
Math 5760/6890: Introduction to Mathematical Finance

Continuous-time limits, I
See Petters and Dong 2016, Section 5.2, 5.3

Akil Narayan1

1Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

Fall 2024

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Continuous-time limits of tree models, I

 



The binomial tree pricing and CRR models D20-S02(a)

We have modeled a security’s price Sj “ Sptjq via,

Sj`1 “ Gj`1Sj , Gj “
"

u, with probability p
d, with probability 1 ´ p

From this model, we’ve concluded:
– L :“ logpSn{S0q is a scaled/shifted Binomialpn, pq random variable.
– Sn “ S0eL is the exponential of a scaled/shifted Binomial random variable
– The triple pp, u, dq determines the distribution entirely.

The CRR model places the following additional constraints on our standard Binomial tree model:
– Geometric symmetry of tree prices: u “ 1{d
– The continuous-time limit of the expected log-return matches the real-world drift:
– The continuous-time limit of the variance of the log-return matches the real-world (squared) volatility:

This results (after some approximation) in the following real-world CRR equations:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, pn “ 1

2

´
1 ` µ

�

a
hn

¯
.
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The binomial tree pricing and CRR models D20-S02(b)

We have modeled a security’s price Sj “ Sptjq via,

Sj`1 “ Gj`1Sj , Gj “
"

u, with probability p
d, with probability 1 ´ p

From this model, we’ve concluded:
– L :“ logpSn{S0q is a scaled/shifted Binomialpn, pq random variable.
– Sn “ S0eL is the exponential of a scaled/shifted Binomial random variable
– The triple pp, u, dq determines the distribution entirely.

The CRR model places the following additional constraints on our standard Binomial tree model:
– Geometric symmetry of tree prices: u “ 1{d
– The continuous-time limit of the expected log-return matches the real-world drift:
– The continuous-time limit of the variance of the log-return matches the real-world (squared) volatility:

This results (after some approximation) in the following real-world CRR equations:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, pn “ 1

2

´
1 ` µ

�

a
hn

¯
.
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The distribution of Sn D20-S03(a)

What kind of distribution does Sn have? It will be useful to write Sn in terms of standardizations of Lj .

A standardization of Lj (or of any random variable) is

ÄLj “ Lj ´ Lja
VarLj

,

i.e., it is a centered version of Lj , inversely scaled by its standard deviation: standardizations of random variables are
mean-0 and variance-1.

In terms of the Binomial tree parameters pn, we have that,

Lj “ µhn, VarLj “ 4pnp1 ´ pnq�2hn.

Note that this agrees with our real-world CRR approximation for large n: VarLj „ �2hn. Hence, the rLj variables
have distribution:

With the standardization of the Lj variables, we have,

Sn “ S0 exp

¨

˝
nÿ

j“1

´
Lj ` rLj

a
VarLj

¯
˛

‚.
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The distribution of Sn D20-S03(b)

What kind of distribution does Sn have? It will be useful to write Sn in terms of standardizations of Lj .

A standardization of Lj (or of any random variable) is

ÄLj “ Lj ´ Lja
VarLj

,

i.e., it is a centered version of Lj , inversely scaled by its standard deviation: standardizations of random variables are
mean-0 and variance-1.

In terms of the Binomial tree parameters pn, we have that,

Lj “ µhn, VarLj “ 4pnp1 ´ pnq�2hn.

Note that this agrees with our real-world CRR approximation for large n: VarLj „ �2hn. Hence, the rLj variables
have distribution:

With the standardization of the Lj variables, we have,

Sn “ S0 exp

¨

˝
nÿ

j“1

´
Lj ` rLj

a
VarLj

¯
˛

‚.
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The distribution of Sn D20-S03(c)

What kind of distribution does Sn have? It will be useful to write Sn in terms of standardizations of Lj .

A standardization of Lj (or of any random variable) is

ÄLj “ Lj ´ Lja
VarLj

,

i.e., it is a centered version of Lj , inversely scaled by its standard deviation: standardizations of random variables are
mean-0 and variance-1.

In terms of the Binomial tree parameters pn, we have that,

Lj “ µhn, VarLj “ 4pnp1 ´ pnq�2hn.

Note that this agrees with our real-world CRR approximation for large n: VarLj „ �2hn. Hence, the rLj variables
have distribution:

With the standardization of the Lj variables, we have,

Sn “ S0 exp

¨

˝
nÿ

j“1

´
Lj ` rLj

a
VarLj

¯
˛

‚.
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The distribution of Sn D20-S04(a)

Sn “ S0 exp

¨

˝
nÿ

j“1

´
Lj ` rLj

a
VarLj

¯
˛

‚.

This expression allows to us understand the large-n behavior of Sn.

After some manipulation, we find that

Sn “ S0 exp

¨

˝µT `
b
4pnp1 ´ pnq�

?
T

1?
n

nÿ

j“1

rLj

˛

‚

The goal is to take n Ò 8.

Note that:

lim
nÒ8

exppµT q “ exppµT q, lim
nÒ8

expp�
?
T

b
4pnp1 ´ pnqq “ expp�

?
T q.

But what about exp
´

1?
n

∞n
j“1

rLj

¯
?
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The distribution of Sn D20-S04(b)

Sn “ S0 exp

¨

˝
nÿ

j“1

´
Lj ` rLj

a
VarLj

¯
˛

‚.

This expression allows to us understand the large-n behavior of Sn.

After some manipulation, we find that

Sn “ S0 exp

¨

˝µT `
b
4pnp1 ´ pnq�

?
T

1?
n

nÿ

j“1

rLj

˛

‚

The goal is to take n Ò 8.

Note that:

lim
nÒ8

exppµT q “ exppµT q, lim
nÒ8

expp�
?
T

b
4pnp1 ´ pnqq “ expp�

?
T q.

But what about exp
´

1?
n

∞n
j“1

rLj

¯
?
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The distribution of Sn D20-S04(c)

Sn “ S0 exp

¨

˝
nÿ

j“1

´
Lj ` rLj

a
VarLj

¯
˛

‚.

This expression allows to us understand the large-n behavior of Sn.

After some manipulation, we find that

Sn “ S0 exp

¨

˝µT `
b
4pnp1 ´ pnq�

?
T

1?
n

nÿ

j“1

rLj

˛

‚

The goal is to take n Ò 8.

Note that:

lim
nÒ8

exppµT q “ exppµT q, lim
nÒ8

expp�
?
T

b
4pnp1 ´ pnqq “ expp�

?
T q.

But what about exp
´

1?
n

∞n
j“1

rLj

¯
?
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The central limit theorem D20-S05(a)

The form of the quantity,

1?
n

nÿ

j“1

rLj ,

is reminiscent of a classical result in probability theory.

Theorem (Central Limit Theorem)
Let tXju8

j“1 be iid random variables with zero mean and variance �2. Then,

lim
nÑ8

1?
n

nÿ

j“1

Xj „ N p0,�2q.

Remarks:
– This result is convergence in distribution, but is not stronger than that.
– A direct corollary: the error of the empirical “Monte Carlo” mean scales like

a
VarXj{?

n.
– It is important that the Xj random variables not depend on n.
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The central limit theorem D20-S05(b)

The form of the quantity,

1?
n

nÿ

j“1

rLj ,

is reminiscent of a classical result in probability theory.

Theorem (Central Limit Theorem)
Let tXju8

j“1 be iid random variables with zero mean and variance �2. Then,

lim
nÑ8

1?
n

nÿ

j“1

Xj „ N p0,�2q.

Remarks:
– This result is convergence in distribution, but is not stronger than that.
– A direct corollary: the error of the empirical “Monte Carlo” mean scales like

a
VarXj{?

n.
– It is important that the Xj random variables not depend on n.
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The central limit theorem D20-S05(c)

The form of the quantity,

1?
n

nÿ

j“1

rLj ,

is reminiscent of a classical result in probability theory.

Theorem (Central Limit Theorem)
Let tXju8

j“1 be iid random variables with zero mean and variance �2. Then,

lim
nÑ8

1?
n

nÿ

j“1

Xj „ N p0,�2q.

Remarks:
– This result is convergence in distribution, but is not stronger than that.
– A direct corollary: the error of the empirical “Monte Carlo” mean scales like

a
VarXj{?

n.
– It is important that the Xj random variables not depend on n.
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The central limit theorem D20-S05(d)

The form of the quantity,

1?
n

nÿ

j“1

rLj ,

is reminiscent of a classical result in probability theory.

Theorem (Central Limit Theorem)
Let tXju8

j“1 be iid random variables with zero mean and variance �2. Then,

lim
nÑ8

1?
n

nÿ

j“1

Xj „ N p0,�2q.

Remarks:
– This result is convergence in distribution, but is not stronger than that.
– A direct corollary: the error of the empirical “Monte Carlo” mean scales like

a
VarXj{?

n.
– It is important that the Xj random variables not depend on n.
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The central limit theorem D20-S05(e)

The form of the quantity,

1?
n

nÿ

j“1

rLj ,

is reminiscent of a classical result in probability theory.

Theorem (Central Limit Theorem)
Let tXju8

j“1 be iid random variables with zero mean and variance �2. Then,

lim
nÑ8

1?
n

nÿ

j“1

Xj „ N p0,�2q.

Remarks:
– This result is convergence in distribution, but is not stronger than that.
– A direct corollary: the error of the empirical “Monte Carlo” mean scales like

a
VarXj{?

n.
– It is important that the Xj random variables not depend on n.
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Back to the CRR model D20-S06(a)

We need to determine the n-asymptotic behavior of

1?
n

nÿ

j“1

rLj ,

where the rLj are indeed iid.

The problem: The distribution of rLj does depend on n.

To more formally understand why this is an issue: for each fixed n, we have the collection of random variables,

rLn,1, rLn,2, . . . , rLn,n, rLn,j “ Lj ´ Lja
VarLj

However, the parameter ppn, un, dnq depend on n, and therefore the distribution of rLn,j depends on n.

The Central Limit Theorem as we’ve stated it does not directly tell us about the n Ñ 8 limit of,

1?
n

nÿ

j“1

rLn,j .
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Back to the CRR model D20-S06(b)

We need to determine the n-asymptotic behavior of

1?
n

nÿ

j“1

rLj ,

where the rLj are indeed iid.

The problem: The distribution of rLj does depend on n.

To more formally understand why this is an issue: for each fixed n, we have the collection of random variables,

rLn,1, rLn,2, . . . , rLn,n, rLn,j “ Lj ´ Lja
VarLj

However, the parameter ppn, un, dnq depend on n, and therefore the distribution of rLn,j depends on n.

The Central Limit Theorem as we’ve stated it does not directly tell us about the n Ñ 8 limit of,

1?
n

nÿ

j“1

rLn,j .
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Back to the CRR model D20-S06(c)

We need to determine the n-asymptotic behavior of

1?
n

nÿ

j“1

rLj ,

where the rLj are indeed iid.

The problem: The distribution of rLj does depend on n.

To more formally understand why this is an issue: for each fixed n, we have the collection of random variables,

rLn,1, rLn,2, . . . , rLn,n, rLn,j “ Lj ´ Lja
VarLj

However, the parameter ppn, un, dnq depend on n, and therefore the distribution of rLn,j depends on n.

The Central Limit Theorem as we’ve stated it does not directly tell us about the n Ñ 8 limit of,

1?
n

nÿ

j“1

rLn,j .
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Back to the CRR model D20-S06(d)

We need to determine the n-asymptotic behavior of

1?
n

nÿ

j“1

rLj ,

where the rLj are indeed iid.

The problem: The distribution of rLj does depend on n.

To more formally understand why this is an issue: for each fixed n, we have the collection of random variables,

rLn,1, rLn,2, . . . , rLn,n, rLn,j “ Lj ´ Lja
VarLj

However, the parameter ppn, un, dnq depend on n, and therefore the distribution of rLn,j depends on n.

The Central Limit Theorem as we’ve stated it does not directly tell us about the n Ñ 8 limit of,

1?
n

nÿ

j“1

rLn,j .
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The fix D20-S07(a)

Although the distribution of rLn,j depends on n, for large n and m the distributions of rLn,j and rLm,j are actually
quite similar.

In our case, for example, we could write the pn ` 1qst summation as,

1?
n ` 1

n`1ÿ

j“1

rLn`1,j “ 1?
n ` 1

nÿ

j“1

rLn,j ` 1?
n ` 1

rLn`1,n`1

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
paq

` 1?
n ` 1

nÿ

j“1

”
rLn`1,j ´ rLn,j

ı
.

Term (a) is a sum of n ` 1 independent random variables scaled by 1{?
n ` 1, but the pn ` 1qst summand is not

identically distributed.

Hence, if we had a Central Limit Theorem for non-identically distributed random variables, we could tackle this case.
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The fix D20-S07(b)

Although the distribution of rLn,j depends on n, for large n and m the distributions of rLn,j and rLm,j are actually
quite similar.

In our case, for example, we could write the pn ` 1qst summation as,

1?
n ` 1

n`1ÿ

j“1

rLn`1,j “ 1?
n ` 1

nÿ

j“1

rLn,j ` 1?
n ` 1

rLn`1,n`1

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
paq

` 1?
n ` 1

nÿ

j“1

”
rLn`1,j ´ rLn,j

ı
.

Term (a) is a sum of n ` 1 independent random variables scaled by 1{?
n ` 1, but the pn ` 1qst summand is not

identically distributed.

Hence, if we had a Central Limit Theorem for non-identically distributed random variables, we could tackle this case.
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The fix D20-S07(c)

Although the distribution of rLn,j depends on n, for large n and m the distributions of rLn,j and rLm,j are actually
quite similar.

In our case, for example, we could write the pn ` 1qst summation as,

1?
n ` 1

n`1ÿ

j“1

rLn`1,j “ 1?
n ` 1

nÿ

j“1

rLn,j ` 1?
n ` 1

rLn`1,n`1

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
paq

` 1?
n ` 1

nÿ

j“1

”
rLn`1,j ´ rLn,j

ı
.

Term (a) is a sum of n ` 1 independent random variables scaled by 1{?
n ` 1, but the pn ` 1qst summand is not

identically distributed.

Hence, if we had a Central Limit Theorem for non-identically distributed random variables, we could tackle this case.
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The Lindeberg Condition D20-S08(a)
Let tXju8

j“1 be independent and mean-zero, but not identically distributed.

Definition (Lindeberg’s condition)
Let ⌃2

n :“ ∞n
j“1 VarXj .

Lindeberg’s condition is the following on the sequence tXju8
j“1: For every ✏ ° 0, we have,

lim
nÒ8

∞n
j“1

”
X2

j |Xj |°✏⌃n

ı

⌃2
n

“ 0.

Theorem ((Lindeberg) Central Limit Theorem)
Suppose tXju8

j“1 are independent and mean-zero, and satisfy Lindeberg’s condition. Then,

lim
nÒ8

1

⌃n

nÿ

j“1

Xj „ N p0, 1q.

The upshot for us: so long as our random variables satisfy the appropriate version of Lindeberg’s condition, then we
can use the Central Limit Theorem.
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The Lindeberg Condition D20-S08(b)
Let tXju8

j“1 be independent and mean-zero, but not identically distributed.

Definition (Lindeberg’s condition)
Let ⌃2

n :“ ∞n
j“1 VarXj .

Lindeberg’s condition is the following on the sequence tXju8
j“1: For every ✏ ° 0, we have,

lim
nÒ8

∞n
j“1

”
X2

j |Xj |°✏⌃n

ı

⌃2
n

“ 0.

Theorem ((Lindeberg) Central Limit Theorem)
Suppose tXju8

j“1 are independent and mean-zero, and satisfy Lindeberg’s condition. Then,

lim
nÒ8

1

⌃n

nÿ

j“1

Xj „ N p0, 1q.

The upshot for us: so long as our random variables satisfy the appropriate version of Lindeberg’s condition, then we
can use the Central Limit Theorem.
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The Lindeberg Condition D20-S08(c)
Let tXju8

j“1 be independent and mean-zero, but not identically distributed.

Definition (Lindeberg’s condition)
Let ⌃2

n :“ ∞n
j“1 VarXj .

Lindeberg’s condition is the following on the sequence tXju8
j“1: For every ✏ ° 0, we have,

lim
nÒ8

∞n
j“1

”
X2

j |Xj |°✏⌃n

ı

⌃2
n

“ 0.

Theorem ((Lindeberg) Central Limit Theorem)
Suppose tXju8

j“1 are independent and mean-zero, and satisfy Lindeberg’s condition. Then,

lim
nÒ8

1

⌃n

nÿ

j“1

Xj „ N p0, 1q.

The upshot for us: so long as our random variables satisfy the appropriate version of Lindeberg’s condition, then we
can use the Central Limit Theorem.
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Lindeberg’s condition D20-S09(a)

For our (“triangular”) sequence of random variables, trLn,junj“1 with n P , Lindeberg’s condition for this setup is:
For every ✏ ° 0,

lim
nÒ8

1

n

nÿ

j“1

”
rL2
n,j | rLn,j |°?

n✏

ı
“ 0.

This holds in our particular case, which implies:

lim
nÒ8

1?
n

nÿ

j“1

rLn,j „ N p0, 1q.
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Lindeberg’s condition D20-S09(b)

For our (“triangular”) sequence of random variables, trLn,junj“1 with n P , Lindeberg’s condition for this setup is:
For every ✏ ° 0,

lim
nÒ8

1

n

nÿ

j“1

”
rL2
n,j | rLn,j |°?

n✏

ı
“ 0.

This holds in our particular case, which implies:

lim
nÒ8

1?
n

nÿ

j“1

rLn,j „ N p0, 1q.
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Back to securities D20-S10(a)
Finally, recall that we started with the assertions:

Sn “ S0 exp

¨

˝µT `
b
4pnp1 ´ pnq�

?
T

1?
n

nÿ

j“1

rLj

˛

‚

lim
nÒ8

exppµT q “ exppµT q,

lim
nÒ8

expp�
?
T

b
4pnp1 ´ pnqq “ expp�

?
T q.

We now add to this:

lim
nÒ8

1?
n

nÿ

j“1

rLn,j „ N p0, 1q.

Therefore, if X „ N p0, 1q, then

lim
nÒ8

Sn „ S0 exppµT ` X�
?
T q.

Put another way: if Z „ N pµT,�
?
T q, then

lim
nÒ8

Sn „ S0 exppZq,

i.e., the continuous-time limit of Sn is the exponential of a normally distributed random variable.
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Back to securities D20-S10(b)
Finally, recall that we started with the assertions:

Sn “ S0 exp

¨

˝µT `
b
4pnp1 ´ pnq�

?
T

1?
n

nÿ

j“1

rLj

˛

‚

lim
nÒ8

exppµT q “ exppµT q,

lim
nÒ8

expp�
?
T

b
4pnp1 ´ pnqq “ expp�

?
T q.

We now add to this:

lim
nÒ8

1?
n

nÿ

j“1

rLn,j „ N p0, 1q.

Therefore, if X „ N p0, 1q, then

lim
nÒ8

Sn „ S0 exppµT ` X�
?
T q.

Put another way: if Z „ N pµT,�
?
T q, then

lim
nÒ8

Sn „ S0 exppZq,

i.e., the continuous-time limit of Sn is the exponential of a normally distributed random variable.
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Back to securities D20-S10(c)
Finally, recall that we started with the assertions:

Sn “ S0 exp

¨

˝µT `
b
4pnp1 ´ pnq�

?
T

1?
n

nÿ

j“1

rLj

˛

‚

lim
nÒ8

exppµT q “ exppµT q,

lim
nÒ8

expp�
?
T

b
4pnp1 ´ pnqq “ expp�

?
T q.

We now add to this:

lim
nÒ8

1?
n

nÿ

j“1

rLn,j „ N p0, 1q.

Therefore, if X „ N p0, 1q, then

lim
nÒ8

Sn „ S0 exppµT ` X�
?
T q.

Put another way: if Z „ N pµT,�
?
T q, then

lim
nÒ8

Sn „ S0 exppZq,

i.e., the continuous-time limit of Sn is the exponential of a normally distributed random variable.
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Back to securities D20-S10(d)
Finally, recall that we started with the assertions:

Sn “ S0 exp

¨

˝µT `
b
4pnp1 ´ pnq�

?
T

1?
n

nÿ

j“1

rLj

˛

‚

lim
nÒ8

exppµT q “ exppµT q,

lim
nÒ8

expp�
?
T

b
4pnp1 ´ pnqq “ expp�

?
T q.

We now add to this:

lim
nÒ8

1?
n

nÿ

j“1

rLn,j „ N p0, 1q.

Therefore, if X „ N p0, 1q, then

lim
nÒ8

Sn „ S0 exppµT ` X�
?
T q.

Put another way: if Z „ N pµT,�
?
T q, then

lim
nÒ8

Sn „ S0 exppZq,

i.e., the continuous-time limit of Sn is the exponential of a normally distributed random variable.
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The continuous-time price D20-S11(a)

If we let SpT q denote the n Ò 8 limit of Sn, we conclude that,

SpT q „ S0 exppZq, Z „ N pµT,�2T q.

A random variable that is the exponential of a normal random variable is called a lognormal random variable.

I.e., our continuous-time security price is a lognormal random variable, which is typically written as,

SpT q „ lognormalpµT ` logS0,�
2T q.

– Note that T is arbitrary; e.g., the same rationale implies that SpT {2q is also a lognormal random variable.
– It is not true that SpT q “ µT or SpT q “ exppµT q. In fact, one can show that

SpT q “ exp

ˆ
µT ` �2

2
T

˙
.

Note that this matches our expression for the mean from last time.
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The continuous-time price D20-S11(b)

If we let SpT q denote the n Ò 8 limit of Sn, we conclude that,

SpT q „ S0 exppZq, Z „ N pµT,�2T q.

A random variable that is the exponential of a normal random variable is called a lognormal random variable.

I.e., our continuous-time security price is a lognormal random variable, which is typically written as,

SpT q „ lognormalpµT ` logS0,�
2T q.

– Note that T is arbitrary; e.g., the same rationale implies that SpT {2q is also a lognormal random variable.
– It is not true that SpT q “ µT or SpT q “ exppµT q. In fact, one can show that

SpT q “ exp

ˆ
µT ` �2

2
T

˙
.

Note that this matches our expression for the mean from last time.
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The continuous-time price D20-S11(c)

If we let SpT q denote the n Ò 8 limit of Sn, we conclude that,

SpT q „ S0 exppZq, Z „ N pµT,�2T q.

A random variable that is the exponential of a normal random variable is called a lognormal random variable.

I.e., our continuous-time security price is a lognormal random variable, which is typically written as,

SpT q „ lognormalpµT ` logS0,�
2T q.

– Note that T is arbitrary; e.g., the same rationale implies that SpT {2q is also a lognormal random variable.
– It is not true that SpT q “ µT or SpT q “ exppµT q. In fact, one can show that

SpT q “ exp

ˆ
µT ` �2

2
T

˙
.

Note that this matches our expression for the mean from last time.
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The continuous-time price D20-S11(d)

If we let SpT q denote the n Ò 8 limit of Sn, we conclude that,

SpT q „ S0 exppZq, Z „ N pµT,�2T q.

A random variable that is the exponential of a normal random variable is called a lognormal random variable.

I.e., our continuous-time security price is a lognormal random variable, which is typically written as,

SpT q „ lognormalpµT ` logS0,�
2T q.

– Note that T is arbitrary; e.g., the same rationale implies that SpT {2q is also a lognormal random variable.
– It is not true that SpT q “ µT or SpT q “ exppµT q. In fact, one can show that

SpT q “ exp

ˆ
µT ` �2

2
T

˙
.

Note that this matches our expression for the mean from last time.
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Modeling continuous-time prices D20-S12(a)
For any t ° 0, our continuous-time CRR model states:

Sptq „ lognormalpµt ` logS0,�
2tq.

How would we simulate a trajectory given pS0, µ,�2q? Well, for each t, we could:
1. Generate Z „ N pµt ` logS0,�2tq
2. Set Sptq “ exppZq

(It’s true that above Sptq as the correct distribution.)
This, unfortunately, does not produce what we expect:
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Modeling continuous-time prices D20-S12(b)
For any t ° 0, our continuous-time CRR model states:

Sptq „ lognormalpµt ` logS0,�
2tq.

How would we simulate a trajectory given pS0, µ,�2q? Well, for each t, we could:
1. Generate Z „ N pµt ` logS0,�2tq
2. Set Sptq “ exppZq

(It’s true that above Sptq as the correct distribution.)
This, unfortunately, does not produce what we expect:
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Modeling continuous-time prices D20-S12(c)
For any t ° 0, our continuous-time CRR model states:

Sptq „ lognormalpµt ` logS0,�
2tq.

How would we simulate a trajectory given pS0, µ,�2q? Well, for each t, we could:
1. Generate Z „ N pµt ` logS0,�2tq
2. Set Sptq “ exppZq

(It’s true that above Sptq as the correct distribution.)
This, unfortunately, does not produce what we expect:
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Temporal structure D20-S13(a)

The missing piece of the puzzle for us is the temporal structure of the signal: consider the model

Sptq „ lognormalpµt ` logS0,�
2tq.

for very small t ! 1.

In this case, Sptq is “very close” to exp logS0 “ S0. This fact is reflected in the generated image.

What is not accounted for is the Markovian structure of this process: I.e., while SpT q has the distributed specified, if
we are provided that the price at time T ´ ✏ is SpT ´ ✏q “ s, then SpT q conditioned on this value has a lognormal
distribution with small parameters:

SpT q
ˇ̌
SpT ´ ✏q „ lognormalplogSpT ´ ✏q ` µ✏,�2✏q

I.e., SpT q should be constrained to lie “close” to SpT ´ ✏q, and in particular the asset price should be continuous in
time.

We have not captured this structure by only inspecting the distribution.

To more formally understand these concepts, we’ll need to introduce stochastic processes (next time).
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Temporal structure D20-S13(b)

The missing piece of the puzzle for us is the temporal structure of the signal: consider the model

Sptq „ lognormalpµt ` logS0,�
2tq.

for very small t ! 1.

In this case, Sptq is “very close” to exp logS0 “ S0. This fact is reflected in the generated image.

What is not accounted for is the Markovian structure of this process: I.e., while SpT q has the distributed specified, if
we are provided that the price at time T ´ ✏ is SpT ´ ✏q “ s, then SpT q conditioned on this value has a lognormal
distribution with small parameters:

SpT q
ˇ̌
SpT ´ ✏q „ lognormalplogSpT ´ ✏q ` µ✏,�2✏q

I.e., SpT q should be constrained to lie “close” to SpT ´ ✏q, and in particular the asset price should be continuous in
time.

We have not captured this structure by only inspecting the distribution.

To more formally understand these concepts, we’ll need to introduce stochastic processes (next time).
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Temporal structure D20-S13(c)

The missing piece of the puzzle for us is the temporal structure of the signal: consider the model

Sptq „ lognormalpµt ` logS0,�
2tq.

for very small t ! 1.

In this case, Sptq is “very close” to exp logS0 “ S0. This fact is reflected in the generated image.

What is not accounted for is the Markovian structure of this process: I.e., while SpT q has the distributed specified, if
we are provided that the price at time T ´ ✏ is SpT ´ ✏q “ s, then SpT q conditioned on this value has a lognormal
distribution with small parameters:

SpT q
ˇ̌
SpT ´ ✏q „ lognormalplogSpT ´ ✏q ` µ✏,�2✏q

I.e., SpT q should be constrained to lie “close” to SpT ´ ✏q, and in particular the asset price should be continuous in
time.

We have not captured this structure by only inspecting the distribution.

To more formally understand these concepts, we’ll need to introduce stochastic processes (next time).
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Risk-neutrality redux D20-S14(a)

It’s worth considering one more specialization of the (finite-n) binomial tree: the risk neutral tree.

Recall the principle of risk neutrality: a probabilstic model is risk neutral if the model’s expected value of the asset
equals the future value of today’s price.

When in the context of probabilistic modeling, risk neutrality assumes that the outcomes are the same as in the
marketplace.

For binomial trees, the family of outcomes is determined entirely by pun, dnq, which in turn are estimated from real
(marketplace) pµ,�q data.

Hence, in a risk-neutral “world”, the values un and dn should match their values in the marketplace, i.e., due to the
real-world CRR equations:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, (risk neutral)
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Risk-neutrality redux D20-S14(b)

It’s worth considering one more specialization of the (finite-n) binomial tree: the risk neutral tree.

Recall the principle of risk neutrality: a probabilstic model is risk neutral if the model’s expected value of the asset
equals the future value of today’s price.

When in the context of probabilistic modeling, risk neutrality assumes that the outcomes are the same as in the
marketplace.

For binomial trees, the family of outcomes is determined entirely by pun, dnq, which in turn are estimated from real
(marketplace) pµ,�q data.

Hence, in a risk-neutral “world”, the values un and dn should match their values in the marketplace, i.e., due to the
real-world CRR equations:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, (risk neutral)
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Risk-neutrality redux D20-S14(c)

It’s worth considering one more specialization of the (finite-n) binomial tree: the risk neutral tree.

Recall the principle of risk neutrality: a probabilstic model is risk neutral if the model’s expected value of the asset
equals the future value of today’s price.

When in the context of probabilistic modeling, risk neutrality assumes that the outcomes are the same as in the
marketplace.

For binomial trees, the family of outcomes is determined entirely by pun, dnq, which in turn are estimated from real
(marketplace) pµ,�q data.

Hence, in a risk-neutral “world”, the values un and dn should match their values in the marketplace, i.e., due to the
real-world CRR equations:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, (risk neutral)
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The risk-neutral probability D20-S15(a)

What does change in a risk-neutral world is the probabilistic structure, i.e., pn.

We choose pn so that,

FVpSpt0qq “ Spt1q.

To determine future value, we need the analogue of a risk-free (interest) rate for securities.

Recall that this is provided by
– the actual risk-free rate r ° 0 (e.g., from risk-free securities)
– the dividend rate ´q † 0 (a negative rate because paying dividends decreases capital/worth)

Hence: FVpSpt0qq “ epr´qqhnSpt0q. Using this in the risk-neutrality condition, we have,

epr´qqhn “ pnun ` p1 ´ pnqdn,

i.e.,

pn “ epr´qqhn ´ dn
un ´ dn

.

(Recall a convenient fact: assuming a no-arbitrage market implies 0 † pn † 1.)
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The risk-neutral probability D20-S15(b)

What does change in a risk-neutral world is the probabilistic structure, i.e., pn.

We choose pn so that,

FVpSpt0qq “ Spt1q.

To determine future value, we need the analogue of a risk-free (interest) rate for securities.

Recall that this is provided by
– the actual risk-free rate r ° 0 (e.g., from risk-free securities)
– the dividend rate ´q † 0 (a negative rate because paying dividends decreases capital/worth)

Hence: FVpSpt0qq “ epr´qqhnSpt0q. Using this in the risk-neutrality condition, we have,

epr´qqhn “ pnun ` p1 ´ pnqdn,

i.e.,

pn “ epr´qqhn ´ dn
un ´ dn

.

(Recall a convenient fact: assuming a no-arbitrage market implies 0 † pn † 1.)
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The risk-neutral probability D20-S15(c)

What does change in a risk-neutral world is the probabilistic structure, i.e., pn.

We choose pn so that,

FVpSpt0qq “ Spt1q.

To determine future value, we need the analogue of a risk-free (interest) rate for securities.

Recall that this is provided by
– the actual risk-free rate r ° 0 (e.g., from risk-free securities)
– the dividend rate ´q † 0 (a negative rate because paying dividends decreases capital/worth)

Hence: FVpSpt0qq “ epr´qqhnSpt0q. Using this in the risk-neutrality condition, we have,

epr´qqhn “ pnun ` p1 ´ pnqdn,

i.e.,

pn “ epr´qqhn ´ dn
un ´ dn

.

(Recall a convenient fact: assuming a no-arbitrage market implies 0 † pn † 1.)
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The risk-neutral CRR model D20-S16(a)

The risk-neutral CRR model has the conditions:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, pn “ epr´qqhn ´ dn

un ´ dn
.

With some analysis (similar to the standard CRR model), one can determine that for large n, one has the valid
approximationsk

un “ expp�RN

a
hnq, dn “ expp´�RN

a
hnq, pn “ 1

2

ˆ
1 ` µRN

�RN

a
hn

˙
,

where pµRN ,�RN q are the risk-neutral drift and volatility, which satisfy:

�RN “ �, µRN “ r ´ q ´ �2

2

Hence, one can use these equations to set ppn, un, dnq for a risk-neutral CRR tree.

Note that under this model,

SpT q “ S0 exppµRNT ` T�2
RN {2q “ S0 exp pr ´ qqT

precisely as expected from a risk-neutral model.

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Continuous-time limits of tree models, I



The risk-neutral CRR model D20-S16(b)

The risk-neutral CRR model has the conditions:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, pn “ epr´qqhn ´ dn

un ´ dn
.

With some analysis (similar to the standard CRR model), one can determine that for large n, one has the valid
approximationsk

un “ expp�RN

a
hnq, dn “ expp´�RN

a
hnq, pn “ 1

2

ˆ
1 ` µRN

�RN

a
hn

˙
,

where pµRN ,�RN q are the risk-neutral drift and volatility, which satisfy:

�RN “ �, µRN “ r ´ q ´ �2

2

Hence, one can use these equations to set ppn, un, dnq for a risk-neutral CRR tree.

Note that under this model,

SpT q “ S0 exppµRNT ` T�2
RN {2q “ S0 exp pr ´ qqT

precisely as expected from a risk-neutral model.

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Continuous-time limits of tree models, I



The risk-neutral CRR model D20-S16(c)

The risk-neutral CRR model has the conditions:

un “ expp�
a
hnq, dn “ expp´�

a
hnq, pn “ epr´qqhn ´ dn

un ´ dn
.

With some analysis (similar to the standard CRR model), one can determine that for large n, one has the valid
approximationsk

un “ expp�RN

a
hnq, dn “ expp´�RN

a
hnq, pn “ 1

2

ˆ
1 ` µRN

�RN

a
hn

˙
,

where pµRN ,�RN q are the risk-neutral drift and volatility, which satisfy:

�RN “ �, µRN “ r ´ q ´ �2

2

Hence, one can use these equations to set ppn, un, dnq for a risk-neutral CRR tree.

Note that under this model,

SpT q “ S0 exppµRNT ` T�2
RN {2q “ S0 exp pr ´ qqT

precisely as expected from a risk-neutral model.
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