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Our status in the course D06-S02(a)

We’ve discussed the basics of finance and investing – concepts of interest and present value.

A more advanced understanding of pricing and policies requires some math:

– linear algebra
– differential equations
– probability

These topics are prerequisites for this course!
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Vectors and matrices, I D06-S03(a)
Let m,n P N. (m ą n, m “ n, m ă n are allowed.)

We’ll typically use lowercase boldface letters, e.g., v, to denote vectors, elements of Rn.
Vectors can be described by their components:

v “

¨

˚

˚

˚

˝

v1
v2
...
vn

˛

‹

‹

‹

‚

“

n
ÿ

j“1

vjej P Rn, ej “

¨

˚

˚

˚

˚

˚

˚

˚

˝

...
0
1
0
...

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

I.e., the components vj are the coordinates of v in an expansion of the canonical vectors tejunj“1.

We’ll use uppercase boldface letters, e.g., A, to denote matrices, elements of Rmˆn that are also described by their
components:

A “

¨

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n
a21 a22 ¨ ¨ ¨ a2n
...

. . .
...

am1 am2 ¨ ¨ ¨ amn

˛

‹

‹

‹

‚

P Rmˆn.

Matrices are linear maps (functions) taking Rn to Rm.
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Vectors and matrices, I D06-S03(b)
Let m,n P N. (m ą n, m “ n, m ă n are allowed.)

We’ll typically use lowercase boldface letters, e.g., v, to denote vectors, elements of Rn.
Vectors can be described by their components:

v “

¨

˚

˚

˚

˝

v1
v2
...
vn

˛

‹

‹

‹

‚

“

n
ÿ

j“1

vjej P Rn, ej “

¨

˚

˚

˚

˚

˚

˚

˚

˝

...
0
1
0
...

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

I.e., the components vj are the coordinates of v in an expansion of the canonical vectors tejunj“1.

We’ll use uppercase boldface letters, e.g., A, to denote matrices, elements of Rmˆn that are also described by their
components:

A “

¨

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n
a21 a22 ¨ ¨ ¨ a2n
...

. . .
...

am1 am2 ¨ ¨ ¨ amn

˛

‹

‹

‹

‚

P Rmˆn.

Matrices are linear maps (functions) taking Rn to Rm.
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Vectors and matrices, II D06-S04(a)

It is sometimes useful to consider vectors as specializations of matrices:

– If n “ 1 and m ą 1, then A P Rmˆ1 is a column vector

– If m “ 1 and n ą 1, then A P R1ˆn is a row vector

When considering vectors as specializations of matrices, we will assume that vectors are column vectors, unless
otherwise indicated.
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Portfolios D06-S05(a)

Example (Portfolio parameterization)
Suppose we have some initial amount of money, V p0q, that we wish to invest.

Suppose there are N P N securities, which are financial products of which we can purchase a quantity.

The price (per unit) of security i at time t is given by Siptq.

The number of units we purchase of security i is ni (can be non-integer).

The weight of our portfolio for the ith security is wi “ niSip0q{V p0q, which is the relative amount of worth we
invest in security i.

We represent all these things as vectors:

Sptq “

¨

˚

˝

S1ptq
...

SN ptq

˛

‹

‚

P RN , n “

¨

˚

˝

n1

...
nN

˛

‹

‚

P RN , w “

¨

˚

˝

w1

...
wN

˛

‹

‚

P RN .

The vector n is the “trading strategy”, and w is the (portfolio) “weight” vector.

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Review: LA and DE’s



Inner products D06-S06(a)

The space of vectors Rn has Euclidean structure. One source of this structure comes from the notion of inner
products: With v,w P Rn, then the inner product of these vectors is

xv,wy “

n
ÿ

j“1

vjwj .

The inner product allows us to define lengths of vectors:

}v} :“
b

xv,vy ě 0,

with }v} “ 0 iff v “ 0.

From the definition, we observe that the inner product satisfies some key properties:

– Symmetry : xv,wy “ xw,vy.

– Bilinearity : xau ` bv,wy “ a xu,wy ` b xv,wy for any a, b P R.
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Inner products D06-S06(b)

The space of vectors Rn has Euclidean structure. One source of this structure comes from the notion of inner
products: With v,w P Rn, then the inner product of these vectors is

xv,wy “

n
ÿ

j“1

vjwj .

The inner product allows us to define lengths of vectors:

}v} :“
b

xv,vy ě 0,

with }v} “ 0 iff v “ 0.

From the definition, we observe that the inner product satisfies some key properties:

– Symmetry : xv,wy “ xw,vy.

– Bilinearity : xau ` bv,wy “ a xu,wy ` b xv,wy for any a, b P R.

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Review: LA and DE’s



Angles D06-S07(a)
A useful concept that inner products provide is a measure of angles between vectors:

θ :“ =pv,wq, cos θ “
xv,wy

}v}}w}
, v,w ‰ 0.

In particular this allows us to define orthogonal vectors: v is orthogonal to w if xv,wy “ 0.

Why should xv,wy

}v}}w}
be a number between -1 and 1? Recall:

B

v,
w

}w}

F

“ “Amount” of v pointing in the direction of w.
B

v,
w

}w}

F

w “ The projection of v onto w

If the first expression is the “amount” of v pointing in a direction, then this “amount” shouldn’t be larger than }v}:
ˇ

ˇ

ˇ

ˇ

B

v,
w

}w}

Fˇ

ˇ

ˇ

ˇ

ď }v} ùñ |xv,wy| ď }v}}w}

This is the Cauchy-Schwarz inequality. (Equality iff v is a scalar multiple of w.)

Because of Cauchy-Schwarz, the quantity xv,wy

}v}}w}
P r´1, 1s, so that it can be the cosine of some angle.

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Review: LA and DE’s



Angles D06-S07(b)
A useful concept that inner products provide is a measure of angles between vectors:

θ :“ =pv,wq, cos θ “
xv,wy

}v}}w}
, v,w ‰ 0.

In particular this allows us to define orthogonal vectors: v is orthogonal to w if xv,wy “ 0.

Why should xv,wy

}v}}w}
be a number between -1 and 1? Recall:

B

v,
w

}w}

F

“ “Amount” of v pointing in the direction of w.
B

v,
w

}w}

F

w “ The projection of v onto w

If the first expression is the “amount” of v pointing in a direction, then this “amount” shouldn’t be larger than }v}:
ˇ

ˇ

ˇ

ˇ

B

v,
w

}w}

Fˇ

ˇ

ˇ

ˇ

ď }v} ùñ |xv,wy| ď }v}}w}

This is the Cauchy-Schwarz inequality. (Equality iff v is a scalar multiple of w.)

Because of Cauchy-Schwarz, the quantity xv,wy

}v}}w}
P r´1, 1s, so that it can be the cosine of some angle.
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Angles D06-S07(c)
A useful concept that inner products provide is a measure of angles between vectors:

θ :“ =pv,wq, cos θ “
xv,wy

}v}}w}
, v,w ‰ 0.

In particular this allows us to define orthogonal vectors: v is orthogonal to w if xv,wy “ 0.

Why should xv,wy

}v}}w}
be a number between -1 and 1? Recall:

B

v,
w

}w}

F

“ “Amount” of v pointing in the direction of w.
B

v,
w

}w}

F

w “ The projection of v onto w

If the first expression is the “amount” of v pointing in a direction, then this “amount” shouldn’t be larger than }v}:
ˇ

ˇ

ˇ

ˇ

B

v,
w

}w}

Fˇ

ˇ

ˇ

ˇ

ď }v} ùñ |xv,wy| ď }v}}w}

This is the Cauchy-Schwarz inequality. (Equality iff v is a scalar multiple of w.)

Because of Cauchy-Schwarz, the quantity xv,wy

}v}}w}
P r´1, 1s, so that it can be the cosine of some angle.
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Portfolios, redux D06-S08(a)

Example
With a portfolio weight vector w, the trading strategy n, the per-unit security price Sptq, and the initial capital
V p0q, we have the following relations:

xw,1y “

N
ÿ

j“1

wj “ 1.

xn,Sp0qy “

N
ÿ

j“1

njSjp0q “ V p0q

There is no restriction on the values of the weights wi: they can be negative or greater than 1.

– wi ą 0 corresponds to purchasing units, with the intention to sell later (a long position)

– wi ă 0 corresponds to borrowing units and selling them now, with the intention to buy them back later (“short
selling”, a short position)

If there is no short selling, then wi ě 0, and hence 0 ď wi ď 1 for all i.
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Portfolios, redux D06-S08(b)

Example
With a portfolio weight vector w, the trading strategy n, the per-unit security price Sptq, and the initial capital
V p0q, we have the following relations:

xw,1y “

N
ÿ

j“1

wj “ 1.

xn,Sp0qy “

N
ÿ

j“1

njSjp0q “ V p0q

There is no restriction on the values of the weights wi: they can be negative or greater than 1.

– wi ą 0 corresponds to purchasing units, with the intention to sell later (a long position)

– wi ă 0 corresponds to borrowing units and selling them now, with the intention to buy them back later (“short
selling”, a short position)

If there is no short selling, then wi ě 0, and hence 0 ď wi ď 1 for all i.
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Matrix multiplication D06-S09(a)

A core concept we’ll need involves algebra on matrices, specifically matrix multiplication:

Given matrices A P Rmˆℓ and B P Rℓˆn, then the product AB is given by,

AB P Rmˆn, pABqj,k “

ℓ
ÿ

q“1

Aj,qBq,k

I.e., pABqj,k is the inner product between the jth row of A and the kth row of B.

Matrix multiplication is defined for matrices of conforming sizes, i.e., when the inner dimensions match.

Matrix multiplication is in general not commutative.

Given A P Rmˆn, the transpose of A is the matrix AT P Rnˆm, formed by reflecting the entries of A across its
main diagonal.

An inner product can be viewed as matrix multiplication:

vTw “ xv,wy , v,w P Rn.

(Recall that when interpreting vectors v P Rn as matrices, we consider them as column vectors v P Rnˆ1).
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Matrix multiplication D06-S09(b)

A core concept we’ll need involves algebra on matrices, specifically matrix multiplication:

Given matrices A P Rmˆℓ and B P Rℓˆn, then the product AB is given by,

AB P Rmˆn, pABqj,k “

ℓ
ÿ

q“1

Aj,qBq,k

I.e., pABqj,k is the inner product between the jth row of A and the kth row of B.

Matrix multiplication is defined for matrices of conforming sizes, i.e., when the inner dimensions match.

Matrix multiplication is in general not commutative.

Given A P Rmˆn, the transpose of A is the matrix AT P Rnˆm, formed by reflecting the entries of A across its
main diagonal.

An inner product can be viewed as matrix multiplication:

vTw “ xv,wy , v,w P Rn.

(Recall that when interpreting vectors v P Rn as matrices, we consider them as column vectors v P Rnˆ1).
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Outer products D06-S10(a)

An outer product is another matrix multiplication between vectors, but this time when the inner dimension is 1:

v “ pv1, . . . , vnqT P Rn, w “ pw1, . . . , wnqT P Rn.

vwT “

¨

˝ w1v w2v ¨ ¨ ¨ wnv

˛

‚“

¨

˚

˚

˚

˝

v1wT

v2wT

...
vnwT

˛

‹

‹

‹

‚

P Rnˆn
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Linear independence, span, and basis, I D06-S11(a)

Let v1, . . . ,vk P Rn be any collection of vectors, and let V P Rnˆk be the matrix whose columns are these vectors:

V “

¨

˝ v1 v2 ¨ ¨ ¨ vk

˛

‚

These vectors are linearly dependent if there exists a(ny) vector c P Rk, c ‰ 0, such that,

V c “ c1v1 ` . . . ` ckvk “ 0.

Vectors that are not linearly dependent are linearly independent.

Vectors that are linearly dependent have a nontrivial linear relationship.
(If 0 is in the collection of vectors, the definition above implies they are linearly dependent.)
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Linear independence, span, and basis, II D06-S12(a)

Let v1, . . . ,vk P Rn be any collection of vectors, and let V P Rnˆk be the matrix whose columns are these vectors:

V “

¨

˝ v1 v2 ¨ ¨ ¨ vk

˛

‚

The span of these vectors is the collection of all linear combinations of these vectors:

spantv1, . . . ,vku :“
!

V c
ˇ

ˇ c P Rk
)

.

The span of vectors is a linear/vector subspace: it is a collection of vectors closed under addition and scalar
multiplication.
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Linear independence, span, and basis, III D06-S13(a)

Let v1, . . . ,vk P Rn be any collection of vectors, and let V P Rnˆk be the matrix whose columns are these vectors:

V “

¨

˝ v1 v2 ¨ ¨ ¨ vk

˛

‚

Let S be some given vector subspace.

The vectors form a basis for S if the span of these vectors is S and they are linearly independent.

In math: these vectors are a basis for S if

@ w P S, D ! c P Rk such that V c “ w.

(If c did not exist, the vectors wouldn’t span S. If c weren’t unique, then there would exist a nontrivial solution to
V d “ 0.)

A basis for S is not unique, but the size of a basis for S is unique.

This unique size of a basis for S is its dimension, dimS.

If S contains m-dimensional vectors, then dimS ď m.
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Linear independence, span, and basis, III D06-S13(b)

Let v1, . . . ,vk P Rn be any collection of vectors, and let V P Rnˆk be the matrix whose columns are these vectors:

V “

¨

˝ v1 v2 ¨ ¨ ¨ vk

˛

‚

Let S be some given vector subspace.

The vectors form a basis for S if the span of these vectors is S and they are linearly independent.

In math: these vectors are a basis for S if

@ w P S, D ! c P Rk such that V c “ w.

(If c did not exist, the vectors wouldn’t span S. If c weren’t unique, then there would exist a nontrivial solution to
V d “ 0.)

A basis for S is not unique, but the size of a basis for S is unique.

This unique size of a basis for S is its dimension, dimS.

If S contains m-dimensional vectors, then dimS ď m.
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Linear independence, span, and basis, III D06-S13(c)

Let v1, . . . ,vk P Rn be any collection of vectors, and let V P Rnˆk be the matrix whose columns are these vectors:

V “

¨

˝ v1 v2 ¨ ¨ ¨ vk

˛

‚

Let S be some given vector subspace.

The vectors form a basis for S if the span of these vectors is S and they are linearly independent.

In math: these vectors are a basis for S if

@ w P S, D ! c P Rk such that V c “ w.

(If c did not exist, the vectors wouldn’t span S. If c weren’t unique, then there would exist a nontrivial solution to
V d “ 0.)

A basis for S is not unique, but the size of a basis for S is unique.

This unique size of a basis for S is its dimension, dimS.

If S contains m-dimensional vectors, then dimS ď m.
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Linear equations D06-S14(a)

One particularly important application of linear algebra is as the theoretical and practical underpinning for solving
linear equations for an unknown vector x P Rn:

Ax “ b, A “

¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚P Rmˆn, b P Rm.

To characterize solutions to such linear equations, consider the range or “column space” of A, which is a subspace:

rangepAq :“ spanta1, . . . ,anu ùñ n ě dim rangepAq

We can make very strong characterizations about solutions to linear systems:

1. If b R rangepAq, then there is no solution x.

2. If b P rangepAq and n ą dim rangepAq then there are infinitely many solutions x, and the collection of these
solutions form an affine space1 of dimension pn ´ dim rangepAqq.

3. If b P rangepAq and n “ dim rangepAq, then there exists exactly one solution x.

NB: Situations 1 and 2 can happen for any relationship between n and m. Situation 3 can happen only if m ě n.
The canonical algorithm to compute solutions to linear equations is Gaussian elimination.

1An affine space is a subspace shifted by a fixed vector.
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Linear equations D06-S14(b)

One particularly important application of linear algebra is as the theoretical and practical underpinning for solving
linear equations for an unknown vector x P Rn:

Ax “ b, A “

¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚P Rmˆn, b P Rm.

To characterize solutions to such linear equations, consider the range or “column space” of A, which is a subspace:

rangepAq :“ spanta1, . . . ,anu ùñ n ě dim rangepAq

We can make very strong characterizations about solutions to linear systems:

1. If b R rangepAq, then there is no solution x.

2. If b P rangepAq and n ą dim rangepAq then there are infinitely many solutions x, and the collection of these
solutions form an affine space1 of dimension pn ´ dim rangepAqq.

3. If b P rangepAq and n “ dim rangepAq, then there exists exactly one solution x.

NB: Situations 1 and 2 can happen for any relationship between n and m. Situation 3 can happen only if m ě n.
The canonical algorithm to compute solutions to linear equations is Gaussian elimination.

1An affine space is a subspace shifted by a fixed vector.
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Linear equations D06-S14(c)

One particularly important application of linear algebra is as the theoretical and practical underpinning for solving
linear equations for an unknown vector x P Rn:

Ax “ b, A “

¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚P Rmˆn, b P Rm.

To characterize solutions to such linear equations, consider the range or “column space” of A, which is a subspace:

rangepAq :“ spanta1, . . . ,anu ùñ n ě dim rangepAq

We can make very strong characterizations about solutions to linear systems:

1. If b R rangepAq, then there is no solution x.

2. If b P rangepAq and n ą dim rangepAq then there are infinitely many solutions x, and the collection of these
solutions form an affine space1 of dimension pn ´ dim rangepAqq.

3. If b P rangepAq and n “ dim rangepAq, then there exists exactly one solution x.

NB: Situations 1 and 2 can happen for any relationship between n and m. Situation 3 can happen only if m ě n.
The canonical algorithm to compute solutions to linear equations is Gaussian elimination.

1An affine space is a subspace shifted by a fixed vector.
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Portfolio paramerterizations D06-S15(a)

Example
Recall that portfolio weights satisfy,

xw,1y “ 1.

This is equivalent to:

Aw “ b, A “
`

1 1 ¨ ¨ ¨ 1
˘

P R1ˆN , b “ 1 P R1.

In this case, the dimension of the range is dim rangepAq “ 1 (and clearly b P rangepAq).

Hence, there are infinitely many valid portfolio weight vectors w, and they form an affine space of dimension
N ´ dim rangepAq “ N ´ 1.

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Review: LA and DE’s



Portfolio paramerterizations D06-S15(b)

Example
Recall that portfolio weights satisfy,

xw,1y “ 1.

This is equivalent to:

Aw “ b, A “
`

1 1 ¨ ¨ ¨ 1
˘

P R1ˆN , b “ 1 P R1.

In this case, the dimension of the range is dim rangepAq “ 1 (and clearly b P rangepAq).

Hence, there are infinitely many valid portfolio weight vectors w, and they form an affine space of dimension
N ´ dim rangepAq “ N ´ 1.
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The matrix inverse D06-S16(a)

When m “ n, consider the “square” linear system,

Ax “ b, A, b given

There are some equivalent statements about a unique solution:

– There is a unique solution x.

– The rank of A, that is dim rangepAq, has maximal value n.

– The determinant of A does not vanish: detA ‰ 0.

– The matrix A has an inverse A´1, satisfying AA´1 “ A´1A “ I.

When any (hence all) of the above statements is true, then

x “ A´1b

is the unique solution.
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The matrix inverse D06-S16(b)

When m “ n, consider the “square” linear system,

Ax “ b, A, b given

There are some equivalent statements about a unique solution:

– There is a unique solution x.

– The rank of A, that is dim rangepAq, has maximal value n.

– The determinant of A does not vanish: detA ‰ 0.

– The matrix A has an inverse A´1, satisfying AA´1 “ A´1A “ I.

When any (hence all) of the above statements is true, then

x “ A´1b

is the unique solution.
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Orthogonal matrices D06-S17(a)
Matrix inverses are generally “hard” to compute (analytically or numerically).

There is one class of matrices for which matrix inversion is rather simple:

A matrix A P Rnˆn is orthogonal if its columns are (pairwise) orthgonal and unit norm:

A “

¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚, xaj ,aky “ δj,k :“

"

1, j “ k
0, j ‰ k

A straightforward computation using matrix multiplication reveals:

A orthogonal ùñ ATA “ I ùñ A´1 “ AT .

Hence, orthogonality is a particularly useful practical property. (And A orthogonal implies A´1 “ AT is also
orthogonal.)

Another useful property of orthogonal matrices: they correspond to isometric maps.

In particular, if A is orthogonal:

xAv,Awy “ vTATAw “ vT Iw “ vTw “ xv,wy .

I.e., the transformation v ÞÑ Av preserves angles and lengths.
Orthogonal matrices are simple rotations and/or reflections.
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Orthogonal matrices D06-S17(b)
Matrix inverses are generally “hard” to compute (analytically or numerically).

There is one class of matrices for which matrix inversion is rather simple:

A matrix A P Rnˆn is orthogonal if its columns are (pairwise) orthgonal and unit norm:

A “

¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚, xaj ,aky “ δj,k :“

"

1, j “ k
0, j ‰ k

A straightforward computation using matrix multiplication reveals:

A orthogonal ùñ ATA “ I ùñ A´1 “ AT .

Hence, orthogonality is a particularly useful practical property. (And A orthogonal implies A´1 “ AT is also
orthogonal.)

Another useful property of orthogonal matrices: they correspond to isometric maps.

In particular, if A is orthogonal:

xAv,Awy “ vTATAw “ vT Iw “ vTw “ xv,wy .

I.e., the transformation v ÞÑ Av preserves angles and lengths.
Orthogonal matrices are simple rotations and/or reflections.
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Orthogonal matrices D06-S17(c)
Matrix inverses are generally “hard” to compute (analytically or numerically).

There is one class of matrices for which matrix inversion is rather simple:

A matrix A P Rnˆn is orthogonal if its columns are (pairwise) orthgonal and unit norm:

A “

¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚, xaj ,aky “ δj,k :“

"

1, j “ k
0, j ‰ k

A straightforward computation using matrix multiplication reveals:

A orthogonal ùñ ATA “ I ùñ A´1 “ AT .

Hence, orthogonality is a particularly useful practical property. (And A orthogonal implies A´1 “ AT is also
orthogonal.)

Another useful property of orthogonal matrices: they correspond to isometric maps.

In particular, if A is orthogonal:

xAv,Awy “ vTATAw “ vT Iw “ vTw “ xv,wy .

I.e., the transformation v ÞÑ Av preserves angles and lengths.
Orthogonal matrices are simple rotations and/or reflections.
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Eigenvalues D06-S18(a)

For square matrices A P Rnˆn, an important concept is that of the spectrum of A.

If there exists any (possibly complex-valued) scaled λ, and any non-zero vector v (possibly complex-valued) such
that,

Av “ λv,

then

– λ is called an eigenvalue of A

– v is called an eigenvector of A.

Fixing λ, note that the condition for being an eigenvector is invariant under addition of vectors and scalar
multiplication: The set of eigenvectors associated to an eigenvalue λ is a subspace.

Eigenvalues λ satisfy the characteristic equation:

detpA ´ λIq “ 0,

so that eigenvalues are roots of a degree-n polynomial.
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Eigenvalues D06-S18(b)

For square matrices A P Rnˆn, an important concept is that of the spectrum of A.

If there exists any (possibly complex-valued) scaled λ, and any non-zero vector v (possibly complex-valued) such
that,

Av “ λv,

then

– λ is called an eigenvalue of A

– v is called an eigenvector of A.

Fixing λ, note that the condition for being an eigenvector is invariant under addition of vectors and scalar
multiplication: The set of eigenvectors associated to an eigenvalue λ is a subspace.

Eigenvalues λ satisfy the characteristic equation:

detpA ´ λIq “ 0,

so that eigenvalues are roots of a degree-n polynomial.
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Eigenvalues D06-S18(c)

For square matrices A P Rnˆn, an important concept is that of the spectrum of A.

If there exists any (possibly complex-valued) scaled λ, and any non-zero vector v (possibly complex-valued) such
that,

Av “ λv,

then

– λ is called an eigenvalue of A

– v is called an eigenvector of A.

Fixing λ, note that the condition for being an eigenvector is invariant under addition of vectors and scalar
multiplication: The set of eigenvectors associated to an eigenvalue λ is a subspace.

Eigenvalues λ satisfy the characteristic equation:

detpA ´ λIq “ 0,

so that eigenvalues are roots of a degree-n polynomial.
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Matrix diagonalization D06-S19(a)

Every n ˆ n matrix has exactly n eigenvalues (possibly repeated according to roots of the characteristic equation).

For each eigenvalue (counting multiplicity), there may be an eigenvector that is linearly independent from all others.

Matrices for which each eigenvalue has a corresponding linearly independent eigenvector are called diagonalizable.

If A is diagonalizable, then the following decomposition holds,

A “ V ΛV ´1, Λ “ diagpλ1, . . . , λnq, V “

¨

˝ v1 v2 ¨ ¨ ¨ vn

˛

‚,

where pλj ,vjq are eigenvalue-eigenvector pairs for j “ 1, . . . , n.

A particularly nice property about diagonalizable matrices is that the eigenvectors span Rn (possibly using complex
scalar multiplication).

The upshot: if A is diagonalizable, then there is a linear transformation (defined by V ) such that multiplication by
A corresponds to a simple diagonal scaling:

w “ Ax
y“V ´1x,z“V ´1w

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ z “ Λy.

Hence diagonalizations are very useful.
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Matrix diagonalization D06-S19(b)

Every n ˆ n matrix has exactly n eigenvalues (possibly repeated according to roots of the characteristic equation).

For each eigenvalue (counting multiplicity), there may be an eigenvector that is linearly independent from all others.

Matrices for which each eigenvalue has a corresponding linearly independent eigenvector are called diagonalizable.

If A is diagonalizable, then the following decomposition holds,

A “ V ΛV ´1, Λ “ diagpλ1, . . . , λnq, V “

¨

˝ v1 v2 ¨ ¨ ¨ vn

˛

‚,

where pλj ,vjq are eigenvalue-eigenvector pairs for j “ 1, . . . , n.

A particularly nice property about diagonalizable matrices is that the eigenvectors span Rn (possibly using complex
scalar multiplication).

The upshot: if A is diagonalizable, then there is a linear transformation (defined by V ) such that multiplication by
A corresponds to a simple diagonal scaling:

w “ Ax
y“V ´1x,z“V ´1w

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ z “ Λy.

Hence diagonalizations are very useful.
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Orthogonal diagonalization D06-S20(a)

Diagonalizable matrices are diagonal under some transformation defined by V ´1. But V ´1 can be painful to
compute.

Some matrices are orthogonally diagonalizable, meaning that V is an orthogonal matrix, and hence V ´1 is “easy” to
compute.

One of the major results of linear algebra is the following identification of one class of orthogonal matrices:

Theorem (Spectral theorem for symmetric matrices)
Assume A P Rnˆn satisfies A “ AT .
(Such matrices are called symmetric.)

Then:

– All eigenvalues of A are real-valued.

– A is orthogonally diagonalizable.
(The eigenvectors can be chosen as orthogonal vectors.)

I.e.,

A “ AT ùñ A “ V ΛV T .
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Orthogonal diagonalization D06-S20(b)

Diagonalizable matrices are diagonal under some transformation defined by V ´1. But V ´1 can be painful to
compute.

Some matrices are orthogonally diagonalizable, meaning that V is an orthogonal matrix, and hence V ´1 is “easy” to
compute.

One of the major results of linear algebra is the following identification of one class of orthogonal matrices:

Theorem (Spectral theorem for symmetric matrices)
Assume A P Rnˆn satisfies A “ AT .
(Such matrices are called symmetric.)

Then:

– All eigenvalues of A are real-valued.

– A is orthogonally diagonalizable.
(The eigenvectors can be chosen as orthogonal vectors.)

I.e.,

A “ AT ùñ A “ V ΛV T .
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Orthogonal diagonalization D06-S20(c)

Diagonalizable matrices are diagonal under some transformation defined by V ´1. But V ´1 can be painful to
compute.

Some matrices are orthogonally diagonalizable, meaning that V is an orthogonal matrix, and hence V ´1 is “easy” to
compute.

One of the major results of linear algebra is the following identification of one class of orthogonal matrices:

Theorem (Spectral theorem for symmetric matrices)
Assume A P Rnˆn satisfies A “ AT .
(Such matrices are called symmetric.)

Then:

– All eigenvalues of A are real-valued.

– A is orthogonally diagonalizable.
(The eigenvectors can be chosen as orthogonal vectors.)

I.e.,

A “ AT ùñ A “ V ΛV T .
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Quadratic forms D06-S21(a)

Since symmetric matrices have real-valued eigenvalues, then one can make sensible definitions about where the
eigenvalues lie on R.

In particular, the following are well-defined for λj the eigenvalues of an n ˆ n symmetric matrix:

– λmin “ minj“1,...,n λj

– λmax “ maxj“1,...,n λj

Equality above occurs iff x is a multiple of the eigenvalue corresponding to the minimum/maximum eigenvalue of A.

The spectral theorem also implies the following extremely useful inequality: if A is symmetric, then,

λmin}x}2 ď xTAx ď λmax}x}2.

(The function fpxq “ xTAx is an example of a quadratic form.)
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Quadratic forms D06-S21(b)

Since symmetric matrices have real-valued eigenvalues, then one can make sensible definitions about where the
eigenvalues lie on R.

In particular, the following are well-defined for λj the eigenvalues of an n ˆ n symmetric matrix:

– λmin “ minj“1,...,n λj

– λmax “ maxj“1,...,n λj

Equality above occurs iff x is a multiple of the eigenvalue corresponding to the minimum/maximum eigenvalue of A.

The spectral theorem also implies the following extremely useful inequality: if A is symmetric, then,

λmin}x}2 ď xTAx ď λmax}x}2.

(The function fpxq “ xTAx is an example of a quadratic form.)
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Symmetric + definite matrices D06-S22(a)

Two final definitions are sub-classes of symmetric matrices:

– If A is symmetric and all its eigenvalues are strictly positive, then A is (symmetric) positive definite.
– If A is symmetric and all its eigenvalues are non-negative, then A is (symmetric) positive semidefinite.

One can equivalently define these matrix classes through their quadratic forms.

In particular, A is symmetric positive semi-definite iff xTAx ě 0 for all x P Rn.
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Linear differential equations D06-S23(a)

Differential equations govern how quantities change in time.

One class of general ordinary differential equations (DE) governing the unknown function yptq where t is a scalar
(i.e., time) is,

F
`

t, y, y1, y2, y3, . . .
˘

“ 0, yp0q “ y0, y1p0q “ y1
0 ¨ ¨ ¨ .

This is an initial value problem. The maximum derivative appearing in F is called the order of the equation.

Understanding the theory (solvability, well-posedness) of these problems is generally quite difficult, but linear
equations are quite flexible for modeling and are rather well-understood.

Linear DE’s are those where y, y1, etc., collectively appear in F in a linear fashion.
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Linear differential equations D06-S23(b)

Differential equations govern how quantities change in time.

One class of general ordinary differential equations (DE) governing the unknown function yptq where t is a scalar
(i.e., time) is,

F
`

t, y, y1, y2, y3, . . .
˘

“ 0, yp0q “ y0, y1p0q “ y1
0 ¨ ¨ ¨ .

This is an initial value problem. The maximum derivative appearing in F is called the order of the equation.

Understanding the theory (solvability, well-posedness) of these problems is generally quite difficult, but linear
equations are quite flexible for modeling and are rather well-understood.

Linear DE’s are those where y, y1, etc., collectively appear in F in a linear fashion.
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Linear first-order equations D06-S24(a)

The initial value problem,

y1ptq “ 3y, yp0q “ 4,

is, with some experience, rather transparent to solve:

yptq “ 4e3t.

The general solution of a first-order “constant-coefficient” linear equation can be determined in a similar fashion:

y1 ` λy “ fptq, yp0q “ y0,

has the unique solution

yptq “ y0e
´λt ` e´λt

ż t

0
fpsqeλsds
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Linear first-order equations D06-S24(b)

The initial value problem,

y1ptq “ 3y, yp0q “ 4,

is, with some experience, rather transparent to solve:

yptq “ 4e3t.

The general solution of a first-order “constant-coefficient” linear equation can be determined in a similar fashion:

y1 ` λy “ fptq, yp0q “ y0,

has the unique solution

yptq “ y0e
´λt ` e´λt

ż t

0
fpsqeλsds
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Continuous annuities D06-S25(a)

Example
Consider an annuity (say a loan) with interest continuously compounded at (annual) rate r.

Suppose we also consider a repayment cycle that is continuous instead of periodic. I.e., we pay money at a
(continuous) rate of P dollars (per year).

The equation modeling the time-t present value V ptq of this annuity is given by,

V 1ptq “ rV ptq ´ P, V p0q “ V0,

where V0 is the loan principal (annuity present value at time 0).

The solution to this equation is given by,

V ptq “ V0e
rt ´ ert

ż t

0
Pe´rsds

“ V0e
rt `

P

r

“

1 ´ ert
‰

Note in particular that this implies V0 ă P {r is required in order for the loan to eventually be repaid.
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Continuous annuities D06-S25(b)

Example
Consider an annuity (say a loan) with interest continuously compounded at (annual) rate r.

Suppose we also consider a repayment cycle that is continuous instead of periodic. I.e., we pay money at a
(continuous) rate of P dollars (per year).

The equation modeling the time-t present value V ptq of this annuity is given by,

V 1ptq “ rV ptq ´ P, V p0q “ V0,

where V0 is the loan principal (annuity present value at time 0).

The solution to this equation is given by,

V ptq “ V0e
rt ´ ert

ż t

0
Pe´rsds

“ V0e
rt `

P

r

“

1 ´ ert
‰

Note in particular that this implies V0 ă P {r is required in order for the loan to eventually be repaid.
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Continuous annuities D06-S25(c)

Example
Consider an annuity (say a loan) with interest continuously compounded at (annual) rate r.

Suppose we also consider a repayment cycle that is continuous instead of periodic. I.e., we pay money at a
(continuous) rate of P dollars (per year).

The equation modeling the time-t present value V ptq of this annuity is given by,

V 1ptq “ rV ptq ´ P, V p0q “ V0,

where V0 is the loan principal (annuity present value at time 0).

The solution to this equation is given by,

V ptq “ V0e
rt ´ ert

ż t

0
Pe´rsds

“ V0e
rt `

P

r

“

1 ´ ert
‰

Note in particular that this implies V0 ă P {r is required in order for the loan to eventually be repaid.
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Continuous annuities D06-S25(d)

Example
Consider an annuity (say a loan) with interest continuously compounded at (annual) rate r.

Suppose we also consider a repayment cycle that is continuous instead of periodic. I.e., we pay money at a
(continuous) rate of P dollars (per year).

The equation modeling the time-t present value V ptq of this annuity is given by,

V 1ptq “ rV ptq ´ P, V p0q “ V0,

where V0 is the loan principal (annuity present value at time 0).

The solution to this equation is given by,

V ptq “ V0e
rt ´ ert

ż t

0
Pe´rsds

“ V0e
rt `

P

r

“

1 ´ ert
‰

Note in particular that this implies V0 ă P {r is required in order for the loan to eventually be repaid.
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Systems of linear equations D06-S26(a)

The rather interesting part of this comes with systems of linear constant-coefficient differential equations:

y1ptq “ Ay, yp0q “ y0,

where yptq “ py1ptq, y2ptq, . . . , ynptqqT .

If A is diagonalizable, A “ V ΛV ´1, then this system is the same as

z1ptq “ Λz, zp0q “ V ´1y0,

where zptq :“ V ´1yptq, and easily solvable:

zptq “ eΛtV ´1y0 ùñ yptq “ V eΛtV ´1y0.

Above, eΛt “ peλ1t, eλ2t, . . . , eλntqT .

(If A is orthogonally diagonalizable, this is computationally even easier.)
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Systems of linear equations D06-S26(b)

The rather interesting part of this comes with systems of linear constant-coefficient differential equations:

y1ptq “ Ay, yp0q “ y0,

where yptq “ py1ptq, y2ptq, . . . , ynptqqT .

If A is diagonalizable, A “ V ΛV ´1, then this system is the same as

z1ptq “ Λz, zp0q “ V ´1y0,

where zptq :“ V ´1yptq, and easily solvable:

zptq “ eΛtV ´1y0 ùñ yptq “ V eΛtV ´1y0.

Above, eΛt “ peλ1t, eλ2t, . . . , eλntqT .

(If A is orthogonally diagonalizable, this is computationally even easier.)
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References I D06-S27(a)
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