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A brief intro to stochastic processes D21-S02(a)

In order to gain further understanding of our continuous-time binomial tree construction, we require some language

of stochastic processes.

The high-level idea: we’ll be formalizing random variables that are functions of time t.

To get there we’ll go through some abstract formalization:

Definition
Let ⌦ be (probabilistic) event space, and let I be a set.

A stochastic process X “ Xpt,!q is a map,

X : I ˆ ⌦ Ñ , Xpt,!q P for every t P I and ! P ⌦.

The set I is called the index set of the process X, and is the state space.

For fixed t P I, Xpt, ¨q is a scalar random variable (e.g., and has a distribution).

For fixed ! P ⌦, Xp¨,!q is a deterministic scalar-valued function on the domain I.
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A brief intro to stochastic processes D21-S02(b)

In order to gain further understanding of our continuous-time binomial tree construction, we require some language

of stochastic processes.

The high-level idea: we’ll be formalizing random variables that are functions of time t.

To get there we’ll go through some abstract formalization:

Definition
Let ⌦ be (probabilistic) event space, and let I be a set.

A stochastic process X “ Xpt,!q is a map,

X : I ˆ ⌦ Ñ , Xpt,!q P for every t P I and ! P ⌦.

The set I is called the index set of the process X, and is the state space.

For fixed t P I, Xpt, ¨q is a scalar random variable (e.g., and has a distribution).

For fixed ! P ⌦, Xp¨,!q is a deterministic scalar-valued function on the domain I.
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A brief intro to stochastic processes D21-S02(c)

In order to gain further understanding of our continuous-time binomial tree construction, we require some language

of stochastic processes.

The high-level idea: we’ll be formalizing random variables that are functions of time t.

To get there we’ll go through some abstract formalization:

Definition
Let ⌦ be (probabilistic) event space, and let I be a set.

A stochastic process X “ Xpt,!q is a map,

X : I ˆ ⌦ Ñ , Xpt,!q P for every t P I and ! P ⌦.

The set I is called the index set of the process X, and is the state space.

For fixed t P I, Xpt, ¨q is a scalar random variable (e.g., and has a distribution).

For fixed ! P ⌦, Xp¨,!q is a deterministic scalar-valued function on the domain I.
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Some examples D21-S03(a)

Example
Let X P N be a random vector. (Say the unknown time-1 price in Markowitz portfolio analysis.)

Then X is a stochastic process with index set I “ t1, 2, . . . , Nu.

Example
Consider an n-period Binomial tree model with parameters pp, u, dq “ ppn, un, dnq fixed. (E.g., via a CRR model.)

The asset prices at every period can be lumped into a vector S :“ pS0, S1, . . . , SnqT P n`1.

Then S is a stochastic process with index set I “ t0, 1, . . . , nu.
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Some examples D21-S03(b)

Example
Let X P N be a random vector. (Say the unknown time-1 price in Markowitz portfolio analysis.)

Then X is a stochastic process with index set I “ t1, 2, . . . , Nu.

Example
Consider an n-period Binomial tree model with parameters pp, u, dq “ ppn, un, dnq fixed. (E.g., via a CRR model.)

The asset prices at every period can be lumped into a vector S :“ pS0, S1, . . . , SnqT P n`1.

Then S is a stochastic process with index set I “ t0, 1, . . . , nu.
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Some examples D21-S03(c)

Example
Let X P N be a random vector. (Say the unknown time-1 price in Markowitz portfolio analysis.)

Then X is a stochastic process with index set I “ t1, 2, . . . , Nu.

Example
Consider an n-period Binomial tree model with parameters pp, u, dq “ ppn, un, dnq fixed. (E.g., via a CRR model.)

The asset prices at every period can be lumped into a vector S :“ pS0, S1, . . . , SnqT P n`1.

Then S is a stochastic process with index set I “ t0, 1, . . . , nu.
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Continuum index sets D21-S04(a)

The previous examples had discrete index sets.

Of course, there is nothing stopping us from considering a continuous index set.

For example, if Sptq, t P r0, T s was the continuous-time model that we described from our n Ò 8 limit of the CRR

model, then S is a stochastic process with index set I “ r0, T s.

When we have an index set that’s a continuum, we can discussing some standard notions of functional analysis.

Definition
A realization of a stochastic process Xp¨,!q (for a fixed ! P ⌦) with a continuum index set I is said to have a

continuous sample path if

lim
sÑt

Xps,!q “ Xpx,!q, for every t P I.

This notion of continuity involves a single, fixed !.
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Continuum index sets D21-S04(b)

The previous examples had discrete index sets.

Of course, there is nothing stopping us from considering a continuous index set.

For example, if Sptq, t P r0, T s was the continuous-time model that we described from our n Ò 8 limit of the CRR

model, then S is a stochastic process with index set I “ r0, T s.

When we have an index set that’s a continuum, we can discussing some standard notions of functional analysis.

Definition
A realization of a stochastic process Xp¨,!q (for a fixed ! P ⌦) with a continuum index set I is said to have a

continuous sample path if

lim
sÑt

Xps,!q “ Xpx,!q, for every t P I.

This notion of continuity involves a single, fixed !.
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Continuous stochastic processes D21-S05(a)

A proper extension of continuity (or any other) property to “all !” is more delicate.

Definition
Let X be a stochastic process with a continuum index set I “ r0,8q. Then X is continuous if

r⌦ :“  
! P ⌦

ˇ̌
X has a continuous sample path at !

(
,

satisfies P pr⌦q “ 1.

Alternative languange: X is sample-path continuous, or almost surely continuous, or continuous with probability 1.

Why not “for all !”?

The mathematics of stochastic processes makes statements “with probability 1” the more natural statements to

consider.

Asking for properties “for every !” is too strong in the sense that asserting this limits our flexibility for analysis.

And since we really only care about probabilities of things, asking for statements in terms of probabilities is

conceptually natural.
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Continuous stochastic processes D21-S05(b)

A proper extension of continuity (or any other) property to “all !” is more delicate.

Definition
Let X be a stochastic process with a continuum index set I “ r0,8q. Then X is continuous if

r⌦ :“  
! P ⌦

ˇ̌
X has a continuous sample path at !

(
,

satisfies P pr⌦q “ 1.

Alternative languange: X is sample-path continuous, or almost surely continuous, or continuous with probability 1.

Why not “for all !”?

The mathematics of stochastic processes makes statements “with probability 1” the more natural statements to

consider.

Asking for properties “for every !” is too strong in the sense that asserting this limits our flexibility for analysis.

And since we really only care about probabilities of things, asking for statements in terms of probabilities is

conceptually natural.
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A stochastic process for securities D21-S06(a)

Our next major goal will be to identify and investigate a particular stochastic process that forms the foundation of

mathematical finance.

To describe what kind of stochastic process we want, let’s consider the log-return for our n-period discrete-time

binomial tree model:

Sj “ Sptjq, Lj “ log
Sj`1

Sj
, tj “ jhn, hn “ T

n
.

Recall that we model Lj through a coin flip. More precisely,

Lj „ log dn ` log
un

dn
X, X „ Bernoullippnq.

Suppose we take n Ò 8, and we define Lptq as the cumulative log-return from time 0:

LpT q“ “ ” logS0 ` lim
nÒ8

nÿ

j“1

Lj .

where n Ò 8 affects the values of ppn, un, dnq.

This in principle defines a stochastic process Lptq with index set I “ r0, T s. What properties should this process

have?
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A stochastic process for securities D21-S06(b)

Our next major goal will be to identify and investigate a particular stochastic process that forms the foundation of

mathematical finance.

To describe what kind of stochastic process we want, let’s consider the log-return for our n-period discrete-time

binomial tree model:

Sj “ Sptjq, Lj “ log
Sj`1

Sj
, tj “ jhn, hn “ T

n
.

Recall that we model Lj through a coin flip. More precisely,

Lj „ log dn ` log
un

dn
X, X „ Bernoullippnq.

Suppose we take n Ò 8, and we define Lptq as the cumulative log-return from time 0:

LpT q“ “ ” logS0 ` lim
nÒ8

nÿ

j“1

Lj .

where n Ò 8 affects the values of ppn, un, dnq.

This in principle defines a stochastic process Lptq with index set I “ r0, T s. What properties should this process

have?
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A stochastic process for securities D21-S06(c)

Our next major goal will be to identify and investigate a particular stochastic process that forms the foundation of

mathematical finance.

To describe what kind of stochastic process we want, let’s consider the log-return for our n-period discrete-time

binomial tree model:

Sj “ Sptjq, Lj “ log
Sj`1

Sj
, tj “ jhn, hn “ T

n
.

Recall that we model Lj through a coin flip. More precisely,

Lj „ log dn ` log
un

dn
X, X „ Bernoullippnq.

Suppose we take n Ò 8, and we define Lptq as the cumulative log-return from time 0:

LpT q“ “ ” logS0 ` lim
nÒ8

nÿ

j“1

Lj .

where n Ò 8 affects the values of ppn, un, dnq.

This in principle defines a stochastic process Lptq with index set I “ r0, T s. What properties should this process

have?
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A more explicit construction D21-S07(a)

Consider our real-world CRR tree, which assigns ppn, un, dnq as,

un “ expp�
a
hnq, dn “ expp´�

a
hnq, pn “ 1

2

´
1 ` µ

�

a
hn

¯
,

for given drift and volatility pµ,�q. These numbers affect the distribution of Lj .

Let’s simplify things a bit: let’s consider a particular real-world model with pµ,�q “ p0, 1q.

Under this assumption, then

Lj “
" ?

hn, with probability 1
2 ,

´?
hn, with probability 1

2 ,

I.e., the cumulative sum of the Lj corresponds to a symmetric random walk.

The goal now is to identify/construct a stochastic process Lptq that:

– is consistent with what happens to logpSn{S0q when we take n Ò 8
– has the properties we desire from the finance perspective
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A more explicit construction D21-S07(b)

Consider our real-world CRR tree, which assigns ppn, un, dnq as,

un “ expp�
a
hnq, dn “ expp´�

a
hnq, pn “ 1

2

´
1 ` µ

�

a
hn

¯
,

for given drift and volatility pµ,�q. These numbers affect the distribution of Lj .

Let’s simplify things a bit: let’s consider a particular real-world model with pµ,�q “ p0, 1q.

Under this assumption, then

Lj “
" ?

hn, with probability 1
2 ,

´?
hn, with probability 1

2 ,

I.e., the cumulative sum of the Lj corresponds to a symmetric random walk.

The goal now is to identify/construct a stochastic process Lptq that:

– is consistent with what happens to logpSn{S0q when we take n Ò 8
– has the properties we desire from the finance perspective
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A more explicit construction D21-S07(c)

Consider our real-world CRR tree, which assigns ppn, un, dnq as,

un “ expp�
a
hnq, dn “ expp´�

a
hnq, pn “ 1

2

´
1 ` µ

�

a
hn

¯
,

for given drift and volatility pµ,�q. These numbers affect the distribution of Lj .

Let’s simplify things a bit: let’s consider a particular real-world model with pµ,�q “ p0, 1q.

Under this assumption, then

Lj “
" ?

hn, with probability 1
2 ,

´?
hn, with probability 1

2 ,

I.e., the cumulative sum of the Lj corresponds to a symmetric random walk.

The goal now is to identify/construct a stochastic process Lptq that:

– is consistent with what happens to logpSn{S0q when we take n Ò 8
– has the properties we desire from the finance perspective
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Desiderata D21-S08(a)

We want the following things in a putative continuous-time stochastic process Lptq:
– We want Lptq to be distributed like N p0, tq for all t.

– We want non-overlapping increments, like Lp3q ´ Lp2q and Lp2q ´ Lp1q, to have independent distributions.

– If we know that Lptq “ L0, then we want the increments, Lpt ` ✏q ´ Lptq, to be distributed like N p0, ✏q.
– We want Markovian structure: If we assume the knowledge Lptq “ L0, then our understanding of the properties

and distribution of Lpsq for s ° t is the same as if we had knowledge of Lprq for all r § t.

There is essentially just one process satisfying these conditions: Brownian motion.
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Desiderata D21-S08(b)

We want the following things in a putative continuous-time stochastic process Lptq:
– We want Lptq to be distributed like N p0, tq for all t.

– We want non-overlapping increments, like Lp3q ´ Lp2q and Lp2q ´ Lp1q, to have independent distributions.

– If we know that Lptq “ L0, then we want the increments, Lpt ` ✏q ´ Lptq, to be distributed like N p0, ✏q.
– We want Markovian structure: If we assume the knowledge Lptq “ L0, then our understanding of the properties

and distribution of Lpsq for s ° t is the same as if we had knowledge of Lprq for all r § t.

There is essentially just one process satisfying these conditions: Brownian motion.
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Desiderata D21-S08(c)

We want the following things in a putative continuous-time stochastic process Lptq:
– We want Lptq to be distributed like N p0, tq for all t.

– We want non-overlapping increments, like Lp3q ´ Lp2q and Lp2q ´ Lp1q, to have independent distributions.

– If we know that Lptq “ L0, then we want the increments, Lpt ` ✏q ´ Lptq, to be distributed like N p0, ✏q.
– We want Markovian structure: If we assume the knowledge Lptq “ L0, then our understanding of the properties

and distribution of Lpsq for s ° t is the same as if we had knowledge of Lprq for all r § t.

There is essentially just one process satisfying these conditions: Brownian motion.
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Desiderata D21-S08(d)

We want the following things in a putative continuous-time stochastic process Lptq:
– We want Lptq to be distributed like N p0, tq for all t.

– We want non-overlapping increments, like Lp3q ´ Lp2q and Lp2q ´ Lp1q, to have independent distributions.

– If we know that Lptq “ L0, then we want the increments, Lpt ` ✏q ´ Lptq, to be distributed like N p0, ✏q.
– We want Markovian structure: If we assume the knowledge Lptq “ L0, then our understanding of the properties

and distribution of Lpsq for s ° t is the same as if we had knowledge of Lprq for all r § t.

There is essentially just one process satisfying these conditions: Brownian motion.
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Desiderata D21-S08(e)

We want the following things in a putative continuous-time stochastic process Lptq:
– We want Lptq to be distributed like N p0, tq for all t.

– We want non-overlapping increments, like Lp3q ´ Lp2q and Lp2q ´ Lp1q, to have independent distributions.

– If we know that Lptq “ L0, then we want the increments, Lpt ` ✏q ´ Lptq, to be distributed like N p0, ✏q.
– We want Markovian structure: If we assume the knowledge Lptq “ L0, then our understanding of the properties

and distribution of Lpsq for s ° t is the same as if we had knowledge of Lprq for all r § t.

There is essentially just one process satisfying these conditions: Brownian motion.
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Brownian motion D21-S09(a)

Definition
With index set I “ r0,8q, a standard Brownian motion/Wiener process B “ Bt “ Bptq is a stochastic process

satisfying

1. P pBp0q “ 0q “ 1

2. B is continuous with probability 1

3. The n sequential increments formed by any choice of n ` 1 ordered time points t1, . . . , tn`1 are mutually

independent

4. For any 0 § s § t † 8, then Bptq ´ Bpsq „ N p0, t ´ sq.

Some initial remarks:

– The reason we use indefinite articles (a Brownian motion) is the same reason we use indefinite articles to

describe random variables (X is a normal random variable).

– The last property implies that for every s, t, h • 0:

Bpt ` hq ´ Bptq „ Bps ` hq ´ Bpsq „ N p0, hq

– The four properties above are typically concisely referred to, respectively, as: Bp0q “ 1 with probability 1, B is

sample-continuous with probability 1, B has independent increments, and B has (time-)stationary and

normally-distributed increments.
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Brownian motion D21-S09(b)

Definition
With index set I “ r0,8q, a standard Brownian motion/Wiener process B “ Bt “ Bptq is a stochastic process

satisfying

1. P pBp0q “ 0q “ 1

2. B is continuous with probability 1

3. The n sequential increments formed by any choice of n ` 1 ordered time points t1, . . . , tn`1 are mutually

independent

4. For any 0 § s § t † 8, then Bptq ´ Bpsq „ N p0, t ´ sq.

Some initial remarks:

– The reason we use indefinite articles (a Brownian motion) is the same reason we use indefinite articles to

describe random variables (X is a normal random variable).

– The last property implies that for every s, t, h • 0:

Bpt ` hq ´ Bptq „ Bps ` hq ´ Bpsq „ N p0, hq

– The four properties above are typically concisely referred to, respectively, as: Bp0q “ 1 with probability 1, B is

sample-continuous with probability 1, B has independent increments, and B has (time-)stationary and

normally-distributed increments.
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Brownian motion D21-S09(c)

Definition
With index set I “ r0,8q, a standard Brownian motion/Wiener process B “ Bt “ Bptq is a stochastic process

satisfying

1. P pBp0q “ 0q “ 1

2. B is continuous with probability 1

3. The n sequential increments formed by any choice of n ` 1 ordered time points t1, . . . , tn`1 are mutually

independent

4. For any 0 § s § t † 8, then Bptq ´ Bpsq „ N p0, t ´ sq.

Some initial remarks:

– The reason we use indefinite articles (a Brownian motion) is the same reason we use indefinite articles to

describe random variables (X is a normal random variable).

– The last property implies that for every s, t, h • 0:

Bpt ` hq ´ Bptq „ Bps ` hq ´ Bpsq „ N p0, hq

– The four properties above are typically concisely referred to, respectively, as: Bp0q “ 1 with probability 1, B is

sample-continuous with probability 1, B has independent increments, and B has (time-)stationary and

normally-distributed increments.
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Brownian motion D21-S09(d)

Definition
With index set I “ r0,8q, a standard Brownian motion/Wiener process B “ Bt “ Bptq is a stochastic process

satisfying

1. P pBp0q “ 0q “ 1

2. B is continuous with probability 1

3. The n sequential increments formed by any choice of n ` 1 ordered time points t1, . . . , tn`1 are mutually

independent

4. For any 0 § s § t † 8, then Bptq ´ Bpsq „ N p0, t ´ sq.

Some initial remarks:

– The reason we use indefinite articles (a Brownian motion) is the same reason we use indefinite articles to

describe random variables (X is a normal random variable).

– The last property implies that for every s, t, h • 0:

Bpt ` hq ´ Bptq „ Bps ` hq ´ Bpsq „ N p0, hq

– The four properties above are typically concisely referred to, respectively, as: Bp0q “ 1 with probability 1, B is

sample-continuous with probability 1, B has independent increments, and B has (time-)stationary and

normally-distributed increments.
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Affine functions of Brownian motion D21-S10(a)

Let Bptq be a standard Brownian motion, and let b0 P , µ P , and � ° 0. Then the process

Aptq “ b0 ` µt ` �Bptq,

is a Brownian motion with drift and scaling:

– It has time-0 value b0 with probability 1.

– It has deterministic drift µt

– It has scaling �

Example
What distribution do the increments of Aptq have?
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Affine functions of Brownian motion D21-S10(b)

Let Bptq be a standard Brownian motion, and let b0 P , µ P , and � ° 0. Then the process

Aptq “ b0 ` µt ` �Bptq,

is a Brownian motion with drift and scaling:

– It has time-0 value b0 with probability 1.

– It has deterministic drift µt

– It has scaling �

Example
What distribution do the increments of Aptq have?
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Other properties D21-S11(a)

Brownian motion is a fascinating object:

– With probability 1, the sample path Bp¨,!q is continuous in time.

– With probability 1, the sample path Bp¨,!q is differentiable nowhere

– For any interval I Ä r0,8q of finite length, with probability 1, the sample path Bp¨,!q has infinite “variation”

on I.

– B has Markovian structure: Fix s ° 0 and define Aptq :“ Bpt ` sq ´ Bpsq. Then Aptq and Bptq have the same

distribution, and in particular A is a standard Brownian motion.

– Sample paths of Brownian motion are self-similar/fractals. In particular, for any c ° 0, the process
1
cBpc2tq is a

standard Brownian motion.
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Other properties D21-S11(b)

Brownian motion is a fascinating object:

– With probability 1, the sample path Bp¨,!q is continuous in time.

– With probability 1, the sample path Bp¨,!q is differentiable nowhere

– For any interval I Ä r0,8q of finite length, with probability 1, the sample path Bp¨,!q has infinite “variation”

on I.

– B has Markovian structure: Fix s ° 0 and define Aptq :“ Bpt ` sq ´ Bpsq. Then Aptq and Bptq have the same

distribution, and in particular A is a standard Brownian motion.

– Sample paths of Brownian motion are self-similar/fractals. In particular, for any c ° 0, the process
1
cBpc2tq is a

standard Brownian motion.
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Other properties D21-S11(c)

Brownian motion is a fascinating object:

– With probability 1, the sample path Bp¨,!q is continuous in time.

– With probability 1, the sample path Bp¨,!q is differentiable nowhere

– For any interval I Ä r0,8q of finite length, with probability 1, the sample path Bp¨,!q has infinite “variation”

on I.

– B has Markovian structure: Fix s ° 0 and define Aptq :“ Bpt ` sq ´ Bpsq. Then Aptq and Bptq have the same

distribution, and in particular A is a standard Brownian motion.

– Sample paths of Brownian motion are self-similar/fractals. In particular, for any c ° 0, the process
1
cBpc2tq is a

standard Brownian motion.
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Other properties D21-S11(d)

Brownian motion is a fascinating object:

– With probability 1, the sample path Bp¨,!q is continuous in time.

– With probability 1, the sample path Bp¨,!q is differentiable nowhere

– For any interval I Ä r0,8q of finite length, with probability 1, the sample path Bp¨,!q has infinite “variation”

on I.

– B has Markovian structure: Fix s ° 0 and define Aptq :“ Bpt ` sq ´ Bpsq. Then Aptq and Bptq have the same

distribution, and in particular A is a standard Brownian motion.

– Sample paths of Brownian motion are self-similar/fractals. In particular, for any c ° 0, the process
1
cBpc2tq is a

standard Brownian motion.
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Other properties D21-S11(e)

Brownian motion is a fascinating object:

– With probability 1, the sample path Bp¨,!q is continuous in time.

– With probability 1, the sample path Bp¨,!q is differentiable nowhere

– For any interval I Ä r0,8q of finite length, with probability 1, the sample path Bp¨,!q has infinite “variation”

on I.

– B has Markovian structure: Fix s ° 0 and define Aptq :“ Bpt ` sq ´ Bpsq. Then Aptq and Bptq have the same

distribution, and in particular A is a standard Brownian motion.

– Sample paths of Brownian motion are self-similar/fractals. In particular, for any c ° 0, the process
1
cBpc2tq is a

standard Brownian motion.
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Self-similarity of Brownian paths D21-S12(a)
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In relation to securities.... D21-S13(a)

To close the loop: a standard Brownian motion Bptq is exactly a continuous-time process whose properties line up

with Lptq, our continuous-time limit of the binomial tree model.

In particular, if pµ,�, S0q “ p0, 1, 1q, then we will identify

Lptq“ “ ”Bptq.

As one might expect, for µ ‰ 0 and � ‰ 1, then the appropriate identification is,

Lptq“ “ ”µt ` �Bptq.

While in principle we are done in terms of identifying a mathematical model for Lptq, we have actually just begun

to reap benefits from this model.

In particular, the fact that Bptq has sample paths or trajectories suggests that there is an underlying time-evolution

law.

Stochastic calculus is the appropriate language we’ll use to explore such concepts.
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In relation to securities.... D21-S13(b)

To close the loop: a standard Brownian motion Bptq is exactly a continuous-time process whose properties line up

with Lptq, our continuous-time limit of the binomial tree model.

In particular, if pµ,�, S0q “ p0, 1, 1q, then we will identify

Lptq“ “ ”Bptq.

As one might expect, for µ ‰ 0 and � ‰ 1, then the appropriate identification is,

Lptq“ “ ”µt ` �Bptq.

While in principle we are done in terms of identifying a mathematical model for Lptq, we have actually just begun

to reap benefits from this model.

In particular, the fact that Bptq has sample paths or trajectories suggests that there is an underlying time-evolution

law.

Stochastic calculus is the appropriate language we’ll use to explore such concepts.
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In relation to securities.... D21-S13(c)

To close the loop: a standard Brownian motion Bptq is exactly a continuous-time process whose properties line up

with Lptq, our continuous-time limit of the binomial tree model.

In particular, if pµ,�, S0q “ p0, 1, 1q, then we will identify

Lptq“ “ ”Bptq.

As one might expect, for µ ‰ 0 and � ‰ 1, then the appropriate identification is,

Lptq“ “ ”µt ` �Bptq.

While in principle we are done in terms of identifying a mathematical model for Lptq, we have actually just begun

to reap benefits from this model.

In particular, the fact that Bptq has sample paths or trajectories suggests that there is an underlying time-evolution

law.

Stochastic calculus is the appropriate language we’ll use to explore such concepts.
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