Math 5760/6890: Introduction to Mathematical Finance

Risk Measures

See Petters and Dong [2016,](#page-18-0) Section 4.2

Akil Narayan¹

1 Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

Fall 2024

Portfolio risk D14-S02(a)

Until now, our definition for risk has been the standard deviation/variance ("spread") of a return rate.

This is, necessarily, a deceptive measure of the colloquial notion of "risk".

For example: sometimes there is a clear preference between two options with identical mean and variance.

"Risk" of random variables D14-S03(a)

The core of our questions regarding risk can be reduced to:

Let R be a random variable: what is a good quantitative measure of values of R away from its mean?

The core of our questions regarding risk can be reduced to:

Let R be a random variable: what is a good quantitative measure of values of R away from its mean?

This depends quite a bit on how one qualitatively defines risk.

Example

Let R_1 and R_2 be discrete random variables with mass functions given by,

$$
p_{R_1}(r) = \begin{cases} \frac{1}{2}, & r = 1, \\ \frac{1}{4}, & r = 0, \\ \frac{1}{4}, & r = 2. \end{cases} \hspace{1cm} p_{R_2}(r) = \begin{cases} \frac{3}{4}, & r = 1, \\ \frac{1}{8}, & r = -1, \\ \frac{1}{8}, & r = 3. \end{cases}
$$

Would you prefer a portfolio with return R_1 or R_2 ?

There isn't a single universally useful way to measure risk, but there are many options.

These options essentially boil down to what one considers "important" in risk.

There isn't a single universally useful way to measure risk, but there are many options.

These options essentially boil down to what one considers "important" in risk.

- Sharpe ratio
- Sortino ratio
- Treynor ratio
- The (Jensen's) alpha
- C/VaR

– . . .

None of these metrics is always "better" than another, but many have dis/advantages compared to others.

- R : the (random) return rate of a security (which could be a portfolio)
- r : the deterministic capital market risk-free rate
- R_M : the market portfolio
- (μ, σ^2) : $(\mathbb{E}R, \text{Var } R)$
- (μ_M, σ_M^2) : $(\mathbb{E}R_M, \text{Var }R_M)$
- $-$ β: $\rho(R, R_M) \frac{\sigma}{\sigma_M}$

- R : the (random) return rate of a security (which could be a portfolio)
- r : the deterministic capital market risk-free rate
- R_M : the market portfolio
- (μ, σ^2) : $(\mathbb{E}R, \text{Var } R)$
- (μ_M, σ_M^2) : $(\mathbb{E}R_M, \text{Var }R_M)$
- $-$ β: $\rho(R, R_M) \frac{\sigma}{\sigma_M}$

The first ratio we'll consider is the Sharpe ratio, defined as,

$$
Sh(R) := \frac{\mu - r}{\sigma}
$$

If the risk-free rate r is not determnistic, then the denominator should be the standard deviation of $R - r$.

In most simplified cases, this ratio is the slope of the security's capital allocation line.

- R : the (random) return rate of a security (which could be a portfolio)
- r : the deterministic capital market risk-free rate
- R_M : the market portfolio
- (μ, σ^2) : $(\mathbb{E}R, \text{Var } R)$
- (μ_M, σ_M^2) : $(\mathbb{E}R_M, \text{Var }R_M)$
- $-$ β: $\rho(R, R_M) \frac{\sigma}{\sigma_M}$

A second ratio is the Sortino ratio:

$$
\mathrm{So}(R) \coloneqq \frac{\mu - t}{\sigma_{-}(t)}
$$

Above, t is a target return (e.g., the risk-free rate r). The quantity $\sigma_-^2(t)$ is the semivariance, or the "downside deviation" from the target t .

- R : the (random) return rate of a security (which could be a portfolio)
- r : the deterministic capital market risk-free rate
- R_M : the market portfolio
- (μ, σ^2) : $(\mathbb{E}R, \text{Var } R)$
- (μ_M, σ_M^2) : $(\mathbb{E}R_M, \text{Var }R_M)$
- $-$ β: $\rho(R, R_M) \frac{\sigma}{\sigma_M}$

Yet another option: the Treynor ratio:

$$
\operatorname{Tr}(R):=\frac{\mu-r}{\beta}
$$

Recall that the β metric measures volatility relative to how R tracks with the market: such market-related risk is called systematic risk. Hence, the Treynor ratio is a reward-risk ratio, where "market-related risk" is used.

Yet another measure of risk is the "alpha" of a security, which measures premium relative to the capital asset pricing model.

For example, "Jensen's alpha" is defined as,

 $\alpha = (\mu - r) - \beta (\mu_M - r)$,

where the right-hand side is zero in theory, but not in practice.

Again, this is a return relative to the market.

Value at Risk D14-S07(a)

A random variable L has a cumulative distribution function:

$$
F_L(\ell) = P(L \le \ell), \qquad F_L: \mathbb{R} \to [0, 1]
$$

The quantile function for L is the functional inverse of F_L :

$$
Q_L(p) := F_L^{-1}(p) = \min \left\{ \ell \in \mathbb{R} \: \middle| \: F_L(\ell) \geqslant p \right\},\tag{Q_L : [0,1] \to \mathbb{R}}.
$$

Value at Risk D14-S07(b)

A random variable L has a cumulative distribution function:

$$
F_L(\ell) = P(L \le \ell), \qquad F_L: \mathbb{R} \to [0, 1]
$$

The quantile function for L is the functional inverse of F_L :

$$
Q_L(p) := F_L^{-1}(p) = \min \left\{ \ell \in \mathbb{R} \: \middle| \: F_L(\ell) \geqslant p \right\},\tag{Q_L : [0,1] \to \mathbb{R}}.
$$

In finance, say with a random return R , then Q_R is called the **Value at risk**:

 $VaR_p(L) := Q_L(p).$

Value at Risk D14-S07(c)

A random variable L has a cumulative distribution function:

$$
F_L(\ell) = P(L \le \ell), \qquad F_L: \mathbb{R} \to [0, 1]
$$

The quantile function for L is the functional inverse of F_L :

$$
Q_L(p) := F_L^{-1}(p) = \min \left\{ \ell \in \mathbb{R} \: \middle| \: F_L(\ell) \geqslant p \right\},\tag{Q_L : [0,1] \to \mathbb{R}}.
$$

In finance, say with a random return R, then Q_R is called the Value at risk:

 $VaR_p(L) := Q_L(p).$

For example, $\text{VaR}_p(R) = -0.4$ when $p = 0.01$, this means that with 1% probability, R will be at most -40%.

If one assumes normality of random variables, value at risk is straightforward to compute using the *probit function*.

Hence, this is powerful, but can be difficult to transparently analyze since VaR for a single p value can be informative, but is a limited picture.

Hence, this is powerful, but can be difficult to transparently analyze since VaR for a single p value can be informative, but is a limited picture.

An even more nuanced quantity involved value at risk is the conditional value at risk, which is the expectation conditioned on a VaR event:

> $\text{CVaR}_p(R) \coloneqq \mathbb{E}\left[\right]$ R $R \leqslant \text{VaR}_p(R)$.

Hence, this is powerful, but can be difficult to transparently analyze since VaR for a single p value can be informative, but is a limited picture.

An even more nuanced quantity involved value at risk is the conditional value at risk, which is the expectation conditioned on a VaR event:

$$
\text{CVaR}_p(R) \coloneqq \mathbb{E}\left[R \mid R \leqslant \text{VaR}_p(R)\right].
$$

Conditional value at risk is useful for characterizing extreme conditions: $CVaR_p(R) = -0.5$ for $p = 0.01$ means that on the worst 1% of outcomes, the average loss is -50%.

Hence, this is powerful, but can be difficult to transparently analyze since VaR for a single p value can be informative, but is a limited picture.

An even more nuanced quantity involved value at risk is the conditional value at risk, which is the expectation conditioned on a VaR event:

$$
\text{CVaR}_p(R) \coloneqq \mathbb{E}\left[R \mid R \leqslant \text{VaR}_p(R)\right].
$$

Conditional value at risk is useful for characterizing extreme conditions: $CVaR_p(R) = -0.5$ for $p = 0.01$ means that on the worst 1% of outcomes, the average loss is -50%.

Warning: Sometimes VaR and CVaR are written in terms of the loss. I.e., $VaR_p(R) = -0.4$ will be written as the p -VaR of R at $p = 1\%$ is 40%.

Petters, Arlie O. and Xiaoying Dong (2016). An Introduction to Mathematical Finance with Applications: Understanding and Building Financial Intuition. Springer. ISBN: 978-1-4939-3783-7.