Hierarchical Transformer: Bring Scale To Your Attention

s

1994 - 2024

Xlaoya Tang; Bodong Zhang; Tolga Tasdizen S R S aay

A CNN backbone is used to produce hierarchical representations for an image from
different stages of it. Our novel patch tokenization enables leveraging hierarchical
representations into multi-scale embeddings, instead of embeddings at a single scale.
A multi-head attention mechanism on the dimension of scales before the global
attention. We refer to this local attention as scale attention, which enables the model

Background Vision Transformer(ViT) is a pioneering work of adapting transformer
from Nature Language Processing(NLP) to visual domain. It uncovered the huge
potential of transformer-based models in image analysis, and led a wave of research
on visual-oriented transformers.

Attention Module Our model includes scale attention and patch
attention modules. The scale attention can be a plug-in module with
respective tokenization to any transformer-based model.
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ranges In sequences. Each head represents a learnable linear projection of query,
key and values, endowing the attention mechanism with the ability of modeling from
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Hierarchical transformer A drawback of ViTs is their lack of inductive bias. This bias L -4 e Train Size 61,257 37,138 Dataset MoNuSeg
SR . . . . . Ll ) Validation Size 12000 8,717 Train Size 24
mainly includes locality and hierarchical representations, which are commonly U] . oot Size 26,033 0174 Validation Size 5
observed in Convolutional Neural Networks (CNNs). On the other hand, visual entities LHHH at] 1] ° @ :  uiscale representations Image Size 32 x 32 224 x 224 Test Size 14
: : : . : U — 2048 x 7 x 7 of features: DxSxP No. Classes 10 4 Image Size 224 x 224
are generally at different scales and it can vary substantially in images, while all . 1024 x 14 x 14 = : < R .
. . . . . - 512 x 28 x 28 . . . xperiments Results
embedded patches in vanilla ViT are at a fixed scale. The ignorance of scales may - G o s D\ P
: : : - 256 x 56 x 56 D: embedded dimension. h v / -
bring failure or non-improvement of transformer based models on vision tasks. @ - concatenation operation. S - R b (32x32)
There has been quite a bit of work trying to solve this problem with transformers. Here we Figure 2 The multi-scale patch tokenization Test Accuracy(%) Test Accuracy(%)
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should be able to do various tasks including but not limited to these two tasks.

Our model includes three main ideas:
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