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The tree pricing model D17-S02(a)

We’ve seen the basic anatomy of the binomial pricing model: Given pp, u, dq, then,

Sj “ GjSj`1, Gj “
"

u, with probability p
d, with probability 1 ´ p

where Sj “ Sptjq and Gj is the gross return rate. In this model, it turns out that log returns are particularly
convenient to work with:

Sn

S0
“ eL, L “

nÿ

j“1

Lj , Lj “
"

log u, with probability p
log d, with probability 1 ´ p
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The tree pricing model D17-S02(b)

We’ve seen the basic anatomy of the binomial pricing model: Given pp, u, dq, then,

Sj “ GjSj`1, Gj “
"

u, with probability p
d, with probability 1 ´ p

where Sj “ Sptjq and Gj is the gross return rate. In this model, it turns out that log returns are particularly
convenient to work with:

Sn

S0
“ eL, L “

nÿ

j“1

Lj , Lj “
"

log u, with probability p
log d, with probability 1 ´ p
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Our pp, u, dq assumptions D17-S03(a)

Recall that we’ve always assumed,
– p P p0, 1q
– d † 1 † u

The p P p0, 1q assumption is reasonable: if p “ 0, 1, then the model is not random, implying that there is no
uncertainty about the future.

The assumption that u ° d is just for convenience: if u † d, then consider another triple pq, ũ, d̃q with,
– q “ 1 ´ p

– ũ “ d

– d̃ “ u † ũ

Then the pp, u, dq is equivalent in distribution to the pq, ũ, d̃q model, but the latter satisfies ũ ° d̃.

Hence, we assume u ° d without loss of generality.

Finally, the fact that 1 must be sandwiched between d and u is a requirement to ensure a no-arbitrage setup:
– If d • 1, then PrpS1 • S0q “ 1, and PrpS1 ° S0q “ p ° 0, ensuring an arbitrage by holding a long position in

S.
– If u § 1, then PrpS1 § S0q “ 1, and PrpS1 † S0q “ p ° 0, ensuring an arbitrage by holding a short position in

S.
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Our pp, u, dq assumptions D17-S03(b)

Recall that we’ve always assumed,
– p P p0, 1q
– d † 1 † u

The p P p0, 1q assumption is reasonable: if p “ 0, 1, then the model is not random, implying that there is no
uncertainty about the future.

The assumption that u ° d is just for convenience: if u † d, then consider another triple pq, ũ, d̃q with,
– q “ 1 ´ p

– ũ “ d

– d̃ “ u † ũ

Then the pp, u, dq is equivalent in distribution to the pq, ũ, d̃q model, but the latter satisfies ũ ° d̃.

Hence, we assume u ° d without loss of generality.

Finally, the fact that 1 must be sandwiched between d and u is a requirement to ensure a no-arbitrage setup:
– If d • 1, then PrpS1 • S0q “ 1, and PrpS1 ° S0q “ p ° 0, ensuring an arbitrage by holding a long position in

S.
– If u § 1, then PrpS1 § S0q “ 1, and PrpS1 † S0q “ p ° 0, ensuring an arbitrage by holding a short position in

S.
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Our pp, u, dq assumptions D17-S03(c)

Recall that we’ve always assumed,
– p P p0, 1q
– d † 1 † u

The p P p0, 1q assumption is reasonable: if p “ 0, 1, then the model is not random, implying that there is no
uncertainty about the future.

The assumption that u ° d is just for convenience: if u † d, then consider another triple pq, ũ, d̃q with,
– q “ 1 ´ p

– ũ “ d

– d̃ “ u † ũ

Then the pp, u, dq is equivalent in distribution to the pq, ũ, d̃q model, but the latter satisfies ũ ° d̃.

Hence, we assume u ° d without loss of generality.

Finally, the fact that 1 must be sandwiched between d and u is a requirement to ensure a no-arbitrage setup:
– If d • 1, then PrpS1 • S0q “ 1, and PrpS1 ° S0q “ p ° 0, ensuring an arbitrage by holding a long position in

S.
– If u § 1, then PrpS1 § S0q “ 1, and PrpS1 † S0q “ p ° 0, ensuring an arbitrage by holding a short position in

S.
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Risk neutrality D17-S04(a)

There is one more concept that will be useful for us to employ in modeling investors:

Suppose I seek to sell you an asset today at a price S0.

If you have a probabilistic model for the future trajectory of Sptq, and if your model predicts Sptq † S0, then you
have limited incentive purchase this asset.

On the other hand, if your model (correctly!) predicts Sptq ° S0, then there is opportunity for arbitrage, assuming
you have unlimited capital to invest.

In such a case, we assume that another saavy investor would have already recognized this and removed the arbitrage
opportunity through exploitation; hence your model is unlikely to be accurate.

Based on these scenarios, then a reasonable assumption on a valid model is that Sptq “ S0.

A probabilistic model satisfying this assumption is said to be risk neutral.
(In more realistic scenarios, we’ll want the present value of Sptq to satisfy this.)

More formally, a risk-neutral probability measure satisfies the above assumption.
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Risk neutrality D17-S04(b)

There is one more concept that will be useful for us to employ in modeling investors:

Suppose I seek to sell you an asset today at a price S0.

If you have a probabilistic model for the future trajectory of Sptq, and if your model predicts Sptq † S0, then you
have limited incentive purchase this asset.

On the other hand, if your model (correctly!) predicts Sptq ° S0, then there is opportunity for arbitrage, assuming
you have unlimited capital to invest.

In such a case, we assume that another saavy investor would have already recognized this and removed the arbitrage
opportunity through exploitation; hence your model is unlikely to be accurate.

Based on these scenarios, then a reasonable assumption on a valid model is that Sptq “ S0.

A probabilistic model satisfying this assumption is said to be risk neutral.
(In more realistic scenarios, we’ll want the present value of Sptq to satisfy this.)

More formally, a risk-neutral probability measure satisfies the above assumption.
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Risk neutrality in practice D17-S05(a)

Note that for our tree model, we have

S1 “ S0 G1 “ S0 ppu ` p1 ´ pqdq ,

The risk-neutrality requirement is that S1 “ S0.

Hence, in order for this single-period jump to be risk-neutral, then we require,

p “ 1 ´ d

u ´ d
.

This prescribes p in terms of the single-period upward/downward factors.
(And note that assuming d † 1 † u implies that p P p0, 1q.)

This one-period result extends to multiple periods through induction:

rSn`1
ˇ̌
Sns “ Sn Gn “ Snppu ` p1 ´ pqdq.

And again if p is as given by the formula above, then Sn`1 “ Sn “ S0.
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Risk neutrality in practice D17-S05(b)

Note that for our tree model, we have

S1 “ S0 G1 “ S0 ppu ` p1 ´ pqdq ,

The risk-neutrality requirement is that S1 “ S0.

Hence, in order for this single-period jump to be risk-neutral, then we require,

p “ 1 ´ d

u ´ d
.

This prescribes p in terms of the single-period upward/downward factors.
(And note that assuming d † 1 † u implies that p P p0, 1q.)

This one-period result extends to multiple periods through induction:

rSn`1
ˇ̌
Sns “ Sn Gn “ Snppu ` p1 ´ pqdq.

And again if p is as given by the formula above, then Sn`1 “ Sn “ S0.
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Risk neutrality in practice D17-S05(c)

Note that for our tree model, we have

S1 “ S0 G1 “ S0 ppu ` p1 ´ pqdq ,

The risk-neutrality requirement is that S1 “ S0.

Hence, in order for this single-period jump to be risk-neutral, then we require,

p “ 1 ´ d

u ´ d
.

This prescribes p in terms of the single-period upward/downward factors.
(And note that assuming d † 1 † u implies that p P p0, 1q.)

This one-period result extends to multiple periods through induction:

rSn`1
ˇ̌
Sns “ Sn Gn “ Snppu ` p1 ´ pqdq.

And again if p is as given by the formula above, then Sn`1 “ Sn “ S0.
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Some real-world considerations, I D17-S06(a)

Such a model has limitations – e.g., in practice one would not be interested in the security if the average return was
0.

In practice, we assume an average return rate m (in units matching those of t).

The idea: we should discount future values based on this return rate.

Hence, assuming compounding corresponding to the number of periods in the model, then the present value of S1 is,

PVpS1q “ S1

ˆ
1 ` Tm

n

˙
�t“T {n“ S1 p1 ` m�tq ,

so that the risk-neutral value of p in this case is,

p “ p1 ` m�tq ´ d

u ´ d
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Some real-world considerations, I D17-S06(b)

Such a model has limitations – e.g., in practice one would not be interested in the security if the average return was
0.

In practice, we assume an average return rate m (in units matching those of t).

The idea: we should discount future values based on this return rate.

Hence, assuming compounding corresponding to the number of periods in the model, then the present value of S1 is,

PVpS1q “ S1

ˆ
1 ` Tm

n

˙
�t“T {n“ S1 p1 ` m�tq ,

so that the risk-neutral value of p in this case is,

p “ p1 ` m�tq ´ d

u ´ d

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Binomial Options Pricing



Some real-world considerations, II D17-S07(a)

Another practicality worth building in: frequently the asset S is a stock.

Many stocks pay regular dividends, corresponding to a rate q.

A stock that pays dividends at rate q should be discounted accordingly:

PVpS1q “ S1

ˆ
1 ` Tr

n
´ Tq

n

˙
�t“T {n“ S1 p1 ` pm ´ qq�tq ,

The risk-neutral value of p in this case is,

p “ p1 ` pm ´ qq�tq ´ d

u ´ d

Of course one expects that m ° q in order for the stock to be attractive to investors.

Note also that we must have

�t † u

m ´ q
,

in order for this to be a valid model pp † 1q.
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Some real-world considerations, II D17-S07(b)

Another practicality worth building in: frequently the asset S is a stock.

Many stocks pay regular dividends, corresponding to a rate q.

A stock that pays dividends at rate q should be discounted accordingly:

PVpS1q “ S1

ˆ
1 ` Tr

n
´ Tq

n

˙
�t“T {n“ S1 p1 ` pm ´ qq�tq ,

The risk-neutral value of p in this case is,

p “ p1 ` pm ´ qq�tq ´ d

u ´ d

Of course one expects that m ° q in order for the stock to be attractive to investors.

Note also that we must have

�t † u

m ´ q
,

in order for this to be a valid model pp † 1q.
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Options pricing D17-S08(a)

Although we have not really discussed options too much, one of the main applications of this model is in the pricing
of options.

We’ll only identify some infrastructure right now without explicitly identifying a pricing model.
We’ll derive an actual pricing model in a couple of weeks.

For simplicity, let’s consider a European call option:
– At t “ 0, we are buying the right (not the requirement) to purchase a (say single) share of S. (“call”)
– We can exercise this option only at time t “ T to purchase the stock at strike price K. (“European”)

The question: what price (premium) should we be willing to pay for this option?

Here is the basic logic of the options pricing model:
– We’ll generate a probabilistic model for all time-T outcomes of the options price.
– We’ll propagate these prices backward in time through a pricing model.
– The resulting time-0 price (a deterministic number) will be our modeled security price.

We’ll assume that the following information is available:
– stock volatility (typically through historical data)
– a risk-free rate r, and a dividend rate q
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Options pricing D17-S08(b)

Although we have not really discussed options too much, one of the main applications of this model is in the pricing
of options.

We’ll only identify some infrastructure right now without explicitly identifying a pricing model.
We’ll derive an actual pricing model in a couple of weeks.

For simplicity, let’s consider a European call option:
– At t “ 0, we are buying the right (not the requirement) to purchase a (say single) share of S. (“call”)
– We can exercise this option only at time t “ T to purchase the stock at strike price K. (“European”)

The question: what price (premium) should we be willing to pay for this option?

Here is the basic logic of the options pricing model:
– We’ll generate a probabilistic model for all time-T outcomes of the options price.
– We’ll propagate these prices backward in time through a pricing model.
– The resulting time-0 price (a deterministic number) will be our modeled security price.

We’ll assume that the following information is available:
– stock volatility (typically through historical data)
– a risk-free rate r, and a dividend rate q
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Options pricing D17-S08(c)

Although we have not really discussed options too much, one of the main applications of this model is in the pricing
of options.

We’ll only identify some infrastructure right now without explicitly identifying a pricing model.
We’ll derive an actual pricing model in a couple of weeks.

For simplicity, let’s consider a European call option:
– At t “ 0, we are buying the right (not the requirement) to purchase a (say single) share of S. (“call”)
– We can exercise this option only at time t “ T to purchase the stock at strike price K. (“European”)

The question: what price (premium) should we be willing to pay for this option?

Here is the basic logic of the options pricing model:
– We’ll generate a probabilistic model for all time-T outcomes of the options price.
– We’ll propagate these prices backward in time through a pricing model.
– The resulting time-0 price (a deterministic number) will be our modeled security price.

We’ll assume that the following information is available:
– stock volatility (typically through historical data)
– a risk-free rate r, and a dividend rate q

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Binomial Options Pricing



Options pricing, step 1: terminal time prices D17-S09(a)

Recall that the period-n outcomes of the binomial model are:

S0u
nd0, S0u

n´1d1 , . . . , S0u
1dn´1, S0u

0dn.

We’ll assume that pu, dq are given and prescribed.
(We’ll soon see that a common model is to assign pu, dq based on the historic volatility of the stock.)

The prices t rSn,junj“0, with

rSn,j :“ S0u
jdn´j ,

are our modeled terminal prices of the stock.

Note that the time-T value of the call option is the value of the call relative to the strike price:

pSn,j :“ maxt0,K ´ rSn,ju

I.e., the stock has value K ´ rSn,j should this difference be positive, but is 0 otherwise as we simply choose not to
exercise the option.
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Options pricing, step 1: terminal time prices D17-S09(b)

Recall that the period-n outcomes of the binomial model are:

S0u
nd0, S0u

n´1d1 , . . . , S0u
1dn´1, S0u

0dn.

We’ll assume that pu, dq are given and prescribed.
(We’ll soon see that a common model is to assign pu, dq based on the historic volatility of the stock.)

The prices t rSn,junj“0, with

rSn,j :“ S0u
jdn´j ,

are our modeled terminal prices of the stock.

Note that the time-T value of the call option is the value of the call relative to the strike price:

pSn,j :“ maxt0,K ´ rSn,ju

I.e., the stock has value K ´ rSn,j should this difference be positive, but is 0 otherwise as we simply choose not to
exercise the option.
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Options pricing, step 1: terminal time prices D17-S09(c)

Recall that the period-n outcomes of the binomial model are:

S0u
nd0, S0u

n´1d1 , . . . , S0u
1dn´1, S0u

0dn.

We’ll assume that pu, dq are given and prescribed.
(We’ll soon see that a common model is to assign pu, dq based on the historic volatility of the stock.)

The prices t rSn,junj“0, with

rSn,j :“ S0u
jdn´j ,

are our modeled terminal prices of the stock.

Note that the time-T value of the call option is the value of the call relative to the strike price:

pSn,j :“ maxt0,K ´ rSn,ju

I.e., the stock has value K ´ rSn,j should this difference be positive, but is 0 otherwise as we simply choose not to
exercise the option.
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Options pricing, step 2: back-propagation under a risk-neutral measure D17-S10(a)

We know values at period n. How might be propoagate these prices back to time n ´ 1?

There are n values t pSn´1,jun´1
j“0 that we must determine.

Using the binomial tree, we use risk neutrality:
– We define a risk-neutral measure by identifying p appropriately:

p “ p1 ` pm ´ qq�tq ´ d

u ´ d

– The value pSn´1,j should be the expected value of the time-n security under the risk-neutral measure:

rSn´1,j “ ppSn,j ` p1 ´ pq pSn,j`1, j “ 0, . . . , n

– We should discount by the risk-free rate:

pSn´1,j “ e´r�t rSn´1,j .

(assuming for simplicity continuous compounding)

This results in values t pSn´1,jun´1
j“0 that are modeled prices of the option value at time n ´ 1.
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Options pricing, step 2: back-propagation under a risk-neutral measure D17-S10(b)

We know values at period n. How might be propoagate these prices back to time n ´ 1?

There are n values t pSn´1,jun´1
j“0 that we must determine.

Using the binomial tree, we use risk neutrality:
– We define a risk-neutral measure by identifying p appropriately:

p “ p1 ` pm ´ qq�tq ´ d

u ´ d

– The value pSn´1,j should be the expected value of the time-n security under the risk-neutral measure:

rSn´1,j “ ppSn,j ` p1 ´ pq pSn,j`1, j “ 0, . . . , n

– We should discount by the risk-free rate:

pSn´1,j “ e´r�t rSn´1,j .

(assuming for simplicity continuous compounding)

This results in values t pSn´1,jun´1
j“0 that are modeled prices of the option value at time n ´ 1.
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Options pricing, step 2: back-propagation under a risk-neutral measure D17-S10(c)

We know values at period n. How might be propoagate these prices back to time n ´ 1?

There are n values t pSn´1,jun´1
j“0 that we must determine.

Using the binomial tree, we use risk neutrality:
– We define a risk-neutral measure by identifying p appropriately:

p “ p1 ` pm ´ qq�tq ´ d

u ´ d

– The value pSn´1,j should be the expected value of the time-n security under the risk-neutral measure:

rSn´1,j “ ppSn,j ` p1 ´ pq pSn,j`1, j “ 0, . . . , n

– We should discount by the risk-free rate:

pSn´1,j “ e´r�t rSn´1,j .

(assuming for simplicity continuous compounding)

This results in values t pSn´1,jun´1
j“0 that are modeled prices of the option value at time n ´ 1.

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Binomial Options Pricing



Options pricing, step 3: iterate D17-S11(a)

One sequentially moves from time index n fiÑ n ´ 1 fiÑ n ´ 2 ¨ ¨ ¨ fiÑ 1 fiÑ 0.

At time index 0, there is a single value, and it is the (modeled) premium that one should be willing to pay for the
option.

An extra detail: different types of options have different rules of exercise.

In American options, one can exercise the option at any time up until time T .

Under an American option, the risk-neutral expectation should be modified not only by a present value discount, but
also by the possibility of exercise:

– At period k, compute the standard binomial tree value of the stock at the current period (call this say Sk,j).
– The “exercise value” is maxt0,K ´ Sk,ju.
– Replace pSk,j computed as before (the “Binomial value”) with the maximum of the exercise and binomial value:

pSk,j – maxt pSk,j ,maxt0,K ´ Sk,juu

The idea is that if exercise is possible at a certain time, we should model it.
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Options pricing, step 3: iterate D17-S11(b)

One sequentially moves from time index n fiÑ n ´ 1 fiÑ n ´ 2 ¨ ¨ ¨ fiÑ 1 fiÑ 0.

At time index 0, there is a single value, and it is the (modeled) premium that one should be willing to pay for the
option.

An extra detail: different types of options have different rules of exercise.

In American options, one can exercise the option at any time up until time T .

Under an American option, the risk-neutral expectation should be modified not only by a present value discount, but
also by the possibility of exercise:

– At period k, compute the standard binomial tree value of the stock at the current period (call this say Sk,j).
– The “exercise value” is maxt0,K ´ Sk,ju.
– Replace pSk,j computed as before (the “Binomial value”) with the maximum of the exercise and binomial value:

pSk,j – maxt pSk,j ,maxt0,K ´ Sk,juu

The idea is that if exercise is possible at a certain time, we should model it.
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Options pricing, step 3: iterate D17-S11(c)

One sequentially moves from time index n fiÑ n ´ 1 fiÑ n ´ 2 ¨ ¨ ¨ fiÑ 1 fiÑ 0.

At time index 0, there is a single value, and it is the (modeled) premium that one should be willing to pay for the
option.

An extra detail: different types of options have different rules of exercise.

In American options, one can exercise the option at any time up until time T .

Under an American option, the risk-neutral expectation should be modified not only by a present value discount, but
also by the possibility of exercise:

– At period k, compute the standard binomial tree value of the stock at the current period (call this say Sk,j).
– The “exercise value” is maxt0,K ´ Sk,ju.
– Replace pSk,j computed as before (the “Binomial value”) with the maximum of the exercise and binomial value:

pSk,j – maxt pSk,j ,maxt0,K ´ Sk,juu

The idea is that if exercise is possible at a certain time, we should model it.
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Options pricing, step 3: iterate D17-S11(d)

One sequentially moves from time index n fiÑ n ´ 1 fiÑ n ´ 2 ¨ ¨ ¨ fiÑ 1 fiÑ 0.

At time index 0, there is a single value, and it is the (modeled) premium that one should be willing to pay for the
option.

An extra detail: different types of options have different rules of exercise.

In American options, one can exercise the option at any time up until time T .

Under an American option, the risk-neutral expectation should be modified not only by a present value discount, but
also by the possibility of exercise:

– At period k, compute the standard binomial tree value of the stock at the current period (call this say Sk,j).
– The “exercise value” is maxt0,K ´ Sk,ju.
– Replace pSk,j computed as before (the “Binomial value”) with the maximum of the exercise and binomial value:

pSk,j – maxt pSk,j ,maxt0,K ´ Sk,juu

The idea is that if exercise is possible at a certain time, we should model it.
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Options pricing, step 3: iterate D17-S11(e)

One sequentially moves from time index n fiÑ n ´ 1 fiÑ n ´ 2 ¨ ¨ ¨ fiÑ 1 fiÑ 0.

At time index 0, there is a single value, and it is the (modeled) premium that one should be willing to pay for the
option.

An extra detail: different types of options have different rules of exercise.

In American options, one can exercise the option at any time up until time T .

Under an American option, the risk-neutral expectation should be modified not only by a present value discount, but
also by the possibility of exercise:

– At period k, compute the standard binomial tree value of the stock at the current period (call this say Sk,j).
– The “exercise value” is maxt0,K ´ Sk,ju.
– Replace pSk,j computed as before (the “Binomial value”) with the maximum of the exercise and binomial value:

pSk,j – maxt pSk,j ,maxt0,K ´ Sk,juu

The idea is that if exercise is possible at a certain time, we should model it.
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