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Our status in the course D07-S02(a)

We’ve discussed the basics of finance and investing – concepts of interest and present value.

A more advanced understanding of pricing and policies requires some math:
– linear algebra
– differential equations
– probability

These topics are prerequisites for this course!
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Events D07-S03(a)

Probability is a language about potential outcomes; these potential outcomes are called events.

A foundational concept is the event space, which is the set of all possible outcomes.

Example
I roll a 6-sided fair die. The possible events are:

– Face 1 is on top

–
...

– Face 6 is on top
Note that the numbers 1 through 6 are not the events.

Another example: I play paper-rock-scissors, and I’m concerned with which object I play (ignoring my opponent).
The possible events are:

– I play paper
– I play scissors
– I play rock
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Events D07-S03(b)

Probability is a language about potential outcomes; these potential outcomes are called events.

A foundational concept is the event space, which is the set of all possible outcomes.

Example
I roll a 6-sided fair die. The possible events are:

– Face 1 is on top

–
...

– Face 6 is on top
Note that the numbers 1 through 6 are not the events.

Another example: I play paper-rock-scissors, and I’m concerned with which object I play (ignoring my opponent).
The possible events are:

– I play paper
– I play scissors
– I play rock
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Events D07-S03(c)

Probability is a language about potential outcomes; these potential outcomes are called events.

A foundational concept is the event space, which is the set of all possible outcomes.

Example
I roll a 6-sided fair die. The possible events are:

– Face 1 is on top

–
...

– Face 6 is on top
Note that the numbers 1 through 6 are not the events.

Another example: I play paper-rock-scissors, and I’m concerned with which object I play (ignoring my opponent).
The possible events are:

– I play paper
– I play scissors
– I play rock
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Random variables D07-S04(a)
We typically deal with numeric values assigned to events. These assignments are called random variables.1

Typically, the assignment of events to numerical values is somewhat straightforward.

Example
I roll a 6-sided fair die. It’s quite sensible for me to define a random variable X to denote the label of the side that
comes up:

Face 3 is on toplooooooooomooooooooon
event

›Ñ X “ 3loomoon
Random variable assignment

The set of possible values of the random variable (here X) is t1, 2, 3, 4, 5, 6u.

Second example: I play paper-rock-scissors. Here is one random variable definition:

I play paper ›Ñ Y “ 1

I play scissors ›Ñ Y “ 2

I play rock ›Ñ Y “ 3.

But Z “ 4 ´ Y is a perfectly acceptable, alternative encoding of outcomes. Both Y and Z are sensible random
variables, and there is no reason to prefer one to another without further context.

1More abstractly, random variables are “well-defined” functions that map events to real numbers.
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Random variables D07-S04(b)
We typically deal with numeric values assigned to events. These assignments are called random variables.1

Typically, the assignment of events to numerical values is somewhat straightforward.

Example
I roll a 6-sided fair die. It’s quite sensible for me to define a random variable X to denote the label of the side that
comes up:

Face 3 is on toplooooooooomooooooooon
event

›Ñ X “ 3loomoon
Random variable assignment

The set of possible values of the random variable (here X) is t1, 2, 3, 4, 5, 6u.

Second example: I play paper-rock-scissors. Here is one random variable definition:

I play paper ›Ñ Y “ 1

I play scissors ›Ñ Y “ 2

I play rock ›Ñ Y “ 3.

But Z “ 4 ´ Y is a perfectly acceptable, alternative encoding of outcomes. Both Y and Z are sensible random
variables, and there is no reason to prefer one to another without further context.

1More abstractly, random variables are “well-defined” functions that map events to real numbers.
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Random variables D07-S04(c)
We typically deal with numeric values assigned to events. These assignments are called random variables.1

Typically, the assignment of events to numerical values is somewhat straightforward.

Example
I roll a 6-sided fair die. It’s quite sensible for me to define a random variable X to denote the label of the side that
comes up:

Face 3 is on toplooooooooomooooooooon
event

›Ñ X “ 3loomoon
Random variable assignment

The set of possible values of the random variable (here X) is t1, 2, 3, 4, 5, 6u.

Second example: I play paper-rock-scissors. Here is one random variable definition:

I play paper ›Ñ Y “ 1

I play scissors ›Ñ Y “ 2

I play rock ›Ñ Y “ 3.

But Z “ 4 ´ Y is a perfectly acceptable, alternative encoding of outcomes. Both Y and Z are sensible random
variables, and there is no reason to prefer one to another without further context.

1More abstractly, random variables are “well-defined” functions that map events to real numbers.
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Probability distributions D07-S05(a)
The final ingredient we require is a distribution on outcomes, that is a definition of likelihood that certain events
happen.

We call these likelihoods probabilities, and they are always non-negative numbers between 0 and 1, and the sum of
probabilities over all outcomes is always 1.

The probability of an event is typically denoted P peventq or Prpeventq.

Example
I roll a 6-sided fair die, and assign the following distribution on outcomes:

P pFace 1 is on topq “ 1

6
, ¨ ¨ ¨ P pFace 6 is on topq “ 1

6
.

Probabilities could be defined only on “coarser” events: I roll a 6-sided die (not necessarily fair), which has the
following distribution:

P pAn even-number-labeled face is on topq “ 1

2
,

P pAn odd-number-labeled face is on topq “ 1

2
.

Note that none of this is directly related to random variables! These are purely properties on the space of outcomes.
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Probability distributions D07-S05(b)
The final ingredient we require is a distribution on outcomes, that is a definition of likelihood that certain events
happen.

We call these likelihoods probabilities, and they are always non-negative numbers between 0 and 1, and the sum of
probabilities over all outcomes is always 1.

The probability of an event is typically denoted P peventq or Prpeventq.

Example
I roll a 6-sided fair die, and assign the following distribution on outcomes:

P pFace 1 is on topq “ 1

6
, ¨ ¨ ¨ P pFace 6 is on topq “ 1

6
.

Probabilities could be defined only on “coarser” events: I roll a 6-sided die (not necessarily fair), which has the
following distribution:

P pAn even-number-labeled face is on topq “ 1

2
,

P pAn odd-number-labeled face is on topq “ 1

2
.

Note that none of this is directly related to random variables! These are purely properties on the space of outcomes.
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Probability distributions D07-S05(c)
The final ingredient we require is a distribution on outcomes, that is a definition of likelihood that certain events
happen.

We call these likelihoods probabilities, and they are always non-negative numbers between 0 and 1, and the sum of
probabilities over all outcomes is always 1.

The probability of an event is typically denoted P peventq or Prpeventq.

Example
I roll a 6-sided fair die, and assign the following distribution on outcomes:

P pFace 1 is on topq “ 1

6
, ¨ ¨ ¨ P pFace 6 is on topq “ 1

6
.

Probabilities could be defined only on “coarser” events: I roll a 6-sided die (not necessarily fair), which has the
following distribution:

P pAn even-number-labeled face is on topq “ 1

2
,

P pAn odd-number-labeled face is on topq “ 1

2
.

Note that none of this is directly related to random variables! These are purely properties on the space of outcomes.
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Probability mass functions D07-S06(a)
The examples we’ve seen are examples where the random variable takes on a discrete (in particular finite) number of
values.

For such discrete random variables, a standard practice is to translate probabilities on outcomes into probabilities on
variable values:

pXpxq :“ P pX “ xq .
pX is called the (probability) mass function for X, and maps elements from the set of values of X to the set of
numbers r0, 1s.

In particular mass functions have some intuitive properties:
– pXpxq “ 0 implies that X “ x happens with zero probability.
– The value of pXpxq is a direct measure of how probable the outcome X “ x is.
–

∞
x pXpxq “ 1

– pXpxq • 0

0 1 2 3 4

0.1

0.2

0.3

0.4

x

p X
px

q

An example mass function for X

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Review: Probability



Probability mass functions D07-S06(b)
The examples we’ve seen are examples where the random variable takes on a discrete (in particular finite) number of
values.

For such discrete random variables, a standard practice is to translate probabilities on outcomes into probabilities on
variable values:

pXpxq :“ P pX “ xq .
pX is called the (probability) mass function for X, and maps elements from the set of values of X to the set of
numbers r0, 1s.

In particular mass functions have some intuitive properties:
– pXpxq “ 0 implies that X “ x happens with zero probability.
– The value of pXpxq is a direct measure of how probable the outcome X “ x is.
–

∞
x pXpxq “ 1

– pXpxq • 0

0 1 2 3 4

0.1

0.2

0.3

0.4

x

p X
px

q

An example mass function for X
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Distribution functions D07-S07(a)
A less obviously useful function is the (cumulative) distribution function of X, defined as,

FXpxq :“ P pX § xq “
ÿ

y§x

pXpyq.

This measures the (cumulative) probability that X takes on values x or smaller.

This function is monotone non-decreasing, limiting to value 0 as x Ñ ´8 and to value 1 as x Ñ `8.

0 1 2 3 4

0.2

0.4

0.6

0.8

x

F
X

px
q

An example distribution function for X
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Statistics, I D07-S08(a)

With an understanding of the likelihood of outcomes for a random variable X, we can compute averages.

The fundamental operator in this sphere is the expectation operator , acting on a random quantity. This quantity
can be an arbitrary well-defined function of a given random variable X:

gpXq :“
ÿ

x

gpxqpXpxq.

Intuitively: pXpxq are convex weights, and hence gpXq is a convex combination (“average”) of realizations of g.

We will mostly be concerned with first- and second-order statistics, corresponding to specific choices for g:

gpxq “ x ›Ñ X “
ÿ

x

xpXpxq (The mean of X)

gpxq “ px ´ Xq2 ›Ñ pX ´ Xq2 “
ÿ

x

px ´ Xq2pXpxq (The variance of X)

The mean provides average behavior of X; the variance provides a (coarse) measure of the “spread” of X.
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Statistics, I D07-S08(b)

With an understanding of the likelihood of outcomes for a random variable X, we can compute averages.

The fundamental operator in this sphere is the expectation operator , acting on a random quantity. This quantity
can be an arbitrary well-defined function of a given random variable X:

gpXq :“
ÿ

x

gpxqpXpxq.

Intuitively: pXpxq are convex weights, and hence gpXq is a convex combination (“average”) of realizations of g.

We will mostly be concerned with first- and second-order statistics, corresponding to specific choices for g:

gpxq “ x ›Ñ X “
ÿ

x

xpXpxq (The mean of X)

gpxq “ px ´ Xq2 ›Ñ pX ´ Xq2 “
ÿ

x

px ´ Xq2pXpxq (The variance of X)

The mean provides average behavior of X; the variance provides a (coarse) measure of the “spread” of X.
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Statistics, II D07-S09(a)

Some terminology and notation:
– If we choose gpxq “ xn, then gpXq is typically called the nth (uncentered) moment of X.
– If we choose gpxq “ px ´ Xqn, then gpXq is typically called the nth centered moment of X.
– The variance of a random variable is often denoted VarX :“ pX ´ Xq2 • 0.
– The standard deviation of X is defined as

?
VarX.

There are some properties of these statistics that are reasonably straightforward to show:
– The expectation operator is linear : if X and Y are any two random variables, then

paX ` bY q “ a X ` b Y, a, b P

– The variance operator is invariant to deterministic shifts, and scales quadratically with scaling:

VarpX ` aq “ VarX, VarpaXq “ |a|2VarX.

– The variance of a random variable satisfies:

VarX “ X2 ´ p Xq2.
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Statistics, II D07-S09(b)

Some terminology and notation:
– If we choose gpxq “ xn, then gpXq is typically called the nth (uncentered) moment of X.
– If we choose gpxq “ px ´ Xqn, then gpXq is typically called the nth centered moment of X.
– The variance of a random variable is often denoted VarX :“ pX ´ Xq2 • 0.
– The standard deviation of X is defined as

?
VarX.

There are some properties of these statistics that are reasonably straightforward to show:
– The expectation operator is linear : if X and Y are any two random variables, then

paX ` bY q “ a X ` b Y, a, b P

– The variance operator is invariant to deterministic shifts, and scales quadratically with scaling:

VarpX ` aq “ VarX, VarpaXq “ |a|2VarX.

– The variance of a random variable satisfies:

VarX “ X2 ´ p Xq2.
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Continuous random variables D07-S10(a)
Most of the story is the same if a random variable X is continuously distributed.

The main difference is that mass functions don’t exist/make sense anymore.
E.g., if X is uniformly distributed on r0, 1s, then

P pX “ aq “ 0, a P r0, 1s,

hence the mass function would be zero.

We “fix” this problem by defining (probability) density functions:

P pX P ra, bsq :“
ª b

a
fXpxqdx, a § b.

These types of random variables also have distribution functions:

P pX § xq “
ª x

´8
fXpxqdx.

Density functions are not quite as transparent as mass functions:
– The value fXpxq does not provide information about the probability that X “ x.
– While

≥8
´8 fXpxqdx “ 1 and fXpxq • 0, the actual values of fXpxq can be arbitrarily large numbers.
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Continuous random variables D07-S10(b)
Most of the story is the same if a random variable X is continuously distributed.

The main difference is that mass functions don’t exist/make sense anymore.
E.g., if X is uniformly distributed on r0, 1s, then

P pX “ aq “ 0, a P r0, 1s,

hence the mass function would be zero.

We “fix” this problem by defining (probability) density functions:

P pX P ra, bsq :“
ª b

a
fXpxqdx, a § b.

These types of random variables also have distribution functions:

P pX § xq “
ª x

´8
fXpxqdx.

Density functions are not quite as transparent as mass functions:
– The value fXpxq does not provide information about the probability that X “ x.
– While

≥8
´8 fXpxqdx “ 1 and fXpxq • 0, the actual values of fXpxq can be arbitrarily large numbers.
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Continuous random variables D07-S10(c)
Most of the story is the same if a random variable X is continuously distributed.

The main difference is that mass functions don’t exist/make sense anymore.
E.g., if X is uniformly distributed on r0, 1s, then

P pX “ aq “ 0, a P r0, 1s,

hence the mass function would be zero.

We “fix” this problem by defining (probability) density functions:

P pX P ra, bsq :“
ª b

a
fXpxqdx, a § b.

These types of random variables also have distribution functions:

P pX § xq “
ª x

´8
fXpxqdx.

Density functions are not quite as transparent as mass functions:
– The value fXpxq does not provide information about the probability that X “ x.
– While

≥8
´8 fXpxqdx “ 1 and fXpxq • 0, the actual values of fXpxq can be arbitrarily large numbers.
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Continuous random variable statistics D07-S11(a)

Statistics for continuous random variables is defined essentially the same as for the discrete case.

To see this, we need only define expectation appropriately:

gpXq “
ª 8

´8
gpxqfXpxqdx

All the definitions and properties of statistics we’ve seen before are the same.
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Conditional probabilities D07-S12(a)

Conditional probabilities are ways of narrowing the set of events by specifying a condition.

Probabilities must also be renormalized appropriately. Given events A and B, then

P pA|Bq :“ P pAì
Bq

P pBq .

I.e., the probability of A conditioned on B is the probability of both A and B happening, normalized by the
probability that B happens.

Example
I roll a 6-sided fair die.

P pFace 4 is on topq “ 1

6

P pFace 4 is on top | The top face is evenq “ P pFace 4 is on top and evenq
P pThe top face is evenq

“
1
6
1
2

“ 1

3
.
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Conditional probabilities D07-S12(b)

Conditional probabilities are ways of narrowing the set of events by specifying a condition.

Probabilities must also be renormalized appropriately. Given events A and B, then

P pA|Bq :“ P pAì
Bq

P pBq .

I.e., the probability of A conditioned on B is the probability of both A and B happening, normalized by the
probability that B happens.

Example
I roll a 6-sided fair die.

P pFace 4 is on topq “ 1

6

P pFace 4 is on top | The top face is evenq “ P pFace 4 is on top and evenq
P pThe top face is evenq

“
1
6
1
2

“ 1

3
.
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Conditional expectations D07-S13(a)

Conditional probabilities are (actual) probabilities. E.g., consider a discrete RV X and an event A:

pX|Apxq :“ P pX “ x
ˇ̌
Aq P r0, 1s

ÿ

x

pX|Apxq “
ÿ

x

P ppX “ xq
ˇ̌
Aq “

∞
x P pX “ x

ì
Aq

P pAq “ P pAq
P pAq “ 1.

Hence, one can define a conditional expectation operator:

rgpXq | As “
ÿ

x

gpXqpX|Apxq.

With this, one can define conditional means, variances, etc.
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Conditional expectations D07-S13(b)

Conditional probabilities are (actual) probabilities. E.g., consider a discrete RV X and an event A:

pX|Apxq :“ P pX “ x
ˇ̌
Aq P r0, 1s

ÿ

x

pX|Apxq “
ÿ

x

P ppX “ xq
ˇ̌
Aq “

∞
x P pX “ x

ì
Aq

P pAq “ P pAq
P pAq “ 1.

Hence, one can define a conditional expectation operator:

rgpXq | As “
ÿ

x

gpXqpX|Apxq.

With this, one can define conditional means, variances, etc.
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Random vectors D07-S14(a)

Everything we’ve discussed essentially generalizes appropriately to vector-valued random variables:

X “ `
X1 X2 ¨ ¨ ¨ Xn

˘T P n

E.g., if X is discrete, then its mass function pX is a function defined on n-dimensional vectors:

pXpxq “ P pX “ xq “ P
´

pX1 “ x1q
£

pX2 “ x2q
£

¨ ¨ ¨
£

pXn “ xnq
¯
.

Hence, the expectation operator is defined in exactly the same manner:

gpXq “
ÿ

x

gpxqpXpxq,

so that the (vector-valued) mean is well-defined:

X “
ÿ

x

xpXpxq P n.
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Random vectors D07-S14(b)

Everything we’ve discussed essentially generalizes appropriately to vector-valued random variables:

X “ `
X1 X2 ¨ ¨ ¨ Xn

˘T P n

E.g., if X is discrete, then its mass function pX is a function defined on n-dimensional vectors:

pXpxq “ P pX “ xq “ P
´

pX1 “ x1q
£

pX2 “ x2q
£

¨ ¨ ¨
£

pXn “ xnq
¯
.

Hence, the expectation operator is defined in exactly the same manner:

gpXq “
ÿ

x

gpxqpXpxq,

so that the (vector-valued) mean is well-defined:

X “
ÿ

x

xpXpxq P n.
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Covariances D07-S15(a)
There is a hiccup when it comes to second-order statistics of random vectors: which quadratic function should we
take the expectation of?

“All of them” is the somewhat unsatsifying answer.

First, the moment of the product of centered versions of Xi and Xj is the covariance of Xi and Xj :

CovpXi, Xjq :“ rpXi ´ XiqpXj ´ Xjqs .

Second, if X P n, then

XXT “

¨

˚̊
˚̋

X1X1 X1X2 ¨ ¨ ¨ X1Xn

X2X1 X2X2 ¨ ¨ ¨ X2Xn

...
. . .

...
XnX1 ¨ ¨ ¨ XnXn

˛

‹‹‹‚P nˆn,

is a matrix containing every quadratic combination of the components of X.

With this setup, the covariance matrix of X the matrix of covariances between components of X:

CovpXq :“
”
pX ´ XqpX ´ EXqT

ı
.
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Covariances D07-S15(b)
There is a hiccup when it comes to second-order statistics of random vectors: which quadratic function should we
take the expectation of?

“All of them” is the somewhat unsatsifying answer.

First, the moment of the product of centered versions of Xi and Xj is the covariance of Xi and Xj :

CovpXi, Xjq :“ rpXi ´ XiqpXj ´ Xjqs .

Second, if X P n, then

XXT “

¨

˚̊
˚̋

X1X1 X1X2 ¨ ¨ ¨ X1Xn

X2X1 X2X2 ¨ ¨ ¨ X2Xn

...
. . .

...
XnX1 ¨ ¨ ¨ XnXn

˛

‹‹‹‚P nˆn,

is a matrix containing every quadratic combination of the components of X.

With this setup, the covariance matrix of X the matrix of covariances between components of X:

CovpXq :“
”
pX ´ XqpX ´ EXqT

ı
.

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Review: Probability



Covariances D07-S15(c)
There is a hiccup when it comes to second-order statistics of random vectors: which quadratic function should we
take the expectation of?

“All of them” is the somewhat unsatsifying answer.

First, the moment of the product of centered versions of Xi and Xj is the covariance of Xi and Xj :

CovpXi, Xjq :“ rpXi ´ XiqpXj ´ Xjqs .

Second, if X P n, then

XXT “

¨

˚̊
˚̋

X1X1 X1X2 ¨ ¨ ¨ X1Xn

X2X1 X2X2 ¨ ¨ ¨ X2Xn

...
. . .

...
XnX1 ¨ ¨ ¨ XnXn

˛

‹‹‹‚P nˆn,

is a matrix containing every quadratic combination of the components of X.

With this setup, the covariance matrix of X the matrix of covariances between components of X:

CovpXq :“
”
pX ´ XqpX ´ EXqT

ı
.
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The covariance matrix D07-S16(a)

CovpXq :“
”
pX ´ XqpX ´ EXqT

ı
.

Some direct consequences:
1. CovpXq is symmetric
2. CovpXq is positive definite
3. For a deterministic a P n, Var xa,Xy “ aTCovpXqa.

Other properties:

The diagonal element pCovpXqqj,j equals VarXj .

The scaled off-diagonal entries are called (Pearson) correlation coefficients:

CorrpXi, Xjq :“ pCovpXqqi,ja
pVarXiqpVarXjq P r´1, 1s

Values “close” to `1 indicate that Xi and Xj are “correlated”.
Values “close” to ´1 indicate that Xi and Xj are “anti-correlated”.
A value of 0 indicates that Xi and Xj are “uncorrelated”.

Uncorrelated random variables are generally not independent: independence requires

P ppX P Sq
£

pY P T qq “ P pX P SqP pY P T q
for all sets S, T . If X and Y are independent they must be uncorrelated, but the reverse need not be true.
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The covariance matrix D07-S16(b)

CovpXq :“
”
pX ´ XqpX ´ EXqT

ı
.

Some direct consequences:
1. CovpXq is symmetric
2. CovpXq is positive definite
3. For a deterministic a P n, Var xa,Xy “ aTCovpXqa.

Other properties:

The diagonal element pCovpXqqj,j equals VarXj .

The scaled off-diagonal entries are called (Pearson) correlation coefficients:

CorrpXi, Xjq :“ pCovpXqqi,ja
pVarXiqpVarXjq P r´1, 1s

Values “close” to `1 indicate that Xi and Xj are “correlated”.
Values “close” to ´1 indicate that Xi and Xj are “anti-correlated”.
A value of 0 indicates that Xi and Xj are “uncorrelated”.

Uncorrelated random variables are generally not independent: independence requires

P ppX P Sq
£

pY P T qq “ P pX P SqP pY P T q
for all sets S, T . If X and Y are independent they must be uncorrelated, but the reverse need not be true.
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The covariance matrix D07-S16(c)

CovpXq :“
”
pX ´ XqpX ´ EXqT

ı
.

Some direct consequences:
1. CovpXq is symmetric
2. CovpXq is positive definite
3. For a deterministic a P n, Var xa,Xy “ aTCovpXqa.

Other properties:

The diagonal element pCovpXqqj,j equals VarXj .

The scaled off-diagonal entries are called (Pearson) correlation coefficients:

CorrpXi, Xjq :“ pCovpXqqi,ja
pVarXiqpVarXjq P r´1, 1s

Values “close” to `1 indicate that Xi and Xj are “correlated”.
Values “close” to ´1 indicate that Xi and Xj are “anti-correlated”.
A value of 0 indicates that Xi and Xj are “uncorrelated”.

Uncorrelated random variables are generally not independent: independence requires

P ppX P Sq
£

pY P T qq “ P pX P SqP pY P T q
for all sets S, T . If X and Y are independent they must be uncorrelated, but the reverse need not be true.
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Parametric distributions D07-S17(a)

Some examples of “important” probability distributions are:
– Discrete random variables

§ Bernoulli
§ discrete uniform
§ Binomial
§ Poisson

§
...

– Continuous random variables
§ Uniform
§ Beta
§ Gaussian
§ Exponential

§
...

We’ll discuss various canonical probability distributions throughout this course.
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Questions + comments D07-S18(a)

Suppose X and Y share the same mean and variance. Does X “ Y ?
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Questions + comments D07-S18(b)

Suppose X and Y share the same mean and variance, and CorrpX,Y q “ 1. Does X “ Y ?
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Questions + comments D07-S18(c)

Suppose X and Y are discrete RV’s with the same mass function, i.e., pXpmq “ pY pmq for all m. Does X “ Y ?
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Questions + comments D07-S18(d)

Let X be a random variable. Does X have either a mass function or a density function?
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Questions + comments D07-S18(e)

Suppose X “ µ and VarpXq “ �2. Then is X P rµ ´ �, µ ` �s say with some predictable probability?
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Questions + comments D07-S18(f)

Suppose we pick two stocks with the same price today. Tomorrow, we model these share prices as random variables
X and Y , with X “ Y and VarX † VarY .

Would you advise an investor to invest in stock X instead of stock Y ?
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References I D07-S19(a)
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