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The tree pricing model D16-S02(a)

The overall goal:

Given a security’s time-0 price Sp0q, construct a probabilistic model for Sptq, t ° 0.

We do this with discrete time steps:
– Divide r0, T s into n P equally sized intervals, rtj , tj`1s for j “ 0, . . . , N .
– tj “ jh with h “ T {n
– Let Sj “ Sptjq
– Model Sj fiÑ Sj`1 as a multiplicative process:

Sj`1 “ Gj`1Sj “
"

uSn, with probability p
dSn, with probability 1 ´ p

– We assume pp, u, dq satisfies p P p0, 1q, and d † 1 † u.
– The behavior over the entire period corresponds to an accumulation of multiplicative gross returns Gj :

Sn “ S0

nπ

j“1

Gj , L :“ log
Sn

S0
“

nÿ

j“1

logGj “
nÿ

j“1

Lj

– The random variables tGjunj“1 are iid (shifted) Bernoulli random variables
(Same for tLjunj“1.)

– Today: we’ll describe more details about this model.
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The tree pricing model D16-S02(b)

The overall goal:

Given a security’s time-0 price Sp0q, construct a probabilistic model for Sptq, t ° 0.

We do this with discrete time steps:
– Divide r0, T s into n P equally sized intervals, rtj , tj`1s for j “ 0, . . . , N .
– tj “ jh with h “ T {n
– Let Sj “ Sptjq
– Model Sj fiÑ Sj`1 as a multiplicative process:

Sj`1 “ Gj`1Sj “
"

uSn, with probability p
dSn, with probability 1 ´ p

– We assume pp, u, dq satisfies p P p0, 1q, and d † 1 † u.
– The behavior over the entire period corresponds to an accumulation of multiplicative gross returns Gj :

Sn “ S0

nπ

j“1

Gj , L :“ log
Sn

S0
“

nÿ

j“1

logGj “
nÿ

j“1

Lj

– The random variables tGjunj“1 are iid (shifted) Bernoulli random variables
(Same for tLjunj“1.)

– Today: we’ll describe more details about this model.
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A digression: Binomial random variables D16-S03(a)
Let X „ Bernoullippq, and consider n iid copies of X, tXjunj“1.

The random variable X satisfies,

X “
"

1, with probability p
0, with probability 1 ´ p

X is the outcome of a (binary) coin toss, where the outcome is biased if p ‰ 1{2. Of particular interest in several
areas of probability and statistics is the random variable,

Y “
nÿ

j“1

Xj ,

which counts the number of `1 outcomes (say “heads” outcomes) of the Xj .

Evidently, Y is a discrete random variable, with outcomes t0, 1, . . . , nu.
Y is called a Binomialpn, pq random variable, and it has a Binomial distribution.

Some simple first- and second-order statistics are immediately computable:

Y “
nÿ

j“1

Xj “
nÿ

j“1

p “ np, VarY
p˚q“

nÿ

j“1

VarXj “ npp1 ´ pq

where p˚q uses the fact that the variance of the sum of independent random variables is the sum of their variances.
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A digression: Binomial random variables D16-S03(b)
Let X „ Bernoullippq, and consider n iid copies of X, tXjunj“1.

The random variable X satisfies,

X “
"

1, with probability p
0, with probability 1 ´ p

X is the outcome of a (binary) coin toss, where the outcome is biased if p ‰ 1{2. Of particular interest in several
areas of probability and statistics is the random variable,

Y “
nÿ

j“1

Xj ,

which counts the number of `1 outcomes (say “heads” outcomes) of the Xj .

Evidently, Y is a discrete random variable, with outcomes t0, 1, . . . , nu.
Y is called a Binomialpn, pq random variable, and it has a Binomial distribution.

Some simple first- and second-order statistics are immediately computable:

Y “
nÿ

j“1

Xj “
nÿ

j“1

p “ np, VarY
p˚q“

nÿ

j“1

VarXj “ npp1 ´ pq

where p˚q uses the fact that the variance of the sum of independent random variables is the sum of their variances.
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A digression: Binomial random variables D16-S03(c)
Let X „ Bernoullippq, and consider n iid copies of X, tXjunj“1.

The random variable X satisfies,

X “
"

1, with probability p
0, with probability 1 ´ p

X is the outcome of a (binary) coin toss, where the outcome is biased if p ‰ 1{2. Of particular interest in several
areas of probability and statistics is the random variable,

Y “
nÿ

j“1

Xj ,

which counts the number of `1 outcomes (say “heads” outcomes) of the Xj .

Evidently, Y is a discrete random variable, with outcomes t0, 1, . . . , nu.
Y is called a Binomialpn, pq random variable, and it has a Binomial distribution.

Some simple first- and second-order statistics are immediately computable:

Y “
nÿ

j“1

Xj “
nÿ

j“1

p “ np, VarY
p˚q“

nÿ

j“1

VarXj “ npp1 ´ pq

where p˚q uses the fact that the variance of the sum of independent random variables is the sum of their variances.
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A digression: Binomial random variables D16-S03(d)
Let X „ Bernoullippq, and consider n iid copies of X, tXjunj“1.

The random variable X satisfies,

X “
"

1, with probability p
0, with probability 1 ´ p

X is the outcome of a (binary) coin toss, where the outcome is biased if p ‰ 1{2. Of particular interest in several
areas of probability and statistics is the random variable,

Y “
nÿ

j“1

Xj ,

which counts the number of `1 outcomes (say “heads” outcomes) of the Xj .

Evidently, Y is a discrete random variable, with outcomes t0, 1, . . . , nu.
Y is called a Binomialpn, pq random variable, and it has a Binomial distribution.

Some simple first- and second-order statistics are immediately computable:

Y “
nÿ

j“1

Xj “
nÿ

j“1

p “ np, VarY
p˚q“

nÿ

j“1

VarXj “ npp1 ´ pq

where p˚q uses the fact that the variance of the sum of independent random variables is the sum of their variances.
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The Binomial distribution D16-S04(a)

The distribution (mass function) of Y is,

pY pkq “
ˆ

n
k

˙
pkp1 ´ pqn´k, 0 § k § n

This is a valid mass function due to the Binomial Theorem:

px ` yqn “
nÿ

k“0

ˆ
n
k

˙
xkyn´k ùñ

nÿ

k“0

pY pkq “
nÿ

k“0

ˆ
n
k

˙
pkp1 ´ pqn´k

“ pp ` p1 ´ pqqn “ 1.

If Y „Binomialpn, pq, the quantity pY pkq is the probability that we observe exactly k “heads” outcomes from n
independent coin flips biased to land on heads with probability p.
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The Binomial distribution D16-S04(b)

The distribution (mass function) of Y is,

pY pkq “
ˆ

n
k

˙
pkp1 ´ pqn´k, 0 § k § n

This is a valid mass function due to the Binomial Theorem:

px ` yqn “
nÿ

k“0

ˆ
n
k

˙
xkyn´k ùñ

nÿ

k“0

pY pkq “
nÿ

k“0

ˆ
n
k

˙
pkp1 ´ pqn´k

“ pp ` p1 ´ pqqn “ 1.

If Y „Binomialpn, pq, the quantity pY pkq is the probability that we observe exactly k “heads” outcomes from n
independent coin flips biased to land on heads with probability p.
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The Binomial distribution mass function D16-S05(a)
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Shifting the Binomial distribution D16-S06(a)
The n Bernoulli trials need not have outcome `1 or 0.

Suppose that the Bernoulli-type random variable rX has distribution,

rX “
"

b, with probability p
a, with probability 1 ´ p

for any numbers a, b. Then note that if we write

rX “ pb ´ aqX ` a,

then X „ Bernoullippq.

Then if we consider a sum of n iid copies of rX:

rY :“
nÿ

j“1

rXj , rXj
iid„ X,

then we observe that,

rY “ na ` pb ´ aqY,
where Y „Binomialpn, pq is a (“standard”) Binomial random variable.

Hence: iid sums of scaled/shifted Bernoulli random variables are just scaled/shifted Binomial random variables.
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Shifting the Binomial distribution D16-S06(b)
The n Bernoulli trials need not have outcome `1 or 0.

Suppose that the Bernoulli-type random variable rX has distribution,

rX “
"

b, with probability p
a, with probability 1 ´ p

for any numbers a, b. Then note that if we write

rX “ pb ´ aqX ` a,

then X „ Bernoullippq.

Then if we consider a sum of n iid copies of rX:

rY :“
nÿ

j“1

rXj , rXj
iid„ X,

then we observe that,

rY “ na ` pb ´ aqY,
where Y „Binomialpn, pq is a (“standard”) Binomial random variable.

Hence: iid sums of scaled/shifted Bernoulli random variables are just scaled/shifted Binomial random variables.
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Shifting the Binomial distribution D16-S06(c)
The n Bernoulli trials need not have outcome `1 or 0.

Suppose that the Bernoulli-type random variable rX has distribution,

rX “
"

b, with probability p
a, with probability 1 ´ p

for any numbers a, b. Then note that if we write

rX “ pb ´ aqX ` a,

then X „ Bernoullippq.

Then if we consider a sum of n iid copies of rX:

rY :“
nÿ

j“1

rXj , rXj
iid„ X,

then we observe that,

rY “ na ` pb ´ aqY,
where Y „Binomialpn, pq is a (“standard”) Binomial random variable.

Hence: iid sums of scaled/shifted Bernoulli random variables are just scaled/shifted Binomial random variables.
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Back to pricing D16-S07(a)

Recall that the log-return in our security model satisfies,

L “
nÿ

j“1

Lj ,

with Lj iid, having distribution,

Lj “
"

log u, with probability p
log d, with probability 1 ´ p

Hence, we essentially know everything about L:
– Lj is a shifted Bernoullippq random variable. Precisely, Lj “ log d ` Xj log

u
d , where Xj „ Bernoullippq.

– L is a shifted Binomialpn, pq random variable: L “ n log d ` Y log u
d , where Y „ Binomialpn, pq.

(This is essentially why this is called the Binomial pricing model.)

Some caveats: Sn is not a Binomial random variable. Recall that Sn “ S0 expL.
The problem is that eL is not Binomial (although its outcomes have the same probabilities as a Binomial random
variable, they are not equispaced outcomes).
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Back to pricing D16-S07(b)

Recall that the log-return in our security model satisfies,

L “
nÿ

j“1

Lj ,

with Lj iid, having distribution,

Lj “
"

log u, with probability p
log d, with probability 1 ´ p

Hence, we essentially know everything about L:
– Lj is a shifted Bernoullippq random variable. Precisely, Lj “ log d ` Xj log

u
d , where Xj „ Bernoullippq.

– L is a shifted Binomialpn, pq random variable: L “ n log d ` Y log u
d , where Y „ Binomialpn, pq.

(This is essentially why this is called the Binomial pricing model.)

Some caveats: Sn is not a Binomial random variable. Recall that Sn “ S0 expL.
The problem is that eL is not Binomial (although its outcomes have the same probabilities as a Binomial random
variable, they are not equispaced outcomes).
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Back to pricing D16-S07(c)

Recall that the log-return in our security model satisfies,

L “
nÿ

j“1

Lj ,

with Lj iid, having distribution,

Lj “
"

log u, with probability p
log d, with probability 1 ´ p

Hence, we essentially know everything about L:
– Lj is a shifted Bernoullippq random variable. Precisely, Lj “ log d ` Xj log

u
d , where Xj „ Bernoullippq.

– L is a shifted Binomialpn, pq random variable: L “ n log d ` Y log u
d , where Y „ Binomialpn, pq.

(This is essentially why this is called the Binomial pricing model.)

Some caveats: Sn is not a Binomial random variable. Recall that Sn “ S0 expL.
The problem is that eL is not Binomial (although its outcomes have the same probabilities as a Binomial random
variable, they are not equispaced outcomes).
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Some examples D16-S08(a)

Although Sn is not Binomial, it’s easy to use knowledge of the Binomial distribution to analyze outcomes.

Example
Consider a 10-period Binomial pricing model, with pp, u, dq “ p0.6, 1.1, 0.9q.

– Compute the mean and variance of the terminal-time log-return.
– What is the expected value of S10?
– What is the probability that S10 • S0?
– What is the probability that S5 • S0?
– Suppose S5 “ S0p1.1q5. What is the distribution of S10 conditioned on this outcome?
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Some examples D16-S08(b)

Although Sn is not Binomial, it’s easy to use knowledge of the Binomial distribution to analyze outcomes.

Example
Consider a 10-period Binomial pricing model, with pp, u, dq “ p0.6, 1.1, 0.9q.

– Compute the mean and variance of the terminal-time log-return.
– What is the expected value of S10?
– What is the probability that S10 • S0?
– What is the probability that S5 • S0?
– Suppose S5 “ S0p1.1q5. What is the distribution of S10 conditioned on this outcome?
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Some examples D16-S08(c)

Although Sn is not Binomial, it’s easy to use knowledge of the Binomial distribution to analyze outcomes.

Example
Consider a 10-period Binomial pricing model, with pp, u, dq “ p0.6, 1.1, 0.9q.

– Compute the mean and variance of the terminal-time log-return.
– What is the expected value of S10?
– What is the probability that S10 • S0?
– What is the probability that S5 • S0?
– Suppose S5 “ S0p1.1q5. What is the distribution of S10 conditioned on this outcome?
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Some examples D16-S08(d)

Although Sn is not Binomial, it’s easy to use knowledge of the Binomial distribution to analyze outcomes.

Example
Consider a 10-period Binomial pricing model, with pp, u, dq “ p0.6, 1.1, 0.9q.

– Compute the mean and variance of the terminal-time log-return.
– What is the expected value of S10?
– What is the probability that S10 • S0?
– What is the probability that S5 • S0?
– Suppose S5 “ S0p1.1q5. What is the distribution of S10 conditioned on this outcome?
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Some examples D16-S08(e)

Although Sn is not Binomial, it’s easy to use knowledge of the Binomial distribution to analyze outcomes.

Example
Consider a 10-period Binomial pricing model, with pp, u, dq “ p0.6, 1.1, 0.9q.

– Compute the mean and variance of the terminal-time log-return.
– What is the expected value of S10?
– What is the probability that S10 • S0?
– What is the probability that S5 • S0?
– Suppose S5 “ S0p1.1q5. What is the distribution of S10 conditioned on this outcome?
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Some final observations D16-S09(a)
The process we have defined and investigated has some useful properties:

There are 2n possible pricing trajectories that the model can take. (2 options at each time.)

But there are only j ` 1 possible outcomes at time tj : the security price Sj is given by,

Sj “ S0

jπ

q“1

Gj “ S0u
Yjdj´Yj ,

where Yj is the cumulative number of “heads” realizations in the first j steps:

Yj “
jÿ

q“1

Xq .

Since Yj has exactly j ` 1 possible outcomes, then Sj , whose randomness depends explicitly and only on Yj , has
exactly j ` 1 possible outcomes.

Related to the above, the tree is recombining, meaning that there are trajectories that reach the same state using
different pathways. In particular,

– outcome pG1, G2q “ pu, dq
– outcome pG1, G2q “ pd, uq

yield the same security price S2 “ udS0.

As we saw in the previous example, this is a Markovian process: the possibilities at time tj`1 can be deduced
entirely from the state of things at time tj .
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Some final observations D16-S09(b)
The process we have defined and investigated has some useful properties:

There are 2n possible pricing trajectories that the model can take. (2 options at each time.)

But there are only j ` 1 possible outcomes at time tj : the security price Sj is given by,

Sj “ S0

jπ

q“1

Gj “ S0u
Yjdj´Yj ,

where Yj is the cumulative number of “heads” realizations in the first j steps:

Yj “
jÿ

q“1

Xq .

Since Yj has exactly j ` 1 possible outcomes, then Sj , whose randomness depends explicitly and only on Yj , has
exactly j ` 1 possible outcomes.

Related to the above, the tree is recombining, meaning that there are trajectories that reach the same state using
different pathways. In particular,

– outcome pG1, G2q “ pu, dq
– outcome pG1, G2q “ pd, uq

yield the same security price S2 “ udS0.

As we saw in the previous example, this is a Markovian process: the possibilities at time tj`1 can be deduced
entirely from the state of things at time tj .

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: The Binomial Pricing Model



Some final observations D16-S09(c)
The process we have defined and investigated has some useful properties:

There are 2n possible pricing trajectories that the model can take. (2 options at each time.)

But there are only j ` 1 possible outcomes at time tj : the security price Sj is given by,

Sj “ S0

jπ

q“1

Gj “ S0u
Yjdj´Yj ,

where Yj is the cumulative number of “heads” realizations in the first j steps:

Yj “
jÿ

q“1

Xq .

Since Yj has exactly j ` 1 possible outcomes, then Sj , whose randomness depends explicitly and only on Yj , has
exactly j ` 1 possible outcomes.

Related to the above, the tree is recombining, meaning that there are trajectories that reach the same state using
different pathways. In particular,

– outcome pG1, G2q “ pu, dq
– outcome pG1, G2q “ pd, uq

yield the same security price S2 “ udS0.

As we saw in the previous example, this is a Markovian process: the possibilities at time tj`1 can be deduced
entirely from the state of things at time tj .
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