Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

Events on December 8, 2021

Joshua Levine, Associate Professor at University of Arizona Presents:

Neural Representations for Volume Visualization

December 8, 2021 at 12:00pm for 1hr
https://utah.zoom.us/j/99318527933 Password: sci_vis

Abstract:

In this talk, I will describe two projects, both joint work with collaborators at Vanderbilt University. The first project studies how generative neural models can be used to model the process of volume rendering scalar fields. We construct a generative adversarial network that learns the mapping from volume rendering parameters, such as viewpoint and transfer function, to the rendered image. In doing so, we can analyze the volume itself and provide new mechanisms for guiding the user in transfer function editing and exploring the space of possible images that can be volume rendered. Both our training process and applications are available on the web at https://github.com/matthewberger/tfgan

In the second part of my talk, I will explore a recent neural modeling approach for building compressive representations of volume data. This approach represents volumetric scalar fields as learned implicit functions wherein a neural network maps a point in the domain to an output scalar value. By setting the number of weights of the neural network to be smaller than the input size, we achieve compressive function approximation. Combined with carefully quantizing network weights, we show that this approach yields highly compact representations that outperform state-of-the-art volume compression approaches. We study the impact of network design choices on compression performance, highlighting how conceptually simple network architectures are beneficial for a broad range of volumes. Our compression approach is hosted at https://github.com/matthewberger/neurcomp

Bio: Joshua A. Levine is an associate professor in the Department of Computer Science at University of Arizona. Prior to starting at Arizona in 2016, he was an assistant professor at Clemson University from 2012 to 2016, and before that a postdoctoral research associate at the University of Utah’s SCI Institute from 2009 to 2012. He is a recipient of the 2018 DOE Early Career award. He received his PhD in Computer Science from The Ohio State University in 2009 after completing BS degrees in Computer Engineering and Mathematics in 2003 and an MS in Computer Science in 2004 from Case Western Reserve University. His research interests include visualization, geometric modeling, topological analysis, mesh generation, vector fields, performance analysis, and computer graphics.

Posted by: Nathan Galli