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Background k-hop Invariant GNNs: Missing Global Features

* Science, Symmetry & Steerable Features: Theorem 1. /f G, and G, are two k-hop identical graphs, then any iteration of k-hop
— Features exhibit symmetries — they remain un- | invariant GNNs will get the same output from these two graphs. That is, there is a
changed or change accordingly under group graph isomorphism b such that f}””(gl) — fgf;”(gg) for any i, even though G, and G,
transformations, e.g., rotations, reflections, and may not be identical up to group action.
translations.
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Figure 1: A pair of graphs each consisting of 2k + 2 nodes, called £-chains, introduced from Joshi et
al.l. These graphs are nearly identical, differing only in the orientation of a single edge, marked in blue.
Despite this minor distinction, these graphs remain k-hop identical.

— Steerable features are those that transform lin-
early under transformations, e.g. a matrix
"steering" the feature vector,

g-v=2D(g)-v.

—For SO(3) and O(3), steerable features can be decomposed into irreducible com- Equivariant GNNs:
ponents, known as type-L steerable features, with actions defined by Wigner
D-matrices D'(g).

- Geometric Graph Neural Networks:

* The importance of faithfulness:

Theorem 2. Consider 1-hop equivariant GNNs learning features on steerable vector
space V' where the aggregate function AGG learns features on steerable vector
space W. Suppose V' and W are faithful representations, and AGG and UPD are

— To leverage symmetries, people have developed geometric GNNSs to learn steer-
able features up to type-L:

(t+1) _ (t) (1) p(t) : (k)
ti = UPD (f i AGGUS S S j ool T & |JEN, ]})), (1) G -orbit injective and G-equivariant multiset functions. Then with k iterations, these
« f@.“) denotes the steerable feature of node i at layer ¢, equivariant GNNs learn different multisets of node features { f;k)}} on two k-hop
» ; represents the input coordinates of node 1, distinct geometric graphs.

»UPD and AGG are learnable update and aggregate equivariant functions, re- - Correspond steerable features to invariant features: according to Winter et al.,

sp(ek?tlvely, where -} deno.tes a multiset, | we can represent any X € R**™ using a group element gx € G and a canonical
= N/ denotes the k-hop neighborhood of node i, the set of nodes in V that are representative ¢(X) € R>™ where we have gx - ¢(X) = X.

reachable from ¢ through a path with £ edges or fewer. , , , ,
Lemma 3. Let V' be a d-dimensional GG-steerable vector space with the assigned

* Existing Insights on Geometric GNNs’ Performance: group representation p : G — GL(V). If f : R®*™ — V is G-equivariant, then

—Joshi et al." have shown that 1-hop invariant GNNs (L = 0) may underperform there exists a unique G-invariant function \ : R**™ — V% s.t. f(X) = plgx)\X),
equivariant GNNs (L = 1). where V;, denotes the 1D trivial representation of G°. In particular, the following map
— Several studies®** showed that equivariant GNNs using steerable features up is well-defined
to type-L improve with higher L. {f:R¥™™ = V| f:G-equivariant} — {\ : R>™ — V| X : G-invariant}.

- Learning steerable features of the same dimension:
Contributions Corollary 4. Let V and W be two steerable vector spaces of dimension d. Then
for any G-equivariant function fy : X3 — V, there is a GG-equivariant function
fw - X3 — W such that for any X € X3, we have fy(X) = py(gx)A\(X) and
fw(X) = pw(gx)A(X) for the same G-invariant function A\ where py, py are the

group representation on VV-and W, resp.

* Remaining Questions

—The impact of introducing multi-hop message passing aggregation (e.g.
SphereNet® and ComENet’) into invariant GNNs remains unexplored.

— Existing experiments comparing different types of steerable features often lack
control over feature dimensions, making it difficult to isolate the true effect of
feature type.

Theorem 5. Consider two geometric GNNs learning features on steerable vector
spaces V. and W of the same dimension, resp. Denote their update and aggregation
functions at iterationt as UPD@, UPD<V’5V> and AGG@, AGGSQ. Then for any collection
{(UPD@, AGG<Vt>)}t, there exists a collection {(UPDSV), AGG%))}t such that for any

fully connected graph, they learn the same corresponding invariant features )\Et) for
any iterationt > 0 on each node 1.

« Qur Answers

— Even introducing multi-hop message passing aggregation, invariant GNNs lack
the intrinsic capability to capture geometric information between local neighbor-
hoods, and hence, fail to obtain accurate global invariant features.

—When preserving the feature dimension, the performance of equivariant GNNs
U using steerable features up to type-L may not increase as L grows.
THE

* Remark: Theorem 5 establishes the equivalence of geometric GNNs on fully con-
nected graphs without strong assumptions on the injectivity of update and aggregate
functions, holding for any representation.
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L =0
SchNet 50.0+ 0.0 50.0£0.0 50.04+0.0 50.0+0.0 50.14+0.2 50.0+£0.0 50.0£0.0
DimeNet++ 50.0 = 0.0 50.0£0.0 50.0£ 0.0 50.0£0.0 50.0£0.0 50.0+0.0 50.0=£0.0
SphereNet 50.0 £0.0 50.0£0.0 50.0£0.0 50.0+0.0 50.04£0.0 50.0£0.0 50.0+£0.0
ComENet 55.0 £4.5 59.0+11.6 53.0+£6.4 54.0+£6.2 50.04+0.0 46.54+5.0 51.0£2.0
EquiformerV2 71.0£3.0 76.0£8.0 &83.0+64 43.0+£9.0 67.0£46 67.9+£9.0 61.0+£54
L=1
EGNN 50.0 0.0 100.04£0.0 95.0 £15.0 50.040.0 B50.0=£0.0 90.0 £ 20.0 100.0 £ 0.0
GVP 50.0 £0.0 100.0£0.0 100.0 4 0.0 50.0£0.0 92.54+£16.0 91.5+£17.3 95.0 £ 15.0
ClofNet 50.0 £0.0 50.0=£0.0 100.0+ 0.0 50.0+ 0.0 50.0£0.0 100.0 4+ 0.0 100.0 & 0.0
MACE 50.0 £ 0.0 100.0 £ 0.0 100.0 £0.0 50.0 £ 0.0 100.0 # 0.0 100.0 0.0 100.0 £ 0.0
eSCN 64.0 + 8.0 60.5 £ 10.0 64.3 £ 18.2 53.0+4.6 63.0£9.0 60.0=£13.4 56.0 £ 10.2
EquiformerV2 90.0 £0.0 95.0£5.0 96.04+49 76.0+£6.6 84.0+£6.6 92.0£6.0 98.04+4.0
L =2
MACE 50.0 4 0.0 100.0 & 0.0 100.0 £0.0 50.0 & 0.0 100.0 # 0.0 100.0 0.0 100.0 £ 0.0
eSCN 62.0£7.5 61.0£94 52.04+£4.0 62.0£10.8 59.0£9.4 56.04 10.2 54.0 & 6.6
EquiformerV2 73.0 £4.6 88.04+£4.0 86.0£49 86.0£49 89.0+£3.0 88.0£4.0 8&83.0£9.0

Table 1: Test accuracy for the k-chain dataset with different ks. Models are further distinguished by
their use of type-L features. Cell shading is based on two standard deviations above or below the
expected value. Unit:%.

Model L ¢ Feat. Dim. # Param. Loss | Energy MAE [meV] | EwT [%] T
eSCN 1 464 1856 11M 0.380 £ 0.006 865 £+ 14 1.91 4+ 0.09
eSCN 2 206 1854 10M  0.369 £+ 0.006 842 + 13 1.94 +0.12
eSCN 3 133 1862 oM 0.397 £ 0.001 904 4 3 1.85 4 .12
eSCN 4 98 1862 oM 0.408 £ 0.006 929 4 15 1.74 £ 0.12
eSCN S 1848 8M 0.409 £ 0.003 933 £ 7 1.61 4 .12
eSCN 6 64 1856 8M 0.3836 % 0.003 87246 1.91 £0.19
EquiformerV2 1 77 304 ™ OOM OOM OOM
EquiformerV2 2 34 306 oM 0.369 £ 0.009 841 4+ 21 2.02+£0.14
EquiformerV2 3 22 306 12M  0.363 = 0.009 828 + 21 1.94 £ 0.08
EquiformerV2 4 16 304 15M 0.364 4= 0.005 832 £ 11 2.03+0.14

Table 2: Validation results of the steerable model ablation study on L and c over 4-folds of the
IS2RE dataset with 10k training molecules. We observe that higher type-L steerable models may
not perform best. OOM denotes models that run out of memory during training.

Conclusion and Discussion

 To achieve equivalent expressiveness in invariant GNNs as in equivariant GNNSs,
it is essential to integrate global features that extend beyond the confines of fixed
k-hop neighborhoods.

* The traditional trade-off between performance and computational cost of using
steerable features in equivariant GNNs should be reevaluated. Specifically, when
maintaining a constant feature dimension, the utilization of higher-type steerable
features in equivariant GNNs might not ensure improved performance and could
entail additional computational overhead.

 Limitation: our analysis of expressiveness focuses on the capacity of features to
capture information. A broader view also considers the ability to extract features
from data (universality).
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Numerical Results

Layers 1 2 3 1 2 3 4
k-hop chain £ =2 k=2 k=2 k=3 k=3 k=3 k=3




