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The binomial tree pricing model D18-S02(a)

We have modeled a security’s price Sj “ Sptjq via,

Sj`1 “ Gj`1Sj , Gj “
"

u, with probability p
d, with probability 1 ´ p

From this model, we’ve concluded:
– L :“ logpSn{S0q is a scaled/shifted Binomialpn, pq random variable.
– Sn “ S0eL is the exponential of a scaled/shifted Binomial random variable
– The triple pp, u, dq determines the distribution entirely.
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Properties of the model D18-S03(a)

It’s worth pointing out some terminology that relates to our model
– The return is determined by the sequence of iid (scaled/shifted) Bernoulli random variables tLjunj“1. This

sequence is called a scaled/shifted Bernoulli process.
– The cumulative log-return L “ ∞n

j“1 Lj is a sum of independent scaled/shifted Bernoulli random variables.
This is called a scaled/shifted Bernoulli counting process. (We’ve identified it as a sequence of Binomial
random variables.)

– Scaled/shifted Bernoulli counting processes are called (additive) random walks.
– The exponential of this walk, eL, is called a multiplicative or geometric random walk.

Hence, we have constructed a geometric random walk model for an asset’s price.
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Properties of the model D18-S03(b)

It’s worth pointing out some terminology that relates to our model
– The return is determined by the sequence of iid (scaled/shifted) Bernoulli random variables tLjunj“1. This

sequence is called a scaled/shifted Bernoulli process.
– The cumulative log-return L “ ∞n

j“1 Lj is a sum of independent scaled/shifted Bernoulli random variables.
This is called a scaled/shifted Bernoulli counting process. (We’ve identified it as a sequence of Binomial
random variables.)

– Scaled/shifted Bernoulli counting processes are called (additive) random walks.
– The exponential of this walk, eL, is called a multiplicative or geometric random walk.

Hence, we have constructed a geometric random walk model for an asset’s price.
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Properties of the model D18-S03(c)

It’s worth pointing out some terminology that relates to our model
– The return is determined by the sequence of iid (scaled/shifted) Bernoulli random variables tLjunj“1. This

sequence is called a scaled/shifted Bernoulli process.
– The cumulative log-return L “ ∞n

j“1 Lj is a sum of independent scaled/shifted Bernoulli random variables.
This is called a scaled/shifted Bernoulli counting process. (We’ve identified it as a sequence of Binomial
random variables.)

– Scaled/shifted Bernoulli counting processes are called (additive) random walks.
– The exponential of this walk, eL, is called a multiplicative or geometric random walk.

Hence, we have constructed a geometric random walk model for an asset’s price.
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Properties of the model D18-S03(d)

It’s worth pointing out some terminology that relates to our model
– The return is determined by the sequence of iid (scaled/shifted) Bernoulli random variables tLjunj“1. This

sequence is called a scaled/shifted Bernoulli process.
– The cumulative log-return L “ ∞n

j“1 Lj is a sum of independent scaled/shifted Bernoulli random variables.
This is called a scaled/shifted Bernoulli counting process. (We’ve identified it as a sequence of Binomial
random variables.)

– Scaled/shifted Bernoulli counting processes are called (additive) random walks.
– The exponential of this walk, eL, is called a multiplicative or geometric random walk.

Hence, we have constructed a geometric random walk model for an asset’s price.
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Properties of the model D18-S03(e)

It’s worth pointing out some terminology that relates to our model
– The return is determined by the sequence of iid (scaled/shifted) Bernoulli random variables tLjunj“1. This

sequence is called a scaled/shifted Bernoulli process.
– The cumulative log-return L “ ∞n

j“1 Lj is a sum of independent scaled/shifted Bernoulli random variables.
This is called a scaled/shifted Bernoulli counting process. (We’ve identified it as a sequence of Binomial
random variables.)

– Scaled/shifted Bernoulli counting processes are called (additive) random walks.
– The exponential of this walk, eL, is called a multiplicative or geometric random walk.

Hence, we have constructed a geometric random walk model for an asset’s price.
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Degrees of freedom and constraints D18-S04(a)

How can we choose pp, u, dq to accurately emulate real stock price behavior?

We will follow the Cox-Ross-Rubinstein (CRR) model, which in part appeals to limiting continuous-time arguments
to set the discrete-time values pp, u, dq. We need to determine 3 unknowns: p, u, d. One suspects we need three
constraints to determine these.

At a high level the CRR model imposes the following constraints:
– The recombination constraint ud “ 1. This implies that that at every even time index, there is non-zero

probability of returning to the original share price.
– The per-period mean return (or log return) should match the real-world statistical mean
– The per-period log return variance should match the real-world statistical variance

These are all reasonable assumptions, and one of the major appeals of the CRR Model is that these rather simple
assumptions yield probabilistic models that behave like real-world stock prices.

A more abstract reason for these constraints is that they can be used to construct a well-posed underlying
continuous-time mathematical model.
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Degrees of freedom and constraints D18-S04(b)

How can we choose pp, u, dq to accurately emulate real stock price behavior?

We will follow the Cox-Ross-Rubinstein (CRR) model, which in part appeals to limiting continuous-time arguments
to set the discrete-time values pp, u, dq. We need to determine 3 unknowns: p, u, d. One suspects we need three
constraints to determine these.

At a high level the CRR model imposes the following constraints:
– The recombination constraint ud “ 1. This implies that that at every even time index, there is non-zero

probability of returning to the original share price.
– The per-period mean return (or log return) should match the real-world statistical mean
– The per-period log return variance should match the real-world statistical variance

These are all reasonable assumptions, and one of the major appeals of the CRR Model is that these rather simple
assumptions yield probabilistic models that behave like real-world stock prices.

A more abstract reason for these constraints is that they can be used to construct a well-posed underlying
continuous-time mathematical model.
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Degrees of freedom and constraints D18-S04(c)

How can we choose pp, u, dq to accurately emulate real stock price behavior?

We will follow the Cox-Ross-Rubinstein (CRR) model, which in part appeals to limiting continuous-time arguments
to set the discrete-time values pp, u, dq. We need to determine 3 unknowns: p, u, d. One suspects we need three
constraints to determine these.

At a high level the CRR model imposes the following constraints:
– The recombination constraint ud “ 1. This implies that that at every even time index, there is non-zero

probability of returning to the original share price.
– The per-period mean return (or log return) should match the real-world statistical mean
– The per-period log return variance should match the real-world statistical variance

These are all reasonable assumptions, and one of the major appeals of the CRR Model is that these rather simple
assumptions yield probabilistic models that behave like real-world stock prices.

A more abstract reason for these constraints is that they can be used to construct a well-posed underlying
continuous-time mathematical model.
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Degrees of freedom and constraints D18-S04(d)

How can we choose pp, u, dq to accurately emulate real stock price behavior?

We will follow the Cox-Ross-Rubinstein (CRR) model, which in part appeals to limiting continuous-time arguments
to set the discrete-time values pp, u, dq. We need to determine 3 unknowns: p, u, d. One suspects we need three
constraints to determine these.

At a high level the CRR model imposes the following constraints:
– The recombination constraint ud “ 1. This implies that that at every even time index, there is non-zero

probability of returning to the original share price.
– The per-period mean return (or log return) should match the real-world statistical mean
– The per-period log return variance should match the real-world statistical variance

These are all reasonable assumptions, and one of the major appeals of the CRR Model is that these rather simple
assumptions yield probabilistic models that behave like real-world stock prices.

A more abstract reason for these constraints is that they can be used to construct a well-posed underlying
continuous-time mathematical model.
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Degrees of freedom and constraints D18-S04(e)

How can we choose pp, u, dq to accurately emulate real stock price behavior?

We will follow the Cox-Ross-Rubinstein (CRR) model, which in part appeals to limiting continuous-time arguments
to set the discrete-time values pp, u, dq. We need to determine 3 unknowns: p, u, d. One suspects we need three
constraints to determine these.

At a high level the CRR model imposes the following constraints:
– The recombination constraint ud “ 1. This implies that that at every even time index, there is non-zero

probability of returning to the original share price.
– The per-period mean return (or log return) should match the real-world statistical mean
– The per-period log return variance should match the real-world statistical variance

These are all reasonable assumptions, and one of the major appeals of the CRR Model is that these rather simple
assumptions yield probabilistic models that behave like real-world stock prices.

A more abstract reason for these constraints is that they can be used to construct a well-posed underlying
continuous-time mathematical model.
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The recombination condition D18-S05(a)

The first CRR constraint is that,

ud “ 1 ùñ d “ 1

u

One visually appealing result of this assumption is that the tree is has a symmetry around Sn “ S0. (It is easier to
see this for log-returns.)

There are also some other reasons why this is an attractive choice:
– It’s useful when using the pricing model to compute valuation metrics (e.g., the “theta”)
– It’s a sensible condition if we adopt the hypothesis that sequential upward and downward market movements are

geometrically symmetric.
– I.e., it makes the log-return a symmetric (not necessarily centered) random walk:

logLj “
"

log u, with probability p,
´ log u, with probability 1 ´ p.
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The recombination condition D18-S05(b)

The first CRR constraint is that,

ud “ 1 ùñ d “ 1

u

One visually appealing result of this assumption is that the tree is has a symmetry around Sn “ S0. (It is easier to
see this for log-returns.)

There are also some other reasons why this is an attractive choice:
– It’s useful when using the pricing model to compute valuation metrics (e.g., the “theta”)
– It’s a sensible condition if we adopt the hypothesis that sequential upward and downward market movements are

geometrically symmetric.
– I.e., it makes the log-return a symmetric (not necessarily centered) random walk:

logLj “
"

log u, with probability p,
´ log u, with probability 1 ´ p.
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The recombination condition D18-S05(c)

The first CRR constraint is that,

ud “ 1 ùñ d “ 1

u

One visually appealing result of this assumption is that the tree is has a symmetry around Sn “ S0. (It is easier to
see this for log-returns.)

There are also some other reasons why this is an attractive choice:
– It’s useful when using the pricing model to compute valuation metrics (e.g., the “theta”)
– It’s a sensible condition if we adopt the hypothesis that sequential upward and downward market movements are

geometrically symmetric.
– I.e., it makes the log-return a symmetric (not necessarily centered) random walk:

logLj “
"

log u, with probability p,
´ log u, with probability 1 ´ p.
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The recombination condition D18-S05(d)

The first CRR constraint is that,

ud “ 1 ùñ d “ 1

u

One visually appealing result of this assumption is that the tree is has a symmetry around Sn “ S0. (It is easier to
see this for log-returns.)

There are also some other reasons why this is an attractive choice:
– It’s useful when using the pricing model to compute valuation metrics (e.g., the “theta”)
– It’s a sensible condition if we adopt the hypothesis that sequential upward and downward market movements are

geometrically symmetric.
– I.e., it makes the log-return a symmetric (not necessarily centered) random walk:

logLj “
"

log u, with probability p,
´ log u, with probability 1 ´ p.
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The mean-matching condition D18-S06(a)

We seek to impose that the average of the geometric random walk process emulate an expected return rate.

We could do this by using historical data to compute an inter-period average return. However, there are some
problems with this:

– Stock data typically computes average (say annual) return rate, which in other finance contexts is treated
essentially as a continuous-time rate.

– It’s somewhat awkward to understand what should happen when a more complicated model is desired:
§ Suppose we want the random model to have 4 coin flips per day.
§ We have to determine an appropriate quarter-day return rate.
§ This is not too difficult, but it’s easier if we assume a continuous return rate and use that to determine discrete-time

rates.
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The mean-matching condition D18-S06(b)

We seek to impose that the average of the geometric random walk process emulate an expected return rate.

We could do this by using historical data to compute an inter-period average return. However, there are some
problems with this:

– Stock data typically computes average (say annual) return rate, which in other finance contexts is treated
essentially as a continuous-time rate.

– It’s somewhat awkward to understand what should happen when a more complicated model is desired:
§ Suppose we want the random model to have 4 coin flips per day.
§ We have to determine an appropriate quarter-day return rate.
§ This is not too difficult, but it’s easier if we assume a continuous return rate and use that to determine discrete-time

rates.
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Calibrating the mean D18-S07(a)

Because our random walk is geometric, it’s easier to calibrate the mean of the log-returns.

With T fixed, suppose we choose a number of equal periods n that are used to divide r0, T s.
From our previous notation: h “ hn :“ T {n.

The mean of the log-return is given by:

Lj “ logGj “ p log u ` p1 ´ pq log d “ p2p ´ 1q log u

This mean is the expected (log-)return over a time period of length hn.

To standardize this mean relative to its time interval, we consider

µn :“ Lj

hn
“ n

T
p2p ´ 1q log u.

The assumption in a CRR model is that, as n Ñ 8, µn converges to a constant value:

lim
nÑ8 µn “ µRW,

i.e., µn « µRW for large n.
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Calibrating the mean D18-S07(b)

Because our random walk is geometric, it’s easier to calibrate the mean of the log-returns.

With T fixed, suppose we choose a number of equal periods n that are used to divide r0, T s.
From our previous notation: h “ hn :“ T {n.

The mean of the log-return is given by:

Lj “ logGj “ p log u ` p1 ´ pq log d “ p2p ´ 1q log u

This mean is the expected (log-)return over a time period of length hn.

To standardize this mean relative to its time interval, we consider

µn :“ Lj

hn
“ n

T
p2p ´ 1q log u.

The assumption in a CRR model is that, as n Ñ 8, µn converges to a constant value:

lim
nÑ8 µn “ µRW,

i.e., µn « µRW for large n.
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Calibrating the mean D18-S07(c)

Because our random walk is geometric, it’s easier to calibrate the mean of the log-returns.

With T fixed, suppose we choose a number of equal periods n that are used to divide r0, T s.
From our previous notation: h “ hn :“ T {n.

The mean of the log-return is given by:

Lj “ logGj “ p log u ` p1 ´ pq log d “ p2p ´ 1q log u

This mean is the expected (log-)return over a time period of length hn.

To standardize this mean relative to its time interval, we consider

µn :“ Lj

hn
“ n

T
p2p ´ 1q log u.

The assumption in a CRR model is that, as n Ñ 8, µn converges to a constant value:

lim
nÑ8 µn “ µRW,

i.e., µn « µRW for large n.
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Calibrating the mean D18-S07(d)

Because our random walk is geometric, it’s easier to calibrate the mean of the log-returns.

With T fixed, suppose we choose a number of equal periods n that are used to divide r0, T s.
From our previous notation: h “ hn :“ T {n.

The mean of the log-return is given by:

Lj “ logGj “ p log u ` p1 ´ pq log d “ p2p ´ 1q log u

This mean is the expected (log-)return over a time period of length hn.

To standardize this mean relative to its time interval, we consider

µn :“ Lj

hn
“ n

T
p2p ´ 1q log u.

The assumption in a CRR model is that, as n Ñ 8, µn converges to a constant value:

lim
nÑ8 µn “ µRW,

i.e., µn « µRW for large n.
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Estimating µ D18-S08(a)

Note that µ is in units of one over time. As with most rates, the unit of time used in practice is typically a year.

The constant µ is an instantaneous log-return: it is frequently called the real-world/instantaneous/continuous-time
drift.

To approximate µ, we use data in order to realize the approximation,

µ « L

h
“ 1

t1 ´ t0
log

Spt1q
Spt0q .

Example
Suppose we are given (deterministic) daily security prices S0, S1, S2, . . . , Sn.
(E.g., this could come from historical data, and there are «252 trading days per year.)
Compute (an approximation to) the continuous-time drift.
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Estimating µ D18-S08(b)

Note that µ is in units of one over time. As with most rates, the unit of time used in practice is typically a year.

The constant µ is an instantaneous log-return: it is frequently called the real-world/instantaneous/continuous-time
drift.

To approximate µ, we use data in order to realize the approximation,

µ « L

h
“ 1

t1 ´ t0
log

Spt1q
Spt0q .

Example
Suppose we are given (deterministic) daily security prices S0, S1, S2, . . . , Sn.
(E.g., this could come from historical data, and there are «252 trading days per year.)
Compute (an approximation to) the continuous-time drift.
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The variance-matching condition D18-S09(a)

The final CRR constraint is similar to the mean-matching condition: we assume a well-defined instantaneous rate of
change for the variance.

The discrete-time variance, normalized by the time period, is

�2
n :“ 1

h
Var log

Sj`1

Sj
,

which is independent of j due to the iid property of the log-returns.

The CRR model makes the assumption that n Ñ 8, then �2
n converges to a constant,

�2
n “ lim

nÑ8 �2
n.

The constant � is the real-world/instantaneous/continuous-time volatility.

Unlike µ, the limiting process for � (not �2) scales like 1{?
n.
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The variance-matching condition D18-S09(b)

The final CRR constraint is similar to the mean-matching condition: we assume a well-defined instantaneous rate of
change for the variance.

The discrete-time variance, normalized by the time period, is

�2
n :“ 1

h
Var log

Sj`1

Sj
,

which is independent of j due to the iid property of the log-returns.

The CRR model makes the assumption that n Ñ 8, then �2
n converges to a constant,

�2
n “ lim

nÑ8 �2
n.

The constant � is the real-world/instantaneous/continuous-time volatility.

Unlike µ, the limiting process for � (not �2) scales like 1{?
n.
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The variance-matching condition D18-S09(c)

The final CRR constraint is similar to the mean-matching condition: we assume a well-defined instantaneous rate of
change for the variance.

The discrete-time variance, normalized by the time period, is

�2
n :“ 1

h
Var log

Sj`1

Sj
,

which is independent of j due to the iid property of the log-returns.

The CRR model makes the assumption that n Ñ 8, then �2
n converges to a constant,

�2
n “ lim

nÑ8 �2
n.

The constant � is the real-world/instantaneous/continuous-time volatility.

Unlike µ, the limiting process for � (not �2) scales like 1{?
n.
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Estimating � D18-S10(a)

Just like the continuous-time drift µ, estimate the volatility � is typically accomplished through access to data with
the finite-time approximation,

�2 « 1

h
VarL “ 1

t1 ´ t0
Var log

Spt1q
Spt0q .

Example
Suppose we are given (deterministic) daily security prices S0, S1, S2, . . . , Sn.
(E.g., this could come from historical data, and there are «252 trading days per year.)
Compute (an approximation to) the continuous-time volatility.
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In summary D18-S11(a)

The CRR model places the following additional constraints on our standard Binomial tree model:
– Geometric symmetry of tree prices: u “ 1{d
– The continuous-time limit of the expected log-return matches the real-world drift:

µ “ lim
nÑ8

1

hn
Lj

– The continuous-time limit of the variance of the log-return matches the real-world (squared) volatility:

�2 “ lim
nÑ8

1

hn
VarLj

Of course, we are not (yet) going to take the limit as n Ò 8, so what do we do for finite but large n?

In the last two bullets above, both Lj and VarLj depend on pp, u, dq.

Hence, for finite n, pp, u, dq should depend on the time discretization parameter n. I.e., for finite n,

pp, u, dq “ ppn, un, dnq.

Next time: how do we choose ppn, un, dnq to match the constraints above?
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In summary D18-S11(b)

The CRR model places the following additional constraints on our standard Binomial tree model:
– Geometric symmetry of tree prices: u “ 1{d
– The continuous-time limit of the expected log-return matches the real-world drift:

µ “ lim
nÑ8

1

hn
Lj

– The continuous-time limit of the variance of the log-return matches the real-world (squared) volatility:

�2 “ lim
nÑ8

1

hn
VarLj

Of course, we are not (yet) going to take the limit as n Ò 8, so what do we do for finite but large n?

In the last two bullets above, both Lj and VarLj depend on pp, u, dq.

Hence, for finite n, pp, u, dq should depend on the time discretization parameter n. I.e., for finite n,

pp, u, dq “ ppn, un, dnq.

Next time: how do we choose ppn, un, dnq to match the constraints above?
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In summary D18-S11(c)

The CRR model places the following additional constraints on our standard Binomial tree model:
– Geometric symmetry of tree prices: u “ 1{d
– The continuous-time limit of the expected log-return matches the real-world drift:

µ “ lim
nÑ8

1

hn
Lj

– The continuous-time limit of the variance of the log-return matches the real-world (squared) volatility:

�2 “ lim
nÑ8

1

hn
VarLj

Of course, we are not (yet) going to take the limit as n Ò 8, so what do we do for finite but large n?

In the last two bullets above, both Lj and VarLj depend on pp, u, dq.

Hence, for finite n, pp, u, dq should depend on the time discretization parameter n. I.e., for finite n,

pp, u, dq “ ppn, un, dnq.

Next time: how do we choose ppn, un, dnq to match the constraints above?
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