DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Introduction to Mathematical Finance MATH 5760/6890 – Section 001 – Fall 2024 Homework 6 Capital Market Theory

Due: Friday, Oct 4, 2024

Submit your homework assignment on Canvas via Gradescope.

1.) (Petters & Dong, Problem 4.15, **parts a, b, d only**) Assume a risk-free rate of 1.5%. Answer the questions below using the information in the following table:

Portfolio	A	В	С	D	Е	\mathbf{F}
Expected Return	3.2%	8.1%	9.8%	5.1%	10.7%	4.8%
Standard Deviation	2.7%	9.9%	13.7%	6.2%	17%	6.1%

- (a) Among the portfolios in the table, which one is closest to the market portfolio? Justify your answer.
- (b) Plot the (best guess to the) capital market line (CML) based on your answer in part (a).
- (d) Suppose we are willing to make an investment only with $\sigma = 6.2\%$. Is a return of 6.5% a realistic expectation for us?
- **2.)** With a risk-free rate of r > 0, consider a capital asset line formed by the risk-free asset and a(ny) Markowitz efficient portfolio (σ_P, μ_P). (I.e., the Markowitz portfolio contains only risky securities.)
 - (a) Write the slope of the capital asset line as a function of μ_P , and maximize this expression to show that the maximum slope of the capital asset line corresponds to an efficient portfolio expected return of

$$\mu_P = -\frac{\alpha_{00} + r\alpha_{01}}{\alpha_{01} + r\alpha_{11}}, \qquad \qquad \alpha_{ij} = \boldsymbol{v}_i^T \boldsymbol{A} \boldsymbol{v}_j, \qquad \qquad i, j = 0, 1.$$

where v_0 and v_1 are vectors corresponding to the solution of the risk-optimal Markowitz portfolio (see slide D10-S05(b)). Hence, this value of μ_P corresponds to the market portfolio. (You may assume that critical points correspond to local maxima without verifying it for this problem.)

(b) Use the expression for the expected return μ_G of the global variance-minimizing portfolio on lecture slide D10-S05(b) to show that the above expression for the market portfolio mean μ_P is equivalent to,

$$\mu_P = \frac{1}{\mu_G - r} \left(\frac{\alpha_{00}}{\alpha_{11}} - r \mu_G \right),$$

(c) (Math 6890 students only) If $\mu_G > r$, show that the market portfolio expected return μ_P given by the formula above satisifies $\mu_P > \mu_G$.