Math 5760/6890: Introduction to Mathematical Finance

2-Security Markowitz Efficient Frontier

See Petters and Dong [2016,](#page-22-0) Section 3.2

Akil Narayan¹

 1 Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

Fall 2024

A quick recap D09-S02(a)

For Markowitz 2-security portfolio optimization:

- $-$ Return rates R for the two securities are random variables
- Assume first- and second-order statistics of these are available: $\mu = \mathbb{E}R$ and $\text{Cov}(R)$
- The portfolio is defined by the weights *w*
- $-$ The expected return rate of the portfolio is $\mu_P = \langle \mu, w \rangle$
- $-$ The squared risk of the portfolio is $\sigma_P^2 = \text{Var}\,\langle \bm{R},\bm{w}\rangle = \bm{w}^T\text{Cov}(\bm{R})\bm{w}$

A quick recap $D09-S02(b)$

For Markowitz 2-security portfolio optimization:

- $-$ Return rates R for the two securities are random variables
- $-$ Assume first- and second-order statistics of these are available: $\mu = \mathbb{E}R$ and $\text{Cov}(R)$
- The portfolio is defined by the weights *w*
- $-$ The expected return rate of the portfolio is $\mu_P = \langle \mu, w \rangle$
- $-$ The squared risk of the portfolio is $\sigma_P^2 = \text{Var}\,\langle \bm{R},\bm{w}\rangle = \bm{w}^T\text{Cov}(\bm{R})\bm{w}$

We typically seek a risk-optimal portfolio for a given target mean μ_P :

```
\min_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{A} \boldsymbol{w} subject to \langle \boldsymbol{w}, \boldsymbol{1} \rangle = 1, and
                                                              \langle w, \mu \rangle = \mu_P.
```
 $\underline{A} = Cov(\underline{R})$

- We can formulate an optimization that minimizes risk at a given expected return rate.
- There is typically only one feasible portfolio, hence it's optimal.
- The resulting optimized risk can be *much* lower than the individual security risks.
- The optimal-risk portfolio is *not* necessarily efficient: there can be portfolios having the same risk but higher expected return!
- We can formulate an optimization that minimizes risk at a given expected return rate.
- There is typically only one feasible portfolio, hence it's optimal.
- The resulting optimized risk can be *much* lower than the individual security risks.
- The optimal-risk portfolio is *not* necessarily efficient: there can be portfolios having the same risk but higher expected return!

Today: efficient portfolios and the efficient "frontier".

Example

Consider the problem of constructing a (Markowitz) 2-security portfolio. The individual securities have expected return rates and covariance given by,

$$
\mathbb{E} \mathbf{R}(T) = \begin{pmatrix} 2 \\ 6 \end{pmatrix}, \qquad \qquad \text{Cov} \mathbf{R}(T) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}
$$

We've computed the risk-optimal portfolio as a function of μ_P :

$$
\boldsymbol{w} = \left(\begin{array}{c} \frac{6-\mu_P}{4} \\ \frac{\mu-2}{4} \end{array}\right) = \frac{1}{2}\left(\begin{array}{c} 3 \\ -1 \end{array}\right) + \frac{\mu_P}{4}\left(\begin{array}{c} -1 \\ 1 \end{array}\right)
$$

.

Example

Consider the problem of constructing a (Markowitz) 2-security portfolio. The individual securities have expected return rates and covariance given by,

$$
\mathbb{E} \mathbf{R}(T) = \begin{pmatrix} 2 \\ 6 \end{pmatrix}, \qquad \qquad \text{Cov} \mathbf{R}(T) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}
$$

We've computed the risk-optimal portfolio as a function of μ_P :

$$
\boldsymbol{w} = \begin{pmatrix} \frac{6-\mu_P}{4} \\ \frac{\mu-2}{4} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 \\ -1 \end{pmatrix} + \frac{\mu_P}{4} \begin{pmatrix} -1 \\ 1 \end{pmatrix}
$$

And we've used this to determine the optimal risk σ_P for a fixed μ_P :

$$
\sigma_P^2 = \frac{3}{8}\mu_P^2 - 3\mu_P + \frac{13}{2}
$$

.

Optimal portfolios D09-S05(a)

$$
\sigma_P^2 = \frac{3}{8}\mu_P^2 - 3\mu_P + \frac{13}{2}
$$

This relationship can be used to identify the set of all possible risk-optimal portfolios as a graph of valid (σ_P, μ_P) pairs.

 $\frac{d}{d\mu}=\frac{d}{d\mu}=\frac{d}{d\mu}$ => Efficient purth live are the "upper half" of the hyperbola Refficient portfolios $\begin{array}{c}\n\begin{array}{ccc}\n\text{the}\n\end{array} & \text{for the}\n\begin{array}{c}\n\text{for the}\n\end{array} \begin{array}{c}\n\text{for the}\n\end{array} \begin{array}{$ $\frac{1}{12}$

The particular aspects we've explored in the previous example are generic:

- The set of risk-optimal portfolios is defined by the graph of a hyperbola in the (σ_P, μ_P) plane.
- The upper half of this graph are efficient portfolios the *e*ffi*cient frontier*.

The particular aspects we've explored in the previous example are generic:

- $-$ The set of risk-optimal portfolios is defined by the graph of a hyperbola in the (σ_P, μ_P) plane.
- The upper half of this graph are efficient portfolios the *e*ffi*cient frontier*.
- There is a *global* risk-optimal portfolio, which corresponds to a particular expected return rate.
- In the (general) 2-security model, any feasible portfolio is risk-optimal.¹

¹This is not true if $\mu_1 = \mu_2$.

The general 2-security case $D09-S07(a)$

The previous aspects hold in the general 2-security case, assuming $\mu_1 = \mu_2$ and a positive-definite covariance.

Example

Consider the general 2-security setup:

$$
\boldsymbol{\mu} = \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right), \qquad \qquad \boldsymbol{A} = \mathrm{Cov}(\boldsymbol{R}),
$$

where A is positive-definite and $\mu_1 \neq \mu_2$. Show that risk-optimal portfolios are given by the locus of points (σ_P, μ_P) satisfying,

$$
\frac{\sigma_P^2}{a^2} - \frac{(\mu_P - \mu_G)^2}{b^2} = 1.
$$

where a, b, μ_G are explicit constants: μ_G is the expected return rate of the global risk-optimal portfolio.

Weight reefors are usique? $w_1 + w_2 = 1$ $\mu_1 w_1 + \mu_2 w_2 = \mu_1$

$$
\Rightarrow \underline{w} = \frac{1}{\mu_{2} - \mu_{1}} \left(\frac{\mu_{2} - \mu_{P}}{\mu_{P} - \mu_{1}} \right) = \underline{v_{0}} + \mu_{P} \underline{v_{1}}
$$
\n
$$
\underline{v_{0}} = \frac{1}{\mu_{2} - \mu_{1}} \left(\frac{\mu_{2}}{-\mu_{1}} \right)
$$
\n
$$
\underline{v_{1}} = \frac{1}{\mu_{2} - \mu_{1}} \left(\frac{-1}{1} \right)
$$

$$
\sigma_{p}^{2} = \underline{w}^{\dagger} \underline{A} \underline{w}
$$
\n
$$
= (\underline{v}_{0} + \underline{v}_{1}, \mu_{p})^{\dagger} \underline{A} (\underline{v}_{0} + \underline{v}_{1}, \mu_{p})
$$
\n
$$
= \mu_{p}^{2} (\underline{v}_{1}^{*} \underline{A} \underline{v}_{1}) + 2 \mu_{p} (\underline{v}_{1}^{*} \underline{A} \underline{v}_{0}) + \underline{v}_{0}^{*} \underline{A} \underline{v}_{0}
$$
\n
$$
\sigma_{p}^{2} = \underline{v}_{1}^{*} \underline{A} \underline{v}_{1} (\mu_{p}^{2} + \frac{2 \underline{v}_{1}^{*} \underline{A} \underline{v}_{0}}{\underline{v}_{1}^{*} \underline{A} \underline{v}_{1}} \mu_{p}) + \underline{v}_{0}^{*} \underline{A} \underline{v}_{0}
$$

$$
= \underline{v}_{1} f_{1} \underline{\psi}_{1} \left(\mu_{1}^{2} + \frac{2 \underline{v}_{1} f_{2} v_{0}}{\underline{v}_{1} f_{2} v_{1}} \mu_{1}^{2} + \left(\frac{\underline{v}_{1} f_{2} v_{0}}{\underline{v}_{1} f_{2} v_{1}} \right)^{2} \right) + \underline{v}_{1} f_{2} \underline{\psi}_{2} - \frac{\underline{v}_{1} f_{2} v_{1}}{\underline{v}_{1} f_{2} v_{1}}^{2}
$$
\n
$$
= \underline{v}_{1} f_{1} \underline{\psi}_{2} \left(\mu_{1} + \frac{\underline{v}_{1} f_{2} v_{0}}{\underline{v}_{1} f_{2} v_{1}} \right)^{2} + \underline{v}_{0}^{3} \underline{f}_{2} \underline{v}_{0} - \left(\frac{\underline{v}_{1} f_{2} v_{1}}{\underline{v}_{1} f_{2} v_{1}} \right)^{2}
$$

$$
\Rightarrow \frac{\sigma_{\rho}^{2}}{a^{2}} = \frac{(\mu_{\rho} - \mu_{\theta})^{2}}{b^{2}} = 1, \qquad \mu_{\theta} = \frac{-y^{2} \pm v_{\theta}}{y^{2} \pm y_{\theta}}
$$
\n
$$
a^{2} = \frac{v_{\theta}^{*} \pm v_{\theta}}{y^{2} \pm y_{\theta}} = \frac{(\mu_{\theta}^{2} \pm y_{\theta})^{2}}{y^{2} \pm y_{\theta}}
$$
\n
$$
b^{2} = \frac{a^{2}}{y^{2} \pm y_{\theta}}
$$
\n(20)

Pla risk-optimal portfilles. Me efforment frontier $M_{\hat{\sigma}}$ Cristfizient P $\overline{\mathscr{a}}$

For general $\mathbb{E}R$, $\text{Cov}(R)$, μ_P , the risk-optimal portfolio could be highly leveraged (even if it's efficient).

In practice, we may want to disallow short selling to avoid such situations.

For general $\mathbb{E}R$, $\text{Cov}(R)$, μ _{*P*}, the risk-optimal portfolio could be highly leveraged (even if it's efficient).

In practice, we may want to disallow short selling to avoid such situations.

The corresponding optimization problem is an augmentation of what we've already seen:

 $\min_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{A} \boldsymbol{w} \ \ \text{subject to} \ \ \langle \boldsymbol{w}, \boldsymbol{1} \rangle = 1, \ \text{and}$ $\langle w, \mu \rangle = \mu_P$, and $w_i \ge 0, \quad i = 1, \ldots, N.$ For general $\mathbb{E}R$, $\text{Cov}(R)$, μ *P*, the risk-optimal portfolio could be highly leveraged (even if it's efficient).

In practice, we may want to disallow short selling to avoid such situations.

The corresponding optimization problem is an augmentation of what we've already seen:

In the 2-security case:

- Generally, no optimization is needed for 2-security portfolios: the weight constraints uniquely identify portfolios
- Many risk-optimal portfolios are *not* efficient
- $-$ The set of risk-optimal portfolios can be explicitly parameterized $+$ plotted
- There is a global variance-minimizing portfolio investors might not want this portfolio.

Many of the lessons we've learned from 2-security portfolios will hold in the *N*-security case:

- Risk-optimal portfolios can be computed and plotted
- The efficient frontier is visually identifiable
- There is a globally risk-optimal portfolio

Many of the lessons we've learned from 2-security portfolios will hold in the *N*-security case:

- Risk-optimal portfolios can be computed and plotted
- The efficient frontier is visually identifiable
- There is a globally risk-optimal portfolio

There are some differences that make things more complicated:

- Optimization is generally required
- There are (many) feasible portfolios that are not risk-optimal
- Explicit pen+paper computations become harder

歸

Petters, Arlie O. and Xiaoying Dong (2016). *An Introduction to Mathematical Finance with Applications: Understanding and Building Financial Intuition*. Springer. ISBN: 978-1-4939-3783-7.