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What is Nuclear Forensics? | o How is Machine Learning and Image Processing used?
» Goal Is to prevent nuclear material trafficking « Segmentation to detect particles
* Nuclear materials are made many different ways e Classification of material processing route
* Production changes materlal structure | « Uncertainty Quantification needed for legal
» Use structure to identify where and how material standing

was made | | » Contrastive, Semi, and Self Supervised Learning
e Scanning Electron Microscopy (SEM) images used help with small dataset size

for analysis
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Encoder Training Semi-supervised Segmentation model
uses perturbations (P) to image to allow learning from

unlabeled data
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Method Mean accuracy
Supervised ResNet50 95.6%
Supervised MISO [6] 96.4% &R
Unsupervised VQ-VAE [7] 81.8% Testino
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