Department of Mathematics, University of Utah Introduction to Mathematical Finance MATH 5760/6890 – Section 001 – Fall 2024 Homework 7 Solutions The Binomial Pricing Model

Due: Friday, Oct 25, 2024

Submit your homework assignment on Canvas via Gradescope.

- 1.) Consider an $n = 100$ -period Binomial Pricing Model with $(p, u, d) = (0.35, 1.2, 0.9)$ and an initial value of $S_0 = 100$.
	- (a) What is the maximal value of S_{100} under this model? The minimal value?
	- (b) Compute the probability that $S_{100} \geq 100$.

Solution:

(a) The maximum value of S_{100} corresponds to 100 instances of the inter-period gross return rate being $u = 1.2$. The corresponding value would be,

$$
S_{100} = 100(1.2)^{100} = 8.28 \times 10^9
$$

Similarly, the minimal value corresponds to 100 instances of $d = 0.9$ as the interperiod gross return:

$$
S_{100} = 100(0.9)^{100} = 2.66 \times 10^{-3}
$$

(b) Since $100 = S_0$, then the question is identical to determining the probability that $S_n \geq S_0$. Note that the gross return is given by,

$$
\frac{S_n}{S_0} = u^Y d^{100-Y},
$$

where $Y \sim \text{Binomial}(100, 0.35)$. By direct computation, we find that

$$
u^{36}d^{100-36} < 1, \qquad u^{37}d^{100-37} > 1.
$$

(One can also solve for y in $(u/d)^{y}d^{100} = 1$, which yields $y \approx 36.624$, implying that $y = 36$ and $y = 37$ satisfy the upper and lower inequalities above, respectively.) Therefore,

$$
\Pr\left(\frac{S_n}{S_0} \ge 1\right) = \Pr\left(Y \ge 37\right).
$$

Hence, we need to compute this probability for a Binomial $(100, 0.35)$ random variable. Since,

$$
Pr(Y = k) = {100 \choose k} 0.35^{k} (1 - 0.35)^{100 - k},
$$

then,

$$
\Pr\left(\frac{S_n}{S_0} \ge 1\right) = \sum_{k=37}^{100} \binom{100}{k} 0.35^k (1 - 0.35)^{100 - k} \approx 0.373.
$$

- **2.**) Let $X \sim \text{Bernoulli}(p)$, and let $\{X_i\}_{i=1}^n$ be *n* iid copies of X. Let $Y = \sum_{i=1}^n X_i \sim$ Binomial (n, p) . Throughout this problem, let $a > 0$ be a deterministic constant.
	- (a) Compute $\mathbb{E}a^X$ with $a > 0$ a deterministic constant.
	- (b) If V and W are two independent random variables, then $E(VW) = (EV)(EW)$. Use this to compute $\mathbb{E}a^Y$.
	- (c) Compute the variance of a^Y .
	- (d) Apply these facts to the Binomial Pricing Model with parameters (p, u, d) : with $S_n = S_0 e^L$, where $L = \sum_{i=1}^n L_i = \sum_{i=1}^n \log G_i$ is the log-return, show that,

$$
\mathbb{E}\frac{S_n}{S_0} = (pu + (1 - p)d)^n,
$$

\n
$$
\text{Var}\frac{S_n}{S_0} = (pu^2 + (1 - p)d^2)^n - (pu + (1 - p)d)^{2n}
$$

Solution:

(a) Since X has distribution,

$$
X = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{with probability } 1 - p, \end{cases}
$$

then we can directly compute,

$$
\mathbb{E}a^X = pa^1 + (1-p)a^0 = pa + 1 - p.
$$

(b) We write a^Y as,

$$
a^Y = a^{\sum_{j=1}^n X_j} = \prod_{j=1}^N a^{X_j}.
$$

Using the independent property mentioned in the problem, and since the $\{X_j\}_{j=1}^n$ are independent, we have,

$$
\mathbb{E}a^Y = \prod_{j=1}^n \mathbb{E}a^{X_j} = (\mathbb{E}a^X)^n,
$$

where the last equality uses the fact that $\{X_j\}_{j=1}^n$ and X are identically distributed. Using this along with part (a), we have:

$$
\mathbb{E}a^Y = (pa + 1 - p)^n
$$

(c) Letting $\mu = \mathbb{E} a^Y$ (which we computed above), we write the variance as,

Var
$$
a^Y
$$
 = $\mathbb{E} (a^Y - \mu)^2$
\n= $\mathbb{E} (a^Y)^2 - 2\mathbb{E} (\mu a^Y) + \mu^2$
\n= $\mathbb{E} (a^Y)^2 - 2\mu^2 + \mu^2$
\n= $\mathbb{E} (a^2)^Y - \mu^2$.

We already have an expression for μ ; to compute the expression for the first term, we note that it's the same as $\mathbb{E}a^Y$, but with the replacement $a \leftarrow a^2$. Therefore, we have:

$$
Var aY = (pa2 + 1 - p)n - (pa + 1 - p)2n
$$

(d) For the Binomial Pricing Model, recall that the log-return L_j for time-step j is,

$$
L_j = \begin{cases} \log u, & \text{with probability } p \\ \log d, & \text{with probability } 1 - p \end{cases}
$$

Hence, L_j can be written as,

$$
L_j = \log d + X_j (\log u - \log d) = \log d + X_j \log \frac{u}{d},
$$

where $X_j \sim \text{Bernoulli}(p)$. In particular, this implies that

$$
e^{L} = e^{\sum_{j=1}^{n} L_j} = e^{n \log d + \log \frac{u}{d} \sum_{j=1}^{n} X_j}
$$

$$
= d^n \left(e^{\log \frac{u}{d}} \right)^{\sum_{j=1}^{n} X_j}
$$

$$
= d^n \left(\frac{u}{d} \right)^Y
$$

Then using the results from the previous parts with $a = \frac{u}{d}$ $\frac{u}{d}$, along with $\mathbb{E}cW = c\mathbb{E}W$ and $Var(cW) = c^2VarW$ for a constant c, we have:

$$
\mathbb{E}e^{L} = d^{n} \left(p \frac{u}{d} + 1 - p \right)^{n} = (pu + (1 - p)d)^{n}
$$

Var $e^{L} = d^{2n} \left[\left(p \frac{u^{2}}{d^{2}} + 1 - p \right)^{n} - \left(p \frac{u}{d} + 1 - p \right)^{2n} \right]$

$$
= \left(pu^{2} + (1 - p)d^{2} \right)^{n} - \left(pu + (1 - p)d \right)^{2n},
$$

as desired.