Math 5760/6890: Introduction to Mathematical Finance Review: linear algebra and differential equation

Akil Narayan¹

¹Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

Fall 2024

We've discussed the basics of finance and investing – concepts of interest and present value.

A more advanced understanding of pricing and policies requires some math:

- linear algebra
- differential equations
- probability

These topics are prerequisites for this course!

Vectors and matrices, I

D06-S03(a)

Let $m, n \in \mathbb{N}$. (m > n, m = n, m < n are allowed.)

We'll typically use lowercase boldface letters, e.g., v, to denote *vectors*, elements of \mathbb{R}^n . Vectors can be described by their components:

$$\boldsymbol{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \sum_{j=1}^n v_j \boldsymbol{e}_j \in \mathbb{R}^n, \qquad \boldsymbol{e}_j = \begin{pmatrix} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}.$$

I.e., the components v_j are the coordinates of v in an expansion of the canonical vectors $\{e_j\}_{j=1}^n$.

Vectors and matrices, I

D06-S03(b)

Let $m, n \in \mathbb{N}$. (m > n, m = n, m < n are allowed.)

We'll typically use lowercase boldface letters, e.g., v, to denote *vectors*, elements of \mathbb{R}^n . Vectors can be described by their components:

$$\boldsymbol{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \sum_{j=1}^n v_j \boldsymbol{e}_j \in \mathbb{R}^n, \qquad \boldsymbol{e}_j = \begin{pmatrix} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}.$$

I.e., the components v_j are the coordinates of v in an expansion of the canonical vectors $\{e_j\}_{j=1}^n$.

We'll use uppercase boldface letters, e.g., A, to denote *matrices*, elements of $\mathbb{R}^{m \times n}$ that are also described by their components:

$$\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n}.$$

Matrices are *linear maps* (functions) taking \mathbb{R}^n to \mathbb{R}^m .

Vectors and matrices, II

It is sometimes useful to consider vectors as specializations of matrices:

- If n = 1 and m > 1, then $\mathbf{A} \in \mathbb{R}^{m \times 1}$ is a column vector
- If m = 1 and n > 1, then $\mathbf{A} \in \mathbb{R}^{1 \times n}$ is a row vector

When considering vectors as specializations of matrices, we will assume that vectors are column vectors, unless otherwise indicated.

Portfolios

D06-S05(a)

Example (Portfolio parameterization)

Suppose we have some initial amount of money, V(0), that we wish to invest.

Suppose there are $N \in \mathbb{N}$ securities, which are financial products of which we can purchase a quantity.

The price (per unit) of security i at time t is given by $S_i(t)$.

The number of units we purchase of security i is n_i (can be non-integer).

The weight of our portfolio for the *i*th security is $w_i = n_i S_i(0)/V(0)$, which is the relative amount of worth we invest in security *i*.

We represent all these things as vectors:

$$\boldsymbol{S}(t) = \begin{pmatrix} S_1(t) \\ \vdots \\ S_N(t) \end{pmatrix} \in \mathbb{R}^N, \qquad \boldsymbol{n} = \begin{pmatrix} n_1 \\ \vdots \\ n_N \end{pmatrix} \in \mathbb{R}^N, \qquad \boldsymbol{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix} \in \mathbb{R}^N.$$

The vector n is the "trading strategy", and w is the (portfolio) "weight" vector.

Inner products

D06-S06(a)

The space of vectors \mathbb{R}^n has *Euclidean* structure. One source of this structure comes from the notion of inner products: With $v, w \in \mathbb{R}^n$, then the **inner product** of these vectors is

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \sum_{j=1}^n v_j w_j.$$

The inner product allows us to define lengths of vectors:

$$\|\boldsymbol{v}\|\coloneqq \sqrt{\langle \boldsymbol{v}, \boldsymbol{v}\rangle} \geqslant 0,$$

with $\|\boldsymbol{v}\| = 0$ iff $\boldsymbol{v} = 0$.

Inner products

D06-S06(b)

The space of vectors \mathbb{R}^n has *Euclidean* structure. One source of this structure comes from the notion of inner products: With $v, w \in \mathbb{R}^n$, then the **inner product** of these vectors is

$$\langle oldsymbol{v},oldsymbol{w}
angle = \sum_{j=1}^n v_j w_j.$$

The inner product allows us to define lengths of vectors:

$$\| \boldsymbol{v} \| \coloneqq \sqrt{\langle \boldsymbol{v}, \boldsymbol{v} \rangle} \ge 0,$$

with $\|\boldsymbol{v}\| = 0$ iff $\boldsymbol{v} = 0$.

From the definition, we observe that the inner product satisfies some key properties:

- Symmetry: $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \boldsymbol{w}, \boldsymbol{v} \rangle$.
- Bilinearity: $\langle a \boldsymbol{u} + b \boldsymbol{v}, \boldsymbol{w} \rangle = a \langle \boldsymbol{u}, \boldsymbol{w} \rangle + b \langle \boldsymbol{v}, \boldsymbol{w} \rangle$ for any $a, b \in \mathbb{R}$.

Angles

A useful concept that inner products provide is a measure of angles between vectors:

$$heta := \angle (\boldsymbol{v}, \boldsymbol{w}), \qquad \qquad \cos \theta = rac{\langle \boldsymbol{v}, \boldsymbol{w} \rangle}{\| \boldsymbol{v} \| \| \boldsymbol{w} \|}, \qquad \qquad \boldsymbol{v}, \boldsymbol{w}
eq \boldsymbol{0}.$$

In particular this allows us to define *orthogonal* vectors: v is orthogonal to w if $\langle v, w \rangle = 0$.

Angles

A useful concept that inner products provide is a measure of angles between vectors:

$$\theta \coloneqq \angle (\boldsymbol{v}, \boldsymbol{w}), \qquad \qquad \cos \theta = \frac{\langle \boldsymbol{v}, \boldsymbol{w} \rangle}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|}, \qquad \qquad \boldsymbol{v}, \boldsymbol{w} \neq \boldsymbol{0}.$$

In particular this allows us to define *orthogonal* vectors: v is orthogonal to w if $\langle v, w \rangle = 0$.

Why should $\frac{\langle \boldsymbol{v}, \boldsymbol{w} \rangle}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|}$ be a number between -1 and 1? Recall: $\left\langle \boldsymbol{v}, \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right\rangle =$ "Amount" of \boldsymbol{v} pointing in the direction of \boldsymbol{w} . $\left\langle \boldsymbol{v}, \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right\rangle \boldsymbol{w} =$ The projection of \boldsymbol{v} onto \boldsymbol{w}

Angles

A useful concept that inner products provide is a measure of angles between vectors:

$$\theta := \angle (\boldsymbol{v}, \boldsymbol{w}),$$
 $\cos \theta = \frac{\langle \boldsymbol{v}, \boldsymbol{w} \rangle}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|},$ $\boldsymbol{v}, \boldsymbol{w} \neq \boldsymbol{0}.$

In particular this allows us to define *orthogonal* vectors: v is orthogonal to w if $\langle v, w \rangle = 0$.

Why should $\frac{\langle \boldsymbol{v}, \boldsymbol{w} \rangle}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|}$ be a number between -1 and 1? Recall: $\left\langle \boldsymbol{v}, \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right\rangle =$ "Amount" of \boldsymbol{v} pointing in the direction of \boldsymbol{w} . $\left\langle \boldsymbol{v}, \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right\rangle \boldsymbol{w} =$ The projection of \boldsymbol{v} onto \boldsymbol{w}

If the first expression is the "amount" of v pointing in a direction, then this "amount" shouldn't be larger than $\|v\|$:

$$\left|\left\langle \boldsymbol{v}, \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right\rangle\right| \leqslant \|\boldsymbol{v}\| \quad \Longrightarrow \quad |\langle \boldsymbol{v}, \boldsymbol{w}\rangle| \leqslant \|\boldsymbol{v}\| \|\boldsymbol{w}\|$$

This is the **Cauchy-Schwarz** inequality. (Equality iff v is a scalar multiple of w.)

Because of Cauchy-Schwarz, the quantity $\frac{\langle v, w \rangle}{\|v\| \|w\|} \in [-1, 1]$, so that it can be the cosine of some angle.

Example

With a portfolio weight vector w, the trading strategy n, the per-unit security price S(t), and the initial capital V(0), we have the following relations:

$$\langle \boldsymbol{w}, \boldsymbol{1} \rangle = \sum_{j=1}^{N} w_j = 1.$$

 $\langle \boldsymbol{n}, \boldsymbol{S}(0) \rangle = \sum_{j=1}^{N} n_j S_j(0) = V(0)$

Example

With a portfolio weight vector w, the trading strategy n, the per-unit security price S(t), and the initial capital V(0), we have the following relations:

$$\langle \boldsymbol{w}, \boldsymbol{1}
angle = \sum_{j=1}^{N} w_j = 1.$$

 $\langle \boldsymbol{n}, \boldsymbol{S}(0)
angle = \sum_{j=1}^{N} n_j S_j(0) = V(0)$

There is no restriction on the values of the weights w_i : they can be negative or greater than 1.

- $-w_i > 0$ corresponds to purchasing units, with the intention to sell later (a long position)
- $w_i < 0$ corresponds to borrowing units and selling them now, with the intention to buy them back later ("short selling", a short position)

If there is no short selling, then $w_i \ge 0$, and hence $0 \le w_i \le 1$ for all *i*.

Matrix multiplication

D06-S09(a)

A core concept we'll need involves algebra on matrices, specifically *matrix multiplication*:

Given matrices $A \in \mathbb{R}^{m imes \ell}$ and $B \in \mathbb{R}^{\ell imes n}$, then the product AB is given by,

$$AB \in \mathbb{R}^{m \times n},$$
 $(AB)_{j,k} = \sum_{q=1}^{\ell} A_{j,q} B_{q,k}$

I.e., $(AB)_{j,k}$ is the inner product between the *j*th row of A and the *k*th row of B.

Matrix multiplication is defined for matrices of conforming sizes, i.e., when the inner dimensions match.

Matrix multiplication is in general *not* commutative.

Matrix multiplication

D06-S09(b)

A core concept we'll need involves algebra on matrices, specifically *matrix multiplication*:

Given matrices $A \in \mathbb{R}^{m \times \ell}$ and $B \in \mathbb{R}^{\ell \times n}$, then the product AB is given by,

$$AB \in \mathbb{R}^{m \times n},$$
 $(AB)_{j,k} = \sum_{q=1}^{\ell} A_{j,q} B_{q,k}$

I.e., $(AB)_{j,k}$ is the inner product between the *j*th row of A and the *k*th row of B.

Matrix multiplication is defined for matrices of *conforming* sizes, i.e., when the inner dimensions match.

Matrix multiplication is in general *not* commutative.

Given $A \in \mathbb{R}^{m \times n}$, the *transpose* of A is the matrix $A^T \in \mathbb{R}^{n \times m}$, formed by reflecting the entries of A across its main diagonal.

An inner product can be viewed as matrix multiplication:

$$oldsymbol{v}^Toldsymbol{w} = \langle oldsymbol{v}, oldsymbol{w}
angle, oldsymbol{v}, oldsymbol{w} \in \mathbb{R}^n.$$

(Recall that when interpreting vectors $v \in \mathbb{R}^n$ as matrices, we consider them as column vectors $v \in \mathbb{R}^{n \times 1}$).

Outer products

D06-S10(a)

An outer product is another matrix multiplication between vectors, but this time when the inner dimension is 1:

$$\boldsymbol{v} = (v_1, \dots, v_n)^T \in \mathbb{R}^n,$$
 $\boldsymbol{w} = (w_1, \dots, w_n)^T \in \mathbb{R}^n.$

$$\boldsymbol{v}\boldsymbol{w}^{T} = \begin{pmatrix} | & | & | \\ w_{1}\boldsymbol{v} & w_{2}\boldsymbol{v} & \cdots & w_{n}\boldsymbol{v} \\ | & | & | \end{pmatrix} = \begin{pmatrix} - & v_{1}\boldsymbol{w}^{T} & - \\ - & v_{2}\boldsymbol{w}^{T} & - \\ \vdots \\ - & v_{n}\boldsymbol{w}^{T} & - \end{pmatrix} \in \mathbb{R}^{n \times n}$$

Linear independence, span, and basis, I

D06-S11(a)

Let $v_1, \ldots, v_k \in \mathbb{R}^n$ be any collection of vectors, and let $V \in \mathbb{R}^{n \times k}$ be the matrix whose columns are these vectors:

$$oldsymbol{V} = \left(egin{array}{ccccc} ert & ert & ert & ert \ oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \ ert & ert & ert & ert \end{array}
ight)$$

These vectors are **linearly dependent** if there exists a(ny) vector $c \in \mathbb{R}^k$, $c \neq 0$, such that,

$$\boldsymbol{V}\boldsymbol{c}=c_1\boldsymbol{v}_1+\ldots+c_k\boldsymbol{v}_k=\boldsymbol{0}.$$

Vectors that are *not* linearly dependent are **linearly independent**.

Vectors that are linearly dependent have a nontrivial linear relationship. (If $\mathbf{0}$ is in the collection of vectors, the definition above implies they are linearly dependent.)

Linear independence, span, and basis, II

D06-S12(a)

Let $v_1, \ldots, v_k \in \mathbb{R}^n$ be any collection of vectors, and let $V \in \mathbb{R}^{n \times k}$ be the matrix whose columns are these vectors:

$$oldsymbol{V} = \left(egin{array}{ccccc} ert & ert & ert & ert \ oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \ ert & ert & ert & ert \end{array}
ight)$$

The span of these vectors is the collection of all linear combinations of these vectors:

$$\operatorname{span} \{ oldsymbol{v}_1, \ldots, oldsymbol{v}_k \} \coloneqq \left\{ oldsymbol{V} oldsymbol{c} \ \mid \ oldsymbol{c} \in \mathbb{R}^k
ight\}.$$

The span of vectors is a *linear/vector subspace*: it is a collection of vectors closed under addition and scalar multiplication.

Linear independence, span, and basis, III

D06-S13(a)

Let $v_1, \ldots, v_k \in \mathbb{R}^n$ be any collection of vectors, and let $V \in \mathbb{R}^{n \times k}$ be the matrix whose columns are these vectors:

$$oldsymbol{V} = \left(egin{array}{ccccc} ert & ert & ert & ert \ oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \ ert & ert & ert & ert \end{array}
ight)$$

Let S be some given vector subspace.

The vectors form a **basis** for S if the span of these vectors is S and they are linearly independent.

Linear independence, span, and basis, III

D06-S13(b)

Let $v_1, \ldots, v_k \in \mathbb{R}^n$ be any collection of vectors, and let $V \in \mathbb{R}^{n \times k}$ be the matrix whose columns are these vectors:

$$oldsymbol{V} = \left(egin{array}{ccccc} ert & ert & ert & ert \ oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \ ert & ert & ert & ert \end{array}
ight)$$

Let S be some given vector subspace.

The vectors form a **basis** for S if the span of these vectors is S and they are linearly independent.

In math: these vectors are a basis for S if

```
\forall \boldsymbol{w} \in S, \exists \boldsymbol{!} \boldsymbol{c} \in \mathbb{R}^k \text{ such that } \boldsymbol{V} \boldsymbol{c} = \boldsymbol{w}.
```

(If c did not exist, the vectors wouldn't span S. If c weren't unique, then there would exist a nontrivial solution to Vd = 0.)

Linear independence, span, and basis, III

D06-S13(c)

Let $v_1, \ldots, v_k \in \mathbb{R}^n$ be any collection of vectors, and let $V \in \mathbb{R}^{n \times k}$ be the matrix whose columns are these vectors:

$$oldsymbol{V} = \left(egin{array}{ccccc} ert & ert & ert & ert \ oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \ ert & ert & ert & ert \end{array}
ight)$$

Let S be some given vector subspace.

The vectors form a **basis** for S if the span of these vectors is S and they are linearly independent.

In math: these vectors are a basis for S if

 $\forall \boldsymbol{w} \in S, \exists ! \boldsymbol{c} \in \mathbb{R}^k \text{ such that } \boldsymbol{V} \boldsymbol{c} = \boldsymbol{w}.$

(If c did not exist, the vectors wouldn't span S. If c weren't unique, then there would exist a nontrivial solution to Vd = 0.)

A basis for ${\cal S}$ is not unique, but the size of a basis for ${\cal S}$ is unique.

This unique size of a basis for S is its **dimension**, dim S.

If S contains m-dimensional vectors, then $\dim S \leq m$.

Linear equations

D06-S14(a)

One particularly important application of linear algebra is as the theoretical and practical underpinning for solving linear equations for an unknown vector $\boldsymbol{x} \in \mathbb{R}^{n}$:

$$oldsymbol{A} oldsymbol{x} = oldsymbol{b}, \qquad oldsymbol{A} = \left(egin{array}{cccc} ert & ert & ert \ oldsymbol{a}_1 & oldsymbol{a}_2 & \cdots & oldsymbol{a}_n \ ert & ert & ert & ert \end{array}
ight) \in \mathbb{R}^{m imes n}, \qquad oldsymbol{b} \in \mathbb{R}^m.$$

To characterize solutions to such linear equations, consider the range or "column space" of A, which is a subspace:

 $\operatorname{range}(\mathbf{A}) \coloneqq \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\} \implies n \ge \operatorname{dim} \operatorname{range}(\mathbf{A})$

Linear equations

D06-S14(b)

One particularly important application of linear algebra is as the theoretical and practical underpinning for solving linear equations for an unknown vector $\boldsymbol{x} \in \mathbb{R}^{n}$:

$$Ax = b,$$
 $A = \begin{pmatrix} | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | \end{pmatrix} \in \mathbb{R}^{m \times n},$ $b \in \mathbb{R}^m.$

To characterize solutions to such linear equations, consider the range or "column space" of A, which is a subspace:

$$\operatorname{range}(\mathbf{A}) \coloneqq \operatorname{span}\{\mathbf{a}_1, \ldots, \mathbf{a}_n\} \implies n \ge \operatorname{dim} \operatorname{range}(\mathbf{A})$$

We can make very strong characterizations about solutions to linear systems:

- 1. If $b \notin \operatorname{range}(A)$, then there is no solution x.
- If b∈ range(A) and n > dim range(A) then there are infinitely many solutions x, and the collection of these solutions form an affine space¹ of dimension (n dim range(A)).
- 3. If $b \in \operatorname{range}(A)$ and $n = \operatorname{dim range}(A)$, then there exists exactly one solution x.

¹An affine space is a subspace shifted by a fixed vector.

Linear equations

D06-S14(c)

One particularly important application of linear algebra is as the theoretical and practical underpinning for solving linear equations for an unknown vector $\boldsymbol{x} \in \mathbb{R}^{n}$:

$$Ax = b,$$
 $A = \begin{pmatrix} | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | \end{pmatrix} \in \mathbb{R}^{m \times n},$ $b \in \mathbb{R}^m.$

To characterize solutions to such linear equations, consider the range or "column space" of A, which is a subspace:

$$\operatorname{range}(\mathbf{A}) \coloneqq \operatorname{span}\{\mathbf{a}_1, \ldots, \mathbf{a}_n\} \implies n \ge \operatorname{dim} \operatorname{range}(\mathbf{A})$$

We can make very strong characterizations about solutions to linear systems:

- 1. If $b \notin \operatorname{range}(A)$, then there is no solution x.
- If b∈ range(A) and n > dim range(A) then there are infinitely many solutions x, and the collection of these solutions form an affine space¹ of dimension (n dim range(A)).
- 3. If $b \in \operatorname{range}(A)$ and $n = \dim \operatorname{range}(A)$, then there exists exactly one solution x.

NB: Situations 1 and 2 can happen for any relationship between n and m. Situation 3 can happen only if $m \ge n$. The canonical algorithm to compute solutions to linear equations is Gaussian elimination.

A. Narayan (U. Utah - Math/SCI)

¹An affine space is a subspace shifted by a fixed vector.

Portfolio paramerterizations

Example

Recall that portfolio weights satisfy,

 $\langle \boldsymbol{w}, \boldsymbol{1} \rangle = 1.$

Aw = b, $A = (1 \quad 1 \quad \cdots \quad 1) \in \mathbb{R}^{1 \times N},$

 $\boldsymbol{b} = 1 \in \mathbb{R}^1.$

This is equivalent to:

Portfolio paramerterizations

Example

Recall that portfolio weights satisfy,

 $\langle \boldsymbol{w}, \boldsymbol{1} \rangle = 1.$

This is equivalent to:

$$Aw = b,$$
 $A = \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix} \in \mathbb{R}^{1 \times N},$ $b = 1 \in \mathbb{R}^{1}$

In this case, the dimension of the range is $\dim \operatorname{range}(A) = 1$ (and clearly $b \in \operatorname{range}(A)$).

Hence, there are infinitely many valid portfolio weight vectors w, and they form an affine space of dimension $N - \dim \operatorname{range}(A) = N - 1$.

The matrix inverse

When m = n, consider the "square" linear system,

$$Ax = b,$$
 A, b given

There are some equivalent statements about a unique solution:

- There is a unique solution x.
- The rank of A, that is dim range(A), has maximal value n.
- The *determinant* of A does not vanish: det $A \neq 0$.
- The matrix A has an *inverse* A^{-1} , satisfying $AA^{-1} = A^{-1}A = I$.

The matrix inverse

When m = n, consider the "square" linear system,

$$Ax = b,$$
 A, b given

There are some equivalent statements about a unique solution:

- There is a unique solution x.
- The rank of A, that is dim range(A), has maximal value n.
- The *determinant* of A does not vanish: det $A \neq 0$.
- The matrix A has an *inverse* A^{-1} , satisfying $AA^{-1} = A^{-1}A = I$.

When any (hence all) of the above statements is true, then

 $oldsymbol{x} = oldsymbol{A}^{-1}oldsymbol{b}$

is the unique solution.

Orthogonal matrices

Matrix inverses are generally "hard" to compute (analytically or numerically).

There is one class of matrices for which matrix inversion is rather simple:

A matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if its columns are (pairwise) orthgonal and unit norm:

$$\boldsymbol{A} = \begin{pmatrix} | & | & | \\ \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_n \\ | & | & | \end{pmatrix}, \qquad \langle \boldsymbol{a}_j, \boldsymbol{a}_k \rangle = \delta_{j,k} \coloneqq \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$$

Orthogonal matrices

Matrix inverses are generally "hard" to compute (analytically or numerically).

There is one class of matrices for which matrix inversion is rather simple:

A matrix $A \in \mathbb{R}^{n \times n}$ is **orthogonal** if its columns are (pairwise) orthgonal and unit norm:

$$\boldsymbol{A} = \begin{pmatrix} \begin{vmatrix} & & & & \\ \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_n \\ & & & \\ \end{vmatrix}, \qquad \langle \boldsymbol{a}_j, \boldsymbol{a}_k \rangle = \delta_{j,k} \coloneqq \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$$

A straightforward computation using matrix multiplication reveals:

$$\boldsymbol{A}$$
 orthogonal $\implies \boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{I} \implies \boldsymbol{A}^{-1} = \boldsymbol{A}^T.$

Hence, orthogonality is a particularly useful practical property. (And A orthogonal implies $A^{-1} = A^T$ is also orthogonal.)

Orthogonal matrices

Matrix inverses are generally "hard" to compute (analytically or numerically).

There is one class of matrices for which matrix inversion is rather simple:

A matrix $A \in \mathbb{R}^{n \times n}$ is **orthogonal** if its columns are (pairwise) orthgonal and unit norm:

$$\boldsymbol{A} = \begin{pmatrix} \begin{vmatrix} & & & & \\ \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_n \\ & & & \\ \end{vmatrix}, \qquad \langle \boldsymbol{a}_j, \boldsymbol{a}_k \rangle = \delta_{j,k} \coloneqq \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$$

A straightforward computation using matrix multiplication reveals:

$$\boldsymbol{A}$$
 orthogonal $\implies \boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{I} \implies \boldsymbol{A}^{-1} = \boldsymbol{A}^T.$

Hence, orthogonality is a particularly useful practical property. (And A orthogonal implies $A^{-1} = A^T$ is also orthogonal.)

Another useful property of orthogonal matrices: they correspond to *isometric* maps.

In particular, if A is orthogonal:

$$\langle Av, Aw \rangle = v^T A^T Aw = v^T Iw = v^T w = \langle v, w \rangle.$$

I.e., the transformation $v \mapsto Av$ preserves angles and lengths. Orthogonal matrices are simple rotations and/or reflections.

A. Narayan (U. Utah - Math/SCI)

Eigenvalues

For square matrices $A \in \mathbb{R}^{n \times n}$, an important concept is that of the *spectrum* of A.

If there exists any (possibly complex-valued) scaled λ , and any <u>non-zero</u> vector v (possibly complex-valued) such that,

 $Av = \lambda v$,

then

- λ is called an *eigenvalue* of $oldsymbol{A}$
- -v is called an *eigenvector* of A.

Eigenvalues

For square matrices $A \in \mathbb{R}^{n \times n}$, an important concept is that of the *spectrum* of A.

If there exists any (possibly complex-valued) scaled λ , and any <u>non-zero</u> vector v (possibly complex-valued) such that,

$$Av = \lambda v$$
,

then

- λ is called an *eigenvalue* of $oldsymbol{A}$
- -v is called an *eigenvector* of A.

Fixing λ , note that the condition for being an eigenvector is invariant under addition of vectors and scalar multiplication: The set of eigenvectors associated to an eigenvalue λ is a subspace.

Eigenvalues

For square matrices $A \in \mathbb{R}^{n \times n}$, an important concept is that of the *spectrum* of A.

If there exists any (possibly complex-valued) scaled λ , and any <u>non-zero</u> vector v (possibly complex-valued) such that,

$$Av = \lambda v$$
,

then

- λ is called an *eigenvalue* of **A**
- -v is called an *eigenvector* of A.

Fixing λ , note that the condition for being an eigenvector is invariant under addition of vectors and scalar multiplication: The set of eigenvectors associated to an eigenvalue λ is a subspace.

Eigenvalues λ satisfy the characteristic equation:

 $\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0,$

so that eigenvalues are roots of a degree-n polynomial.

Matrix diagonalization

```
D06-S19(a)
```

Every $n \times n$ matrix has exactly n eigenvalues (possibly repeated according to roots of the characteristic equation).

Matrix diagonalization

D06-S19(b)

Every $n \times n$ matrix has exactly n eigenvalues (possibly repeated according to roots of the characteristic equation). For each eigenvalue (counting multiplicity), there *may* be an eigenvector that is linearly independent from all others. Matrices for which each eigenvalue has a corresponding linearly independent eigenvector are called *diagonalizable*. If A is diagonalizable, then the following decomposition holds.

$$\boldsymbol{A} = \boldsymbol{V}\boldsymbol{\Lambda}\boldsymbol{V}^{-1}, \qquad \qquad \boldsymbol{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \qquad \qquad \boldsymbol{V} = \left(\begin{array}{cccc} | & | & & | \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \\ | & | & & | \end{array}\right),$$

where $(\lambda_j, \boldsymbol{v}_j)$ are eigenvalue-eigenvector pairs for $j = 1, \ldots, n$.

A particularly nice property about diagonalizable matrices is that the eigenvectors span \mathbb{R}^n (possibly using complex scalar multiplication).

The upshot: if A is diagonalizable, then there is a linear transformation (defined by V) such that multiplication by A corresponds to a simple diagonal scaling:

$$w = Ax$$
 $\xrightarrow{y=V^{-1}x, z=V^{-1}w}$ $z = \Lambda y.$

Hence diagonalizations are very useful.

Orthogonal diagonalization

D06-S20(a)

Diagonalizable matrices are diagonal under some transformation defined by V^{-1} . But V^{-1} can be painful to compute.

Some matrices are *orthogonally* diagonalizable, meaning that V is an orthogonal matrix, and hence V^{-1} is "easy" to compute.

Orthogonal diagonalization

D06-S20(b)

Diagonalizable matrices are diagonal under some transformation defined by V^{-1} . But V^{-1} can be painful to compute.

Some matrices are *orthogonally* diagonalizable, meaning that V is an orthogonal matrix, and hence V^{-1} is "easy" to compute.

One of the major results of linear algebra is the following identification of one class of orthogonal matrices:

Theorem (Spectral theorem for symmetric matrices)
Assume $A \in \mathbb{R}^{n \times n}$ satisfies $A = A^T$. (Such matrices are called <u>symmetric</u> .)
Then:
– All eigenvalues of A are real-valued.
- A is orthogonally diagonalizable. (The eigenvectors can be chosen as orthogonal vectors.)

Orthogonal diagonalization

D06-S20(c)

Diagonalizable matrices are diagonal under some transformation defined by V^{-1} . But V^{-1} can be painful to compute.

Some matrices are *orthogonally* diagonalizable, meaning that V is an orthogonal matrix, and hence V^{-1} is "easy" to compute.

One of the major results of linear algebra is the following identification of one class of orthogonal matrices:

Theorem (Spectral theorem for symmetric matrices)
Assume $A \in \mathbb{R}^{n \times n}$ satisfies $A = A^T$. (Such matrices are called <u>symmetric</u> .)
Then:
- All eigenvalues of A are real-valued.
 A is orthogonally diagonalizable. (The eigenvectors can be chosen as orthogonal vectors.)

l.e.,

$$A = A^T \implies A = V \Lambda V^T.$$

Quadratic forms

Since symmetric matrices have real-valued eigenvalues, then one can make sensible definitions about where the eigenvalues lie on \mathbb{R} .

In particular, the following are well-defined for λ_i the eigenvalues of an $n \times n$ symmetric matrix:

- $\lambda_{\min} = \min_{j=1,\dots,n} \lambda_j$
- $-\lambda_{\max} = \max_{j=1,\dots,n} \lambda_j$

Equality above occurs iff x is a multiple of the eigenvalue corresponding to the minimum/maximum eigenvalue of A.

Quadratic forms

Since symmetric matrices have real-valued eigenvalues, then one can make sensible definitions about where the eigenvalues lie on \mathbb{R} .

In particular, the following are well-defined for λ_i the eigenvalues of an $n \times n$ symmetric matrix:

- $\lambda_{\min} = \min_{j=1,\dots,n} \lambda_j$
- $-\lambda_{\max} = \max_{j=1,\dots,n} \lambda_j$

Equality above occurs iff x is a multiple of the eigenvalue corresponding to the minimum/maximum eigenvalue of A.

The spectral theorem also implies the following extremely useful inequality: if $m{A}$ is symmetric, then,

$$\lambda_{\min} \|\boldsymbol{x}\|^2 \leq \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} \leq \lambda_{\max} \|\boldsymbol{x}\|^2.$$

(The function $f(x) = x^T A x$ is an example of a *quadratic form*.)

Two final definitions are sub-classes of symmetric matrices:

- If A is symmetric and all its eigenvalues are strictly positive, then A is (symmetric) positive definite.
- If A is symmetric and all its eigenvalues are non-negative, then A is (symmetric) positive semidefinite.

One can equivalently define these matrix classes through their quadratic forms.

In particular, A is symmetric positive semi-definite iff $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$.

Differential equations govern how quantities change in time.

One class of general ordinary differential equations (DE) governing the unknown function y(t) where t is a scalar (i.e., time) is,

$$F(t, y, y', y'', y''', \ldots) = 0, \qquad y(0) = y_0, \qquad y'(0) = y'_0 \qquad \cdots$$

This is an **initial value problem**. The maximum derivative appearing in F is called the *order* of the equation.

Differential equations govern how quantities change in time.

One class of general ordinary differential equations (DE) governing the unknown function y(t) where t is a scalar (i.e., time) is,

$$F(t, y, y', y'', y''', \ldots) = 0, \qquad y(0) = y_0, \qquad y'(0) = y'_0 \qquad \cdots$$

This is an **initial value problem**. The maximum derivative appearing in F is called the *order* of the equation.

Understanding the theory (solvability, well-posedness) of these problems is generally quite difficult, but *linear* equations are quite flexible for modeling and are rather well-understood.

Linear DE's are those where y, y', etc., collectively appear in F in a *linear* fashion.

Linear first-order equations

The initial value problem,

$$y'(t) = 3y,$$
 $y(0) = 4,$

is, with some experience, rather transparent to solve:

$$y(t) = 4e^{3t}$$

Linear first-order equations

The initial value problem,

$$y'(t) = 3y,$$
 $y(0) = 4,$

is, with some experience, rather transparent to solve:

$$y(t) = 4e^{3t}.$$

The general solution of a first-order "constant-coefficient" linear equation can be determined in a similar fashion:

$$y' + \lambda y = f(t), \qquad \qquad y(0) = y_0,$$

has the unique solution

$$y(t) = y_0 e^{-\lambda t} + e^{-\lambda t} \int_0^t f(s) e^{\lambda s} ds$$

D06-S25(a)

Example

Consider an annuity (say a loan) with interest continuously compounded at (annual) rate r.

Suppose we also consider a repayment cycle that is *continuous* instead of periodic. I.e., we pay money at a (continuous) rate of P dollars (per year).

D06-S25(b)

Example

Consider an annuity (say a loan) with interest continuously compounded at (annual) rate r.

Suppose we also consider a repayment cycle that is *continuous* instead of periodic. I.e., we pay money at a (continuous) rate of P dollars (per year).

The equation modeling the time-t present value V(t) of this annuity is given by,

$$V'(t) = rV(t) - P,$$
 $V(0) = V_0,$

where V_0 is the loan principal (annuity present value at time 0).

Example

Consider an annuity (say a loan) with interest continuously compounded at (annual) rate r.

Suppose we also consider a repayment cycle that is *continuous* instead of periodic. I.e., we pay money at a (continuous) rate of P dollars (per year).

The equation modeling the time-t present value V(t) of this annuity is given by,

$$V'(t) = rV(t) - P,$$
 $V(0) = V_0,$

where V_0 is the loan principal (annuity present value at time 0).

The solution to this equation is given by,

$$V(t) = V_0 e^{rt} - e^{rt} \int_0^t P e^{-rs} \mathrm{d}s$$
$$= V_0 e^{rt} + \frac{P}{r} \left[1 - e^{rt} \right]$$

D06-S25(c)

D06-S25(d)

Example

Consider an annuity (say a loan) with interest continuously compounded at (annual) rate r.

Suppose we also consider a repayment cycle that is *continuous* instead of periodic. I.e., we pay money at a (continuous) rate of P dollars (per year).

The equation modeling the time-t present value V(t) of this annuity is given by,

$$V'(t) = rV(t) - P,$$
 $V(0) = V_0,$

where V_0 is the loan principal (annuity present value at time 0).

The solution to this equation is given by,

$$V(t) = V_0 e^{rt} - e^{rt} \int_0^t P e^{-rs} \mathrm{d}s$$
$$= V_0 e^{rt} + \frac{P}{r} \left[1 - e^{rt} \right]$$

Note in particular that this implies $V_0 < P/r$ is required in order for the loan to eventually be repaid.

Systems of linear equations

D06-S26(a)

The rather interesting part of this comes with systems of linear constant-coefficient differential equations:

$$\boldsymbol{y}'(t) = \boldsymbol{A}\boldsymbol{y}, \qquad \qquad \boldsymbol{y}(0) = \boldsymbol{y}_0,$$

where $y(t) = (y_1(t), y_2(t), \dots, y_n(t))^T$.

Systems of linear equations

The rather interesting part of this comes with systems of linear constant-coefficient differential equations:

$$\label{eq:constraint} \boldsymbol{y}'(t) = \boldsymbol{A} \boldsymbol{y}, \qquad \qquad \boldsymbol{y}(0) = \boldsymbol{y}_0,$$

where $y(t) = (y_1(t), y_2(t), \dots, y_n(t))^T$.

If $m{A}$ is diagonalizable, $m{A} = m{V} m{\Lambda} m{V}^{-1}$, then this system is the same as

$$oldsymbol{z}'(t) = oldsymbol{\Lambda} oldsymbol{z}, \qquad oldsymbol{z}(0) = oldsymbol{V}^{-1} oldsymbol{y}_0,$$

where $\boldsymbol{z}(t) := \boldsymbol{V}^{-1} \boldsymbol{y}(t)$, and easily solvable:

$$oldsymbol{z}(t) = e^{oldsymbol{\Lambda} t}oldsymbol{V}^{-1}oldsymbol{y}_0 \quad \Longrightarrow \quad oldsymbol{y}(t) = oldsymbol{V}e^{oldsymbol{\Lambda} t}oldsymbol{V}^{-1}oldsymbol{y}_0.$$

Above, $e^{\mathbf{\Lambda}t} = (e^{\lambda_1 t}, e^{\lambda_2 t}, \dots, e^{\lambda_n t})^T$.

(If A is orthogonally diagonalizable, this is computationally even easier.)

References I