Math 5760/6890: Introduction to Mathematical Finance

Binomial Pricing Models

See Petters and Dong 2016, Section 5.1

Akil Narayan¹

¹Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

Fall 2024

The tree pricing model

D16-S02(a)

The overall goal:

Given a security's time-0 price S(0), construct a probabilistic model for S(t), t > 0.

We do this with discrete time steps:

- Divide [0,T] into $n \in \mathbb{N}$ equally sized intervals, $[t_j, t_{j+1}]$ for $j = 0, \ldots, N$.
- $t_j = jh$ with h = T/n
- Let $S_j = S(t_j)$
- Model $S_j \mapsto S_{j+1}$ as a multiplicative process:

$$S_{j+1} = G_{j+1}S_j = \begin{cases} \mathcal{U}_{\mathcal{S}_{\mathcal{A}}}, & \text{with probability } p \\ \mathcal{U}_{\mathcal{S}_{\mathcal{A}}}, & \text{with probability } 1 - p \\ \mathcal{U}_{\mathcal{S}_{\mathcal{A}}}, & \text{with probability } 1 - p \end{cases}$$

uSi

- We assume (p, u, d) satisfies $p \in (0, 1)$, and d < 1 < u.

The tree pricing model

D16-S02(b)

The overall goal:

Given a security's time-0 price S(0), construct a probabilistic model for S(t), t > 0.

We do this with discrete time steps:

- Divide [0,T] into $n \in \mathbb{N}$ equally sized intervals, $[t_j, t_{j+1}]$ for $j = 0, \ldots, N$.
- $t_j = jh$ with h = T/n
- Let $S_j = S(t_j)$
- Model $S_j \mapsto S_{j+1}$ as a multiplicative process:

$$S_{j+1} = G_{j+1}S_j = \begin{cases} uS_{p}, J & \text{with probability } p \\ dS_{p}, & \text{with probability } 1-p \end{cases}$$

- We assume (p, u, d) satisfies $p \in (0, 1)$, and d < 1 < u.
- The behavior over the entire period corresponds to an accumulation of multiplicative gross returns G_j :

$$S_n = S_0 \prod_{j=1}^n G_j,$$
 $L := \log \frac{S_n}{S_0} = \sum_{j=1}^n \log G_j = \sum_{j=1}^n L_j$

- The random variables $\{G_j\}_{j=1}^n$ are iid (shifted) Bernoulli random variables (Same for $\{L_j\}_{j=1}^n$.)
- Today: we'll describe more details about this model.

D16-S03(a)

Let $X \sim \text{Bernoulli}(p)$, and consider n iid copies of X, $\{X_j\}_{j=1}^n$.

The random variable X satisfies,

$$X = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{with probability } 1-p \end{cases}$$

X is the outcome of a (binary) coin toss, where the outcome is biased if $p \neq 1/2$.

D16-S03(b)

Let $X \sim \text{Bernoulli}(p)$, and consider n iid copies of X, $\{X_j\}_{j=1}^n$.

The random variable X satisfies,

$$X = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{with probability } 1-p \end{cases}$$

X is the outcome of a (binary) coin toss, where the outcome is biased if $p \neq 1/2$. Of particular interest in several areas of probability and statistics is the random variable,

$$Y = \sum_{j=1}^{n} X_j,$$

which counts the number of +1 outcomes (say "heads" outcomes) of the X_j .

D16-S03(c)

Let $X \sim \text{Bernoulli}(p)$, and consider n iid copies of X, $\{X_j\}_{j=1}^n$.

The random variable X satisfies,

$$X = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{with probability } 1-p \end{cases}$$

X is the outcome of a (binary) coin toss, where the outcome is biased if $p \neq 1/2$. Of particular interest in several areas of probability and statistics is the random variable,

$$Y = \sum_{j=1}^{n} X_j,$$

which counts the number of +1 outcomes (say "heads" outcomes) of the X_j .

Evidently, Y is a discrete random variable, with outcomes $\{0, 1, ..., n\}$. Y is called a **Binomial**(n, p) random variable, and it has a Binomial distribution.

Let $X \sim \text{Bernoulli}(p)$, and consider n iid copies of X, $\{X_j\}_{j=1}^n$.

The random variable X satisfies,

$$X = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{with probability } 1-p \end{cases} \quad FX = \rho \cdot \mathcal{J} \neq (h-\rho) \cdot \mathcal{O} = \rho$$

X is the outcome of a (binary) coin toss, where the outcome is biased if $p \neq 1/2$. Of particular interest in several areas of probability and statistics is the random variable,

$$Y = \sum_{j=1}^{n} X_j,$$

which counts the number of +1 outcomes (say "heads" outcomes) of the X_j .

Evidently, Y is a discrete random variable, with outcomes $\{0, 1, ..., n\}$. Y is called a **Binomial**(n, p) random variable, and it has a Binomial distribution.

Some simple first- and second-order statistics are immediately computable:

$$\mathbb{E}Y = \sum_{j=1}^{n} \mathbb{E}X_j = \sum_{j=1}^{n} p = np, \qquad \qquad \text{Var}Y \stackrel{(*)}{=} \sum_{j=1}^{n} \text{Var}X_j = np(1-p)$$

where (*) uses the fact that the variance of the sum of independent random variables is the sum of their variances.

$$Var X = \mathbb{E}(X - p)^{2} = p(1-p)^{2} + (1-p)(0-p)^{2}$$
$$= p(1-p) [J] = p(1-p)$$

The Binomial distribution

The distribution (mass function) of Y is,

$$p_{Y}(k) = \binom{n}{k} p^{k} (1-p)^{n-k}, \qquad 0 \leq k \leq n$$
$$\binom{\eta}{k} \geq \frac{\eta}{k! (n-k)!}, \qquad 0 \neq l \leq n$$

The Binomial distribution

The distribution (mass function) of Y is,

$$p_Y(k) = \begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}, \qquad 0 \le k \le n$$

This is a valid mass function due to the Binomial Theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \implies \sum_{k=0}^n p_Y(k) = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k}$$
$$= (p+(1-p))^n = 1.$$

If $Y \sim \text{Binomial}(n, p)$, the quantity $p_Y(k)$ is the probability that we observe exactly k "heads" outcomes from n independent coin flips biased to land on heads with probability p.

The Binomial distribution mass function

A. Narayan (U. Utah - Math/SCI)

Math 5760/6890: The Binomial Pricing Model

Shifting the Binomial distribution

The n Bernoulli trials need not have outcome +1 or 0.

Suppose that the Bernoulli-type random variable \widetilde{X} has distribution,

$$\widetilde{X} = \begin{cases} b, & \text{with probability } p \\ a, & \text{with probability } 1-p \end{cases}$$

for any numbers a, b. Then note that if we write

$$\widetilde{X} = (b-a)X + a,$$

then $X \sim \text{Bernoulli}(p)$.

Shifting the Binomial distribution

The n Bernoulli trials need not have outcome +1 or 0.

Suppose that the Bernoulli-type random variable \widetilde{X} has distribution,

$$\widetilde{X} = \begin{cases} b, & \text{with probability } p \\ a, & \text{with probability } 1-p \end{cases}$$

for any numbers a, b. Then note that if we write

$$\widetilde{X} = (b-a)X + a,$$

then $X \sim \text{Bernoulli}(p)$.

Then if we consider a sum of n iid copies of \widetilde{X} :

$$\widetilde{Y} := \sum_{j=1}^{n} \widetilde{X}_j, \qquad \qquad \widetilde{X}_j \stackrel{\text{iid}}{\sim} X,$$

then we observe that,

$$\widetilde{Y} = na + (b - a)Y,$$

where $Y \sim \text{Binomial}(n, p)$ is a ("standard") Binomial random variable.

Shifting the Binomial distribution

The n Bernoulli trials need not have outcome +1 or 0.

Suppose that the Bernoulli-type random variable \widetilde{X} has distribution,

$$\widetilde{X} = \begin{cases} b, & \text{with probability } p \\ a, & \text{with probability } 1-p \end{cases}$$

for any numbers a, b. Then note that if we write

$$\widetilde{X} = (b-a)X + a,$$

then $X \sim \text{Bernoulli}(p)$.

Then if we consider a sum of n iid copies of \widetilde{X} :

$$\widetilde{Y} := \sum_{j=1}^{n} \widetilde{X}_j, \qquad \qquad \widetilde{X}_j \stackrel{\text{iid}}{\sim} X,$$

then we observe that,

$$\widetilde{Y} = na + (b - a)Y,$$

where $Y \sim \text{Binomial}(n, p)$ is a ("standard") Binomial random variable.

Hence: iid sums of scaled/shifted Bernoulli random variables are just scaled/shifted Binomial random variables.

Back to pricing

D16-S07(a)

Recall that the log-return in our security model satisfies,

$$L = \sum_{j=1}^{n} L_j,$$

with L_j iid, having distribution,

$$L_j = \begin{cases} \log u, & \text{with probability } p \\ \log d, & \text{with probability } 1 - p \end{cases}$$

Back to pricing

D16-S07(b)

Recall that the log-return in our security model satisfies,

$$L = \sum_{j=1}^{n} L_j,$$

with L_j iid, having distribution,

$$L_{j} = \begin{cases} \log u, & \text{with probability } p \\ \log d, & \text{with probability } 1 - p \end{cases} \qquad \qquad \log \left(\frac{d}{d} \right)^{-1} \log u^{-1} \log u^{-$$

N

Hence, we essentially know everything about L:

- L_j is a shifted Bernoulli(p) random variable. Precisely, $L_j = \log d + X_j \log \frac{u}{d}$, where $X_j \sim \text{Bernoulli}(p)$.
- L is a shifted Binomial(n, p) random variable: $L = n \log d + Y \log \frac{u}{d}$, where $Y \sim \text{Binomial}(n, p)$.

(This is essentially why this is called the <u>Binomial</u> pricing model.)

11,10

Λ

Back to pricing

D16-S07(c)

Recall that the log-return in our security model satisfies,

$$L = \sum_{j=1}^{n} L_j,$$

with L_j iid, having distribution,

$$L_j = \begin{cases} \log u, & \text{with probability } p \\ \log d, & \text{with probability } 1 - p \end{cases}$$

Hence, we essentially know everything about L:

- L_j is a shifted Bernoulli(p) random variable. Precisely, $L_j = \log d + X_j \log \frac{u}{d}$, where $X_j \sim \text{Bernoulli}(p)$.
- L is a shifted Binomial(n, p) random variable: $L = n \log d + Y \log \frac{u}{d}$, where $Y \sim \text{Binomial}(n, p)$.

(This is essentially why this is called the <u>Binomial</u> pricing model.)

Some caveats: S_n is not a Binomial random variable. Recall that $S_n = S_0 \exp L$. The problem is that e^L is not Binomial (although its outcomes have the same probabilities as a Binomial random variable, they are not equispaced outcomes).

$$L: \xrightarrow{++++++++++} L \qquad \qquad S: \xrightarrow{++++++++++} S$$

Some examples

Although S_n is not Binomial, it's easy to use knowledge of the Binomial distribution to analyze outcomes.

Example

Consider a 10-period Binomial pricing model, with (p, u, d) = (0.6, 1.1, 0.9).

- Compute the mean and variance of the terminal-time log-return.

$$L = \sum_{j=1}^{10} L_j = \begin{cases} log l - l. & v/prvb & O-6 \\ log 0, 9 & w/prob & O, 4 \end{cases}$$

$$L_{j}^{=} \log 0.9 + \chi_{j} \log \left(\frac{1.1}{0.9}\right), \quad \chi_{j}^{-} Berniull.(0.6)$$

$$E L_{j}^{=} \log 0.9 + (E\chi_{j}) \log \left(\frac{1.1}{0.9}\right) = \log 0.9 + 0.6 \log \left(\frac{1.1}{0.9}\right)$$

$$F L_{j}^{-} E L_{j}^{-} = 10. \left[\log 0.9 + 0.6 \cdot \log \left(\frac{1.1}{0.9}\right) \right] = 0.1504...$$

A. Narayan (U. Utah - Math/SCI)

Math 5760/6890: The Binomial Pricing Model

$$Var L = Var \sum_{j=1}^{lo} L_j = \sum_{j=1}^{lo} Var L_j$$

$$Variance of sum of$$

$$id variances$$

$$Var L_j = Var [0.9 + X_j l_g(\frac{1.1}{0.9})] = log^2(\frac{1.1}{0.9}) Var X_j$$

$$= log^2(\frac{1.1}{0.9})(0.6)(0.4)$$

=> Var L= 10. Var Lj= 0.4816.

Some examples

D16-S08(b)

Although S_n is not Binomial, it's easy to use knowledge of the Binomial distribution to analyze outcomes.

Example

Consider a 10-period Binomial pricing model, with (p, u, d) = (0.6, 1.1, 0.9).

- Compute the mean and variance of the terminal-time log-return.
- What is the expected value of S_{10} ?

$$S_{10} = S_0 \cdot G_1$$
 G is a discrete RV with probabilities given by
 $O_1 Binomial (10, 0.6) RV, with values ut d10-k,
for $k=0, ... 10$.$

$$ES_{10} = S_0 E_0 = S_0 [u^0 d^{10}]_{0} p^0 (1-p)^{10} {\binom{10}{0}} + u^1 d^9 p^1 (1-p)^9 {\binom{10}{1}} + \dots]$$
Binom ia ([10, ab)
prob.

$$= \int_{0}^{10} \sum_{k=0}^{10} u^{k} d^{k-k} p^{k} (1-p)^{k-k} {l_{0} \choose k} (p_{1}u, d) = (0, 6, 1, 1, 0, 9)$$
$$= [.219(S_{0})]$$

Some examples

Although S_n is not Binomial, it's easy to use knowledge of the Binomial distribution to analyze outcomes.

Example

Consider a 10-period Binomial pricing model, with (p, u, d) = (0.6, 1.1, 0.9).

- Compute the mean and variance of the terminal-time log-return.
- What is the expected value of S_{10} ?
- What is the probability that $S_{10} \ge S_0$?

$$S_{10} = S_0 \cdot u^{x} d^{10-x}, \quad \chi = \# \text{ heads'' outcomer.}$$

= $S_0 \left(\frac{4}{d}\right)^{x} d^{10}$
When is $\left(\frac{4}{d}\right)^{x} d^{10} \ge 1$?

What's the smallest x = 5t. $(\frac{1.1}{0.9})^{\times} (0.9)^{10} \ge 1$? $\chi = 6$ $\implies \chi = 6, 7, 8, 9, 10$ correspond to $S_{10} \ge S_{0}$. $P(S_{10} \ge S_{0}) = P(\chi \ge 6) = \sum_{k=6}^{10} Pr(\chi = k) = \sum_{k=6}^{10} {\binom{10}{k}} (0.6)^{k} (0.4)^{10-k}$ = 0.63

Some examples

Although S_n is not Binomial, it's easy to use knowledge of the Binomial distribution to analyze outcomes.

Example

Consider a 10-period Binomial pricing model, with (p, u, d) = (0.6, 1.1, 0.9).

- Compute the mean and variance of the terminal-time log-return.
- What is the expected value of S_{10} ?
- What is the probability that $S_{10} \ge S_0$?
- What is the probability that $S_5 \ge S_0$?

$$S^{2} = S_{0} \left(\frac{1.1}{0.4} \right)^{X} (0.9)^{S}, \quad \chi = 0, 1, 2...S$$

$$\left(\frac{1.1}{0.9} \right)^{X} (0.9)^{S} \ge 1 \quad \text{when} \quad \chi \ge 3$$

$$\implies P_{T} \left(S_{S} \ge S_{0} \right) = \sum_{k=3}^{S} \left(\frac{5}{k} \right) 0.6^{k} (0.4)^{S-k} = 0, 683$$

Some examples

Although S_n is not Binomial, it's easy to use knowledge of the Binomial distribution to analyze outcomes.

Example

Consider a 10-period Binomial pricing model, with (p, u, d) = (0.6, 1.1, 0.9).

- Compute the mean and variance of the terminal-time log-return.
- What is the expected value of S_{10} ?
- What is the probability that $S_{10} \ge S_0$?
- What is the probability that $S_5 \ge S_0$?

- Suppose $S_5 = S_0(1.1)^5$. What is the distribution of S_{10} conditioned on this outcome?

The distribution of S_{10} conditioned on $S_{5} = (1.1)^{5} S_{0}$ is the same q_{5} the distribution of a 5-period model with initial value $(1.1)^{5} S_{0}$. S_{10} conditioned on $S_{5} = (1.1)^{5} \cdot S_{0} = \begin{cases} (1.1)^{5} S_{0} & (1.1)^{5} \\ \vdots & \vdots \\ \vdots & \vdots \\ (1.1)^{5} S_{6} & (0.0)^{5} \end{cases}$ w/ prob $p^{5}(Lp)^{0} {s \choose 0}$ (this model is "memory less")

Some final observations

The process we have defined and investigated has some useful properties:

There are 2^n possible pricing trajectories that the model can take. (2 options at each time.)

But there are only j + 1 possible outcomes at time t_j : the security price S_j is given by,

$$S_j = S_0 \prod_{q=1}^j G_j = S_0 u^{Y_j} d^{j-Y_j},$$

where Y_j is the cumulative number of "heads" realizations in the first j steps:

$$Y_j = \sum_{q=1}^j X_q.$$

Since Y_j has exactly j + 1 possible outcomes, then S_j , whose randomness depends explicitly and only on Y_j , has exactly j + 1 possible outcomes.

D16-S09(a)

Some final observations

The process we have defined and investigated has some useful properties:

There are 2^n possible pricing trajectories that the model can take. (2 options at each time.)

But there are only j + 1 possible outcomes at time t_j : the security price S_j is given by,

$$S_j = S_0 \prod_{q=1}^j G_j = S_0 u^{Y_j} d^{j-Y_j},$$

where Y_j is the cumulative number of "heads" realizations in the first j steps:

$$Y_j = \sum_{q=1}^j X_q.$$

Since Y_j has exactly j + 1 possible outcomes, then S_j , whose randomness depends explicitly and only on Y_j , has exactly j + 1 possible outcomes.

Related to the above, the tree is *recombining*, meaning that there are trajectories that reach the same state using different pathways. In particular,

- outcome $(G_1, G_2) = (u, d)$
- outcome $(G_1, G_2) = (d, u)$

yield the same security price $S_2 = udS_0$.

D16-S09(b)

Some final observations

The process we have defined and investigated has some useful properties:

There are 2^n possible pricing trajectories that the model can take. (2 options at each time.)

But there are only j + 1 possible outcomes at time t_j : the security price S_j is given by,

$$S_j = S_0 \prod_{q=1}^j G_j = S_0 u^{Y_j} d^{j-Y_j},$$

where Y_j is the cumulative number of "heads" realizations in the first j steps:

$$Y_j = \sum_{q=1}^j X_q.$$

Since Y_j has exactly j + 1 possible outcomes, then S_j , whose randomness depends explicitly and only on Y_j , has exactly j + 1 possible outcomes.

Related to the above, the tree is *recombining*, meaning that there are trajectories that reach the same state using different pathways. In particular,

- outcome $(G_1, G_2) = (u, d)$
- outcome $(G_1, G_2) = (d, u)$

yield the same security price $S_2 = udS_0$.

As we saw in the previous example, this is a *Markovian* process: the possibilities at time t_{j+1} can be deduced entirely from the state of things at time t_j .

Petters, Arlie O. and Xiaoying Dong (2016). An Introduction to Mathematical Finance with Applications: Understanding and Building Financial Intuition. Springer. ISBN: 978-1-4939-3783-7.