
Department of Mathematics, University of Utah
Introduction to Mathematical Finance

MATH 5760/6890 – Section 001 – Fall 2024
Homework 4 Solutions

2-security Markowitz portfolios

Due: Friday, Sept 20, 2024

Submit your homework assignment on Canvas via Gradescope.

1.) (Markowitz 2-security portfolios) Consider a 2-security portfolio having per-unit asset
prices S1(t) and S2(t). Assume the following statistics for these assets:

S1(0) = 100 (with probability 1) ES1(1) = 120,
√

VarS1(1) = 20

S2(0) = 50 (with probability 1) ES2(1) = 75,
√

VarS2(1) = 40,

along with Cov(S1(1), S2(1)) = −500.

(a) Show that the return rates R of the individual securities in this setup have statistics,

ER(1) =

(
0.2
0.5

)
, CovR(1) =

(
0.04 −0.1
−0.1 0.64

)
(b) Compute the minimum-risk portfolio for a general expected return rate µP .

Solution:

(a) We translate the given statistics into corresponding statistics for return rates. We
know that such portfolios have the return,

R(t) = ⟨w,R⟩ , Ri(t) =
Si(t)− Si(0)

Si(0)
,

for i = 1, 2, where w contains the unknown portfolio weights. Using standard
properties of first- and second-order statistics, we have:

µ1 = ER1(1) =
ES1(1)

S1(0)
− 1 = 0.2, σ1 =

√
VarR1(1) =

√
VarS1(1)

S1(0)
= 0.2,

µ2 = ER2(1) =
ES2(1)

S2(0)
− 1 = 0.5, σ2 =

√
VarR2(1) =

√
VarS2(1)

S2(0)
= 0.8

The covariance satisfies similar properties:

Cov(R1(1), R2(1)) = Cov

(
S1(1)

S1(0)
,
S2(1)

S2(0)

)
=

1

S1(0)S2(0)
Cov(S1(1), S2(1)) = −0.1.

Hence, we have

µ = ER(1) =

(
0.2
0.5

)
, A = Cov(R(1)) =

(
0.22 −0.1
−0.1 0.82

)
,

as desired.
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(b) The Markowitz portfolio optimization for this setup is,

min
w

wTAw subject to ⟨w,1⟩ = 1 and

⟨w,µ⟩ = µP

Since this is a 2-security portfolio, the two linear constraints will determine w
without optimization:

w1 + w2 = 1
0.2w1 + 0.5w2 = µP

}
=⇒ w =

(
w1

w2

)
=

1

3

(
5− 10µP

10µP − 2

)
=

1

3

[(
5
−2

)
+ µP

(
−10
10

)]
Hence, given µP , the weights above prescribe the optimal (minimal) risk portfolio.

2.) (Short-selling in 2-security portfolios) Consider a 2-security portfolio with asset 1 and
asset 2. Assume the time-1 asset return rates have means µ1 and µ2, respectively, and
that µ1 ̸= µ2. Assume that µ1 < µ2 (this assumption is without loss). For a Markowitz
portfolio with target return rate µP , show the following:

(a) µP ∈ [µ1, µ2] if and only if the 2-security portfolio involves long (or zero) positions
in both securities.

(b) µP < µ1 if and only if the 2-security portfolio involves a long position in asset 1 and
a short position in asset 2.

(c) µP > µ2 if and only if the 2-security portfolio involves a long position in asset 2 and
a short position in asset 1.

Solution:

(a) For a 2-security portfolio with µ1 ̸= µ2 and target return µP , the portfolio weights
are entirely determined by the linear constraints:

w1 + w2 = 1

w1µ1 + w2µ2 = µP .

The solution to this linear system is,(
w1

w2

)
=

1

µ2 − µ1

(
µ2 − µP

µP − µ1

)
Note that µ2 − µ1 > 0, so that we have the implications,

µP ∈ [µ1, µ2] ⇐⇒ µ2 − µP ≥ 0 ⇐⇒ w1 ≥ 0

µP ∈ [µ1, µ2] ⇐⇒ µP − µ1 ≥ 0 ⇐⇒ w2 ≥ 0

I.e., µP ∈ [µ1, µ2] is equivalent to long or zero positions (non-negative weights) in
both asset 1 and 2.

(b) Starting from the expression for the weights derived in part (a), we observe,

µP < µ1 ⇐⇒ µ2 − µP ≥ 0 ⇐⇒ w1 ≥ 0

µP < µ1 ⇐⇒ µP − µ1 < 0 ⇐⇒ w2 < 0

i.e., that µP < µ1 is equivalent to a long position (non-negative weight) in asset 1
and a short position (negative weight) in asset 2.
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(c) Starting from the expression for the weights derived in part (a), we observe,

µP > µ2 ⇐⇒ µ2 − µP < 0 ⇐⇒ w1 < 0

µP > µ2 ⇐⇒ µP − µ1 ≥ 0 ⇐⇒ w2 ≥ 0

i.e., that µP > µ2 is equivalent to a long position (non-negative weight) in asset 2
and a short position (negative weight) in asset 1.

3.) (Arbitrage in portfolios) Consider a 2-security portfolio consisting of asset 1 and asset
2. Assume the time-1 asset return rates R1 and R2 have mean and standard deviation
(µ1, σ1) and (µ2, σ2), respectively. Assume that σ1+σ2 > 0, i.e., that at least one security
is random.

(a) Recall that the Pearson correlation coefficient between R1 and R2 is defined as
ρ := Cov(R1, R2)/(σ1σ2). If ρ = −1, explicitly construct a zero-risk portfolio using
a non-trivial linear combination of assets 1 and 2.

(b) Using the previous result, give a necessary and sufficient condition involving the
statistics above that ensures that an arbitrage, i.e., a riskless (with strictly positive)
profit strategy, exists.

(c) (Math 6890 students only) Extend part of this to the N -security case: Show
that if the covariance matrix of the individual security return rates is not positive-
definite, instead only of rank N − 1, then a riskless security can be constructed,
and provide (perhaps opaque but symbolically explicit) conditions on the security
statistics that ensure that this riskless security can be used for arbitrage. Your
conditions may involve eigenvalues/vectors of the covariance matrix.

Solution:

(a) If ρ = −1, then the covariance matrix of R can be written as,

A := Cov(R) =

(
σ2
1 Cov(R1, R2)

Cov(R1, R2) σ2
2

)
ρ=−1
=

(
σ2
1 −σ1σ2

−σ1σ2 σ2
2

)
The risk of the portfolio is wTAw; since A is symmetric, then wTAw = 0 implies
that Aw = 0, i.e., that w is a vector in the nullspace of A. The explicit form of A
above shows that one such vector is given by,

w =

(
σ2
σ1

)
.

To make this vector a valid portfolio weight vector, we normalize appropriately:

w =
1

σ1 + σ2

(
σ2
σ1

)
,

whose components sum to unity (making it a valid portfolio weight) and is well-
defined since σ1 + σ2 > 0. Hence, this forms a zero-risk portfolio.

(b) In order for the portfolio identified in the previous part to be an arbitrage, its mean
must be strictly positive. The mean of the portfolio above is,

µP = ⟨µ,w⟩ = σ2µ1 + σ1µ2

σ1 + σ2
.
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Since the denominator is positive, the number above is positive if and only if

σ2µ1 + σ1µ2 > 0.

Therefore, under this condition, the portfolio weight vector identified in part (a) is
a riskless portfolio with strictly positive mean, i.e., corresponds to an arbitrage.

(c) In the N -security case, if A = Cov(R) is not positive-definite, then there exists
some non-zero vector v such that,

Av = 0,

so that vTAv = 0. Note that since rank(A) = N − 1, then v is unique up to a
consatnt. In order to be able to normalize v so that it’s a valid portfolio weight
vector, we must have,

⟨v,1⟩ ≠ 0.

Assuming this, then

w :=
1

⟨v,1⟩
v,

is a valid portfolio weight vector corresponding to a riskless portfolio. This is the
only such portfolio since v is unique up to a constant. In order for it to be an
arbitrage, it must have positive mean:

µP = ⟨µ,w⟩ > 0,

where µ is the mean of the individual securities. Using the expressions we’ve derived
above, this is equivalent to:

⟨v,µ⟩
⟨v,1⟩

> 0, ⟨v,1⟩ ≠ 0

These are conditions that explicitly involve µ, and implicitly involve entries of the
second-order statistics Cov(R) since v is an eigenvector of Cov(R).

4.) Consider a Markowitz 2-security portfolio with a given terminal time positive-definite
covariance Cov(R) and terminal time mean µ. Assume that,

µ1 = µ2.

(a) Show that any Markowitz portfolio must have expected return µP given by µP =
µ1 = µ2.

(b) For the covariance matrix,

Cov (R) =

(
2 −1
−1 2

)
,

compute both the optimal Markowitz portfolio and its corresponding risk.

Solution:
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(a) For notational simplicity, we’ll let µ = µ1 = µ2. The weights of the portfolio must
satisfy,

w1 + w2 = 1

µw1 + µw2 = µP .

If µ = 0, then clearly µP = 0 = µ. If µ ̸= 0, then the second equation is equivalent
to,

w1 + w2 =
µP

µ
.

In order for this to be consistent with the first equation, we must have µP = µ.
(Otherwise the weight constraints are inconsistent and no valid portfolio exists.)
Hence, no matter what value of µ, we must have µP = µ.

(b) With our µ = µ1 = µ2 setup, then the two linear constraints on a Markowitz
portfolio are simply the single condition,

w1 + w2 = 1.

Hence, the squared risk of the portfolio with A = Cov(R) is,

σ2
P =

(
w1

1− w1

)T

A

(
w1

1− w1

)
= vT

0 Av0 +
(
2vT

0 Av1
)
w1 +

(
vT
1 Av1

)
w2
1,

where

v0 =

(
0
1

)
, v1 =

(
1
−1

)
.

We directly compute:

vT
0 Av0 = 2, 2vT

0 Av1 = −6, vT
1 Av1 = 6,

so the risk squared reads,

σ2
P = 6w2

1 − 6w1 + 2.

Using univariate calculus to compute critical points, we conclude that the minimum
of σ2

P occurs when,

w1 =
1

2
=⇒ w =

(
0.5
0.5

)
.

The (minimal) squared risk for this value of w is,

σ2
P

∣∣
w1=0.5

=
1

2
.

Hence, the minimal squared risk is 1√
2
.
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