Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

SCI Publications

2010


D.F. Wang, R.M. Kirby, R.S. MacLeod, C.R. Johnson. “A New Family of Variational-Form-Based Regularizers for Reconstructing Epicardial Potentials from Body-Surface Mapping,” In Computing in Cardiology, 2010, pp. 93--96. 2010.


2009


E.W. Bethel, C.R. Johnson, S. Ahern, J. Bell, P.-T. Bremer, H. Childs, E. Cormier-Michel, M. Day, E. Deines, P.T. Fogal, C. Garth, C.G.R. Geddes, H. Hagen, B. Hamann, C.D. Hansen, J. Jacobsen, K.I. Joy, J. Krüger, J. Meredith, P. Messmer, G. Ostrouchov, V. Pascucci, K. Potter, Prabhat, D. Pugmire, O. Rubel, A.R. Sanderson, C.T. Silva, D. Ushizima, G.H. Weber, B. Whitlock, K. Wu. “Occam's Razor and Petascale Visual Data Analysis,” In Journal of Physics: Conference Series, Journal of Physics: Conference Series, Vol. 180, No. 012084, pp. (published online). 2009.
DOI: 10.1088/1742-6596/180/1/012084

ABSTRACT

One of the central challenges facing visualization research is how to effectively enable knowledge discovery. An effective approach will likely combine application architectures that are capable of running on today's largest platforms to address the challenges posed by large data with visual data analysis techniques that help find, represent, and effectively convey scientifically interesting features and phenomena.



M. Callahan, M.J. Cole, J.F. Shepherd, J.G. Stinstra, C.R. Johnson. “A Meshing Pipeline for Biomedical Models,” In Engineering with Computers, Vol. 25, No. 1, SpringerLink, pp. 115-130. 2009.
DOI: 10.1007/s00366-008-0106-1



M. Ellisman, R. Stevens, M. Colvin, T. Schlick, E. Delong, G. Olsen, J. George, G. Karniakadis, C.R. Johnson, N. Sematova. “Scientific Grand Challenges: Opportunities in biology at the Extreme Scale of Computing,” Note: DOE Office of Advanced Scientific Computing Research, August, 2009.



C.D. Hansen, C.R. Johnson, V. Pascucci, C.T. Silva. “Visualization for Data-Intensive Science,” In The Fourth Paradigm: Data-Intensive Science, Edited by S. Tansley and T. Hey and K. Tolle, Microsoft Research, pp. 153--164. 2009.



R.S. MacLeod, J.G. Stinstra, S. Lew, R.T. Whitaker, D.J. Swenson, M.J. Cole, J. Krüger, D.H. Brooks, C.R. Johnson. “Subject-specific, multiscale simulation of electrophysiology: a software pipeline for image-based models and application examples,” In Philosophical Transactions of The Royal Society A, Mathematical, Physical & Engineering Sciences, Vol. 367, No. 1896, pp. 2293--2310. 2009.



H.G. Martinez, S.I. Prajapati, C.A. Estrada, F. Jimenez, M.P. Quinones, I. Wu, A. Bahadur, A. Sanderson, C.R. Johnson, M. Shim, C. Keller, S.S. Ahuja. “Microscopic Computed Tomography Based Virtual Histology for Visualization and Morphometry of Atherosclerosis in Diabetic Apolipoprotein E Mutant Mice,” In Circulation: Journal of the American Heart Association, Vol. 120, No. 9, pp. 821--822. 2009.



H. Martinez, S. Prajapati, C. Estrada, F. Jimenez, I. Wu, A. Bahadur, A. Sanderson, C.R. Johnson, M. Shim, C. Keller, S. Ahuja. “Microscopic Computed Tomography–Based Virtual Histology for Visualization and Morphometry of Atherosclerosis in Diabetic Apolipoprotein E Mutant Mice,” In Circulation, Vol. 120, No. 821--822, 2009.



S.G. Parker, K. Damevski, A. Khan, A. Swaminathan, C.R. Johnson. “The SCIJump Framework for Parallel and Distributed Scientific Computing,” In Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications, Edited by Manish Parashar and Xiaolin Li and Sumir Chandra, Wiley-Blackwell, pp. 149--170. 2009.
DOI: 10.1002/9780470558027.ch9



K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux, V. Pascucci, C.R. Johnson. “Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data,” In Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, pp. 233--240. 2009.



A.R. Sanderson, M.D. Meyer, R.M. Kirby, C.R. Johnson. “A Framework for Exploring Numerical Solutions of Advection Reaction Diffusion Equations using a GPU Based Approach,” In Journal of Computing and Visualization in Science, Vol. 12, pp. 155--170. 2009.
DOI: 10.1007/s00791-008-0086-0



J.F. Shepherd, C.R. Johnson. “Hexahedral Mesh Generation for Biomedical Models in SCIRun,” In Engineering with Computers, Vol. 25, No. 1, pp. 97--114. 2009.



D.F. Wang, R.M. Kirby, C.R. Johnson. “Finite Element Discretization Strategies for the Inverse Electrocardiographic (ECG) Problem,” In Proceedings of the 11th World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, Vol. 25/2, pp. 729-732. September, 2009.



D.F. Wang, R.M. Kirby, C.R. Johnson. “Finite Element Refinements for Inverse Electrocardiography: Hybrid-Shaped Elements, High-Order Element Truncation and Variational Gradient Operator,” In Proceeding of Computers in Cardiology 2009, Park City, September, 2009.


2008


C.R. Johnson, X. Tricoche. “Biomedical Visualization,” In Advances in Biomedical Engineering, Ch. 6, Edited by Pascal Verdonck, Elsvier Science, pp. 209--272. 2008.



J. Krüger, K. Potter, R.S. MacLeod, C.R. Johnson. “Unified Volume Format: A General System For Efficient Handling Of Large Volumetric Datasets,” In Proceedings of IADIS Computer Graphics and Visualization 2008 (CGV 2008), pp. 19--26. 2008.
PubMed ID: 20953270

ABSTRACT

With the continual increase in computing power, volumetric datasets with sizes ranging from only a few megabytes to petascale are generated thousands of times per day. Such data may come from an ordinary source such as simple everyday medical imaging procedures, while larger datasets may be generated from cluster-based scientific simulations or measurements of large scale experiments. In computer science an incredible amount of work worldwide is put into the efficient visualization of these datasets. As researchers in the field of scientific visualization, we often have to face the task of handling very large data from various sources. This data usually comes in many different data formats. In medical imaging, the DICOM standard is well established, however, most research labs use their own data formats to store and process data. To simplify the task of reading the many different formats used with all of the different visualization programs, we present a system for the efficient handling of many types of large scientific datasets (see Figure 1 for just a few examples). While primarily targeted at structured volumetric data, UVF can store just about any type of structured and unstructured data. The system is composed of a file format specification with a reference implementation of a reader. It is not only a common, easy to implement format but also allows for efficient rendering of most datasets without the need to convert the data in memory.



Y. Livnat, S.G. Parker, C.R. Johnson. “Fast Isosurface Extraction Methods for Large Image Data Sets,” In Handbook of Medical Image Processing and Analysis, 2nd edition, Ch. 47, Note: (to appear), Edited by Isaac N. Bankman, Elsevier, pp. 801--816. 2008.



K. Potter, J. Krüger, C.R. Johnson. “Towards the Visualization of Multi-Dimentional Stochastic Distribution Data,” In Proceedings of The International Conference on Computer Graphics and Visualization (IADIS) 2008, pp. 191--196. 2008.



J.F. Shepherd, C.R. Johnson. “Hexahedral Mesh Generation Constraints,” In Journal of Engineering with Computers, Vol. 24, No. 3, pp. 195--213. 2008.



X. Tricoche, R.S. MacLeod, C.R. Johnson. “Visual Analysis of Bioelectric Fields,” In Visualization in Medicine and Life Sciences, Mathematics and Visualization, Springer-Verlag, pp. 205--220. 2008.