DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Introduction to Mathematical Finance MATH 5760/6890 – Section 001 – Fall 2024 Homework 9 Solutions The Cox-Ross-Rubinstein Model

Due: Friday, Nov 8, 2024

Submit your homework assignment on Canvas via Gradescope.

- 1.) Consider the *exact* normalized per-period moment conditions for the CRR models on slide D19-S05(a) that relates the unknown CRR parameters (p_n, u_n, d_n) to the assumed-known real-world drift and volatility (μ, σ) and also the period length $h_n = T/n$.
 - (a) Show that the *exact* solution to this system is given by,

$$p_n = \frac{1}{2} \left(1 + \sqrt{\frac{h_n \mu^2}{h_n \mu^2 + \sigma^2}} \right), \quad u_n = \exp\left(\sigma \sqrt{h_n} + h_n \mu\right), \quad d_n = \exp\left(-\sigma \sqrt{h_n} - h_n \mu\right)$$

(You may assume $\mu > 0$, although the results hold for general μ by using $|\mu|$ instead of μ .)

- (b) Use the above equations to show that the real-world CRR equations for (p_n, u_n, d_n) are an approximation to this exact solution when $h_n \to 0$.
- 2.) Consider an n = 100-period real-world CRR model for a stock price with annual continuoustime drift of 15% and annual volatility 10%. Today's stock price is $S_0 = 50 .
 - (a) Determine the parameters (p_n, u_n, d_n) (with n = 100) corresponding to this CRR model with a terminal time of one year.
 - (b) Compute the expected stock price after one year.
 - (c) Compute the probability that the stock price will exceed its expected value.
 - (d) Using the same number of periods (n = 100) construct a real-world CRR model with terminal time of 6 months to compute the probability that the stock price is below or equal to today's price.
- **3.)** Choose your favorite stock, and collect daily historical data over a period of $[0, \tilde{T}]$ (of at least one year in length, $\tilde{T} \ge 1$). Use either the open or close price (do not use daily high or low prices). Use this data to compute (approximations to) the continuous-time drift μ and volatility σ . (Explain briefly the data that you used and what procedure you used to compute these values). Numerically simulate 10 trajectories of an n = 252-period corresponding real-world CRR model over a period of one year, T = 1, given the initial stock price $S_0 = S(0)$ from your data. Generate a plot of these realizations overlayed with the actual historical one-year data.