

TABLE II. PIDX STRONG SCALING FOR A TOTAL DATA
VOLUME OF 8GIB

Number of Processes PIDX Throughput in
MiB/s

64 120.3

512 143.9

In both the weak and strong scaling examples, we found that
we hit a limit on scalability with our current implementation,
falling short of the peak surveyor write performance achieved
by IOR. To investigate this issue further, we instrumented the
time required to write each level of the HZ ordering. Table III
depicts the time taken to write the various levels in the HZ
hierarchy for a 8 GiB total volume on 64 nodes. A 8 GiB data
volume consists of 30 HZ levels. We found that contention
and metadata overhead caused levels 0 through 6 to take a
disproportionate amount of time relative to the amount of data
that they were writing. We plan to leverage aggregation
strategies to better coordinate I/O in the first few cases where
many processes contribute data to the same level of the IDX
data set.

VII. CONCLUSIONS AND FUTURE WORK
In this work we have shown that the IDX file format is a
promising technology for analysis in scientific computing. We
have also demonstrated that it is possible for simulation data to
be written directly into IDX format via a parallel API that

provides similar functionality to the ViSUS implementation but
with an order of magnitude improvement in performance. We
have also identified multiple optimizations that can be used to
improve performance on the BG/P platform.

As noted in the previous section, we believe that further
advances in PIDX efficiency can be achieved through the use
of aggregation strategies that limit contention at the file system
level. However, our current API is not ideal for this purpose.
In future work we plan to revise the API in a manner that
decouples the data model from the I/O mechanism. In
particular, the application will describe the entire data set in its
entirety (including support for multiple variables and
discontiguous memory) up front before writing the data set.
This will allow the PIDX library to take as much information
as possible into account in order to schedule an efficient
transfer mechanism. We will investigate multiple aggregation
strategies using this platform.

ACKNOWLEDGMENT
This work was supported by the Mathematical, Information,
and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, Office of
Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357. This research used resources of the Argonne
Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under contract DE-AC02-
06CH11357.

REFERENCES
[1] Pascucci, V., and Frank, R.J., Hierarchical indexing for out-of-core

access to multi-resolution data. Technical Report UCRL-JC-140581,
Lawrence Livermore National Laboratory, 2001. A preliminary version
was presented at the Lake Tahoe Workshop NSF/DOE Lake Tahoe
Workshop on Hierarchical Approximation and Geometrical Methods for
Scientific Visualization.

[2] V. Pascucci and R.J. Frank. Global Static Indexing for Real-time
Exploration of Very Large Regular Grids Conference on High
Performance Networking and Computing archive proceedings of the
2001 ACM/IEEE conference on Supercomputing (CDROM)

[3] B. Summa, G. Scorzelli, M. Jiang, P.T. Bremer, V. Pascucci, Interactive
Editing of Massive Imagery Made Simple: Turning Atlanta into Atlantis.
ACM Transactions on Graphics - to appear, 2010

[4] V. Pascucci, D.E Laney, R.J. Frank, G. Scorzelli, L. Linsen, B. Hamann,
And F. Gygi. 2003 Real-time monitoring of large scientific simulations.
In ACM Symposiumon Applied Computing’03,ACMPress.

[5] W.Gropp, E.Lusk.”User’s Guide for MPE: Extensions for MPI
Programs”. 1998

[6] G. Bell, T. Hey, and A. Szalay. COMPUTER SCIENCE: Beyond the
Data Deluge. Science, 323(5919):1297, 2009.

[7] Samuel Lang, Philip Carns, Robert Latham, Robert Ross, Kevin Harms,
and William Allcock. I/O performance challenges at leadership scale. In
Proceedings of Supercomputing, November 2009.

TABLE III. TIME TAKEN TO WRITE THE VARIOUS IDX
LEVELS FOR A 8 GIB DATA VOLUME ON 64 PROCESSES

Level Time
(Sec)

Level Time
(Sec)

Level Time
(Sec)

0 1.59693 11 0.1291 22 0.3044
1 1.4441 12 0.1512 23 0.3630
2 1.54467 13 0.1518 24 1.9796
3 1.5309 14 0.1485 25 2.1405
4 1.65302 15 0.1029 26 2.7064
5 1.64074 16 0.085 27 4.605
6 1.62843 17 0.077 28 6.7606
7 0.1489 18 0.0869 29 10.533
8 0.13264 19 0.0876 30 18.251
9 0.13415 20 0.1406

10 0.13281 21 0.2110

