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The binomial tree pricing and CRR models D19-S02(a)

We have modeled a security’s price S; = S(t;) via,

Sj+1 = Gj+15;,

G. =] W with probability p
771 d, with probability 1 —p

From this model, we've concluded:
— L :=log(Sn/So) is a scaled/shifted Binomial(n, p) random variable.
— Sp = Spel is the exponential of a scaled/shifted Binomial random variable
— The triple (p,u,d) determines the distribution entirely.
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The binomial tree pricing and CRR models D19-S02(b)

We have modeled a security’s price S; = S(t;) via,
u, with probability p

Sj+1 = Gj+15j, Gj = { d, with probability 1 —p

From this model, we've concluded:
— L :=log(Sn/So) is a scaled/shifted Binomial(n, p) random variable.

— Sy, = Spel is the exponential of a scaled/shifted Binomial random variable

— The triple (p,u,d) determines the distribution entirely.
The CRR model places the following additional constraints on our standard Binomial tree model:

— Geometric symmetry of tree prices: u = 1/d
— The continuous-time limit of the expected log-return matches the real-world drift:

) 1
p= lim —IEL;

n—o h,

— The continuous-time limit of the variance of the log-return matches the real-world (squared) volatility

2 . 1
0“ = lim —VarL;
n—00 n

Hence, for finite n, (p,u,d) should depend on the time discretization parameter n. l.e.:

(pauad) = (pnaurmdn)-

Goal: use CRR constraints to choose (pn, un,dn).
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The problem setup D19-S03(a)

We seek to construct a fixed, finite-n Binomial tree model over the time period [0,T]. l.e., we seek to compute

We assume that the (continuous-time) drift and volatility parameters (i, o) are available to us.
(E.g., we've computed approximations to them from historical data.)
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The problem setup D19-S03(b)

We seek to construct a fixed, finite-n Binomial tree model over the time period [0,T]. l.e., we seek to compute

We assume that the (continuous-time) drift and volatility parameters (i, o) are available to us.

(E.g., we've computed approximations to them from historical data.)

Our starting point should be to understand how the CRR assumptions/constraints affect (pn, un, dy):
— dp = 1/uyp = need only determine (pn, un,).
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The problem setup D19-S03(c)

We seek to construct a fixed, finite-n Binomial tree model over the time period [0,T]. l.e., we seek to compute

We assume that the (continuous-time) drift and volatility parameters (i, o) are available to us.
(E.g., we've computed approximations to them from historical data.)

Our starting point should be to understand how the CRR assumptions/constraints affect (pn, un, dy):
— dp = 1/uyp = need only determine (pn, un,).
— Drift matching: ldeally, we have,

ELj ntoo
= pn —> L.
hn
We can't really do this directly since we only want to construct (py,ur) for finite n. Hence, we will instead
Impose:
BL; _
o Un ~ W
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The problem setup D19-S03(d)

We seek to construct a fixed, finite-n Binomial tree model over the time period [0,T]. l.e., we seek to compute

We assume that the (continuous-time) drift and volatility parameters (i, o) are available to us.
(E.g., we've computed approximations to them from historical data.)

Our starting point should be to understand how the CRR assumptions/constraints affect (pn, un, dy):
— dp = 1/uyp = need only determine (pn, un,).
— Drift matching: ldeally, we have,

ELj ntoo
= pn —> L.
hn
We can't really do this directly since we only want to construct (py,ur) for finite n. Hence, we will instead
Impose:
BL; _
he Hn ~ [

— We have a similar condition for matching the volatility:

VarLj 2 2
hn "
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The CRR setup, | D19-S04(a)

Our CRR conditions require statistics of the inter-period log-returns, e.g.,

EL;, VarL;.

= [ Dogu., W/M)bp -
ST o e ()
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The CRR setup, | D19-S04(b)

Our CRR conditions require statistics of the inter-period log-returns, e.g.,
ELj, VarLj.
Of course, we know how to compute these: We have,

L; =logd, + X log Z—n = —logun + 2X; logun,

n

where X ; ~ Bernoulli(pn,).
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The CRR setup, | D19-S04(c)

Our CRR conditions require statistics of the inter-period log-returns, e.g.,
ELj, VarLj.

Of course, we know how to compute these: We have,

L; =logdn + X; logZ—n = —logun + 2X;logun, < (QKJ ”/)/&3 Un

n

where X ; ~ Bernoulli(pn,). (Rf[ﬂ {/ . r_E Xd - P/l ) var XL} = /ﬂ,\ //"/97\ ) )

Therefore:

ELj = (2p,— 1) log un, VarL;j = 4pn(1 = pn)(log un)*
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The CRR setup, |l D19-S05(a)

Therefore, our CRR constraints are the following:

1
dn -

Un
. 219;;;11%% (/M«: fEL/A)

o2 = 4p”(2;p”)(logun)2- (0‘2 = ;\L Vaf [ )

where we have replaced some instances of “x" with “="".

\/1/@ can gg[m M/{f) (MY\/H/IW\ Syg}ew\ th @iw{jw {:W (()NUA)1 —MZ/\(/,;;,

Dmi’f we'// VIS ap W/OWWX{WI%@ 90[1#/'014&.
Thea* tur [ﬂf% n PA“~>7L it W,\[HJ = 1

—
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The CRR setup, Il

Therefore, our CRR constraints are the following:

1

dn -
Un
2p — 11

= ogu

2! o gUn
4 1

o2 = pn( pn) (logun)2

where we have replaced some instances of “x" with “="".

After some computations and approximations, we arrive at the following

1 f— f—

D19-S05(b)

real-world CRR equations:

dn ~ exp(—or/hy).
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The real-world CRR tree D19-S06(a)

A “real-world” CRR tree/model is therefore constructed in the following way:
— Historical data is used to compute an asset’s continuous-time drift and volatility (u, o)
— The terminal time T" and number of periods n is determined. h,, = T'/n.

— The real-world CRR equations are used to set (pn, Un,dn):

1
Pn= 5 <1 + g«/hn) : un, = exp(ov/hn), dn = exp(—o+/hn).
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Let's play a game D19-S07(a)
Which is the simulated price?
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Let's play a game D19-S07(b)
Which is the simulated price?
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Let's play a game, Il D19-S08(a)

Which prices are simulated?
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Let's play a game, Il D19-S08(b)

Which prices are simulated?
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Some CRR properties, | D19-S09(a)

Some initial observations about the tuple (py, un,dy) of the real-world CRR model:
— Because uy,, = exp(cvhy), and hy, = T'/n, then

lim u, = 1,
ntoo

and similarly for d,, = 1/un,.
l.e., the uptick and downtick geometric rates become very close to unity for large n.
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Some CRR properties, | D19-S09(b)

Some initial observations about the tuple (py, un,dy) of the real-world CRR model:
— Because uy,, = exp(cvhy), and hy, = T'/n, then

lim u, = 1,
ntoo

and similarly for d,, = 1/un,.
l.e., the uptick and downtick geometric rates become very close to unity for large n.

— Because p,, = % (1 + gx/E,D then

lim = —,
nTOOpn 2

so that for large n the CRR tree tends toward fair coin flips.
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Some CRR properties, |l D19-S10(a)

What kind of statistics does S,, have under this model? We have,
n
Sn = Soel = Sg exp(z Lj).
j=1
We've seen that

]ESn = SO (pnun + (1 _pn)dn)n )

and we have the real-world CRR equations:

1
b= L (14 V), un = exp(oy/n), dn = exp(~o/hm).

o

A,,‘— //u V/I/”“
B 6 put (o) 6 =6 [lde B+ /4~ )]

’)—rJT\iq
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R
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Some CRR properties, |l D19-S10(b)

What kind of statistics does S,, have under this model? We have,
n
Sn = Soel = Sg exp(z Lj).
j=1
We've seen that

ESn = SO (pnun + (1 _pﬂ)dn)n )

and we have the real-world CRR equations:

1
P = — (1 + H hn> : un = exp(oy/ hn), dn = exp(—o+\/ hn).
2 o

These allow us to conclude:

o2
lim ES,, = Soexp [(u + —) T] ,
n1oo 2

i.e., there is a well-defined limit independent of the discretization parameters n and h,,.
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Some CRR properties, Il D19-S11(a)

What kind of distribution does S;, have? It will be useful to write Sy, in terms of standardizations of L.
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Some CRR properties, Il D19-S11(b)

What kind of distribution does S;, have? It will be useful to write Sy, in terms of standardizations of L.

A standardization of L; (or of any random variable) is
j;? _ L —EL; |
«/VarLj

i.e., it is a centered version of L, inversely scaled by its standard deviation: standardizations of random variables are
mean-0 and variance-1.

With the standardization of the L; variables, we have,

n
Sn = Soexp [ 3 (BL; +/VarL; L )
j=1
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