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The model assumptions D24-S02(a)

Before discussing details of the Black-Scholes-Merton model, we list some assumptions:
– No-arbitrage
– No transaction costs
– Easy availability of a risk-free security with a(n annual) rate r ° 0

– Liquidity of assets: fractional shares of any amount are permitted to be bought and sold
– Unlimited short selling permitted
– Existence of a risky asset without dividends

The main question we’ll provide analysis for: For a derivative with the risky asset as underlier, what should the
price/premium of the option be?
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The model assumptions D24-S02(b)

Before discussing details of the Black-Scholes-Merton model, we list some assumptions:
– No-arbitrage
– No transaction costs
– Easy availability of a risk-free security with a(n annual) rate r ° 0

– Liquidity of assets: fractional shares of any amount are permitted to be bought and sold
– Unlimited short selling permitted
– Existence of a risky asset without dividends

The main question we’ll provide analysis for: For a derivative with the risky asset as underlier, what should the
price/premium of the option be?
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The notation D24-S03(a)

We’ll use notation that is fairly typical at this point:
– t “ 0 is today, t “ T ° 0 is a fixed terminal time
– St is the (per-unit) underlier price at time t

– fpSt, tq is the (per-unit of S) price of a derivative with St as underlier
§ Typically we know fpST , T q (e.g., from a payoff diagram)
§ We want to identify fpS0, 0q, the price at time 0 (the premium)
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The hedging portfolio D24-S04(a)
One basic idea is the following: we will form a portfolio that hedges against the value of the derivative.

I.e., suppose we hold one share of the derivative with price f – we seek to create a portfolio that hedges against the
value of the derivative as it fluctuates with the underlier price.

So what is the change in f with respect to changes in S?

Mathematically, this is simply Bf
BS , and so the infinitesimal change in the derivative value is Bf

BS dS.

Hence, we can hedge against f by purchasing shares in S:

df “ Bf
BS dS

The idea here: The change in value of f can be offset by holding Bf
BS shares of S.

Therefore, let’s create a portfolio P that shorts one unit of the option, and an appropriate number of shares of S to
hedge:

dP “ ´df ` Bf
BS dS

i.e.,

P “ ´f ` Bf
BS S.
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The hedging portfolio D24-S04(b)
One basic idea is the following: we will form a portfolio that hedges against the value of the derivative.

I.e., suppose we hold one share of the derivative with price f – we seek to create a portfolio that hedges against the
value of the derivative as it fluctuates with the underlier price.

So what is the change in f with respect to changes in S?

Mathematically, this is simply Bf
BS , and so the infinitesimal change in the derivative value is Bf

BS dS.

Hence, we can hedge against f by purchasing shares in S:

df “ Bf
BS dS

The idea here: The change in value of f can be offset by holding Bf
BS shares of S.

Therefore, let’s create a portfolio P that shorts one unit of the option, and an appropriate number of shares of S to
hedge:

dP “ ´df ` Bf
BS dS

i.e.,

P “ ´f ` Bf
BS S.
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The hedging portfolio D24-S04(c)
One basic idea is the following: we will form a portfolio that hedges against the value of the derivative.

I.e., suppose we hold one share of the derivative with price f – we seek to create a portfolio that hedges against the
value of the derivative as it fluctuates with the underlier price.

So what is the change in f with respect to changes in S?

Mathematically, this is simply Bf
BS , and so the infinitesimal change in the derivative value is Bf

BS dS.

Hence, we can hedge against f by purchasing shares in S:

df “ Bf
BS dS

The idea here: The change in value of f can be offset by holding Bf
BS shares of S.

Therefore, let’s create a portfolio P that shorts one unit of the option, and an appropriate number of shares of S to
hedge:

dP “ ´df ` Bf
BS dS

i.e.,

P “ ´f ` Bf
BS S.
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Delta hedging D24-S05(a)

The portfolio construction strategy we’ve just described is called (instantaneous) delta-hedging.

– We hedge according to the “delta”, Bf
BS , of the derivative.

– This requires instantaneous buying/selling of S.

dP “ ´df ` Bf
BS dS.
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Itô processes D24-S06(a)

dP “ ´df ` Bf
BS dS.

Part of the Black-Scholes-Merton modeling assumption is that the underlier evolves according to a geometric
Brownian motion:

dS “ µSdt ` �SdB, Sp0q “ S0,

where B is a standard Brownian motion, and pµ,�q are the continuous-time drift and volatility, respectively.

Now recall Itô’s Lemma: a function of an Itô process is another Itô process, and its corresponding SDE can be
written as functions of the original SDE.

Applying this to fpSt, tq:

df “
ˆ Bf

Bt ` Bf
BS µS ` 1

2
�
2
S
2 B2

f

BS2

˙
dt ` �S

Bf
BS dB
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Itô processes D24-S06(b)

dP “ ´df ` Bf
BS dS.

Part of the Black-Scholes-Merton modeling assumption is that the underlier evolves according to a geometric
Brownian motion:

dS “ µSdt ` �SdB, Sp0q “ S0,

where B is a standard Brownian motion, and pµ,�q are the continuous-time drift and volatility, respectively.

Now recall Itô’s Lemma: a function of an Itô process is another Itô process, and its corresponding SDE can be
written as functions of the original SDE.

Applying this to fpSt, tq:

df “
ˆ Bf

Bt ` Bf
BS µS ` 1

2
�
2
S
2 B2

f

BS2

˙
dt ` �S

Bf
BS dB
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Itô processes D24-S06(c)

dP “ ´df ` Bf
BS dS.

Part of the Black-Scholes-Merton modeling assumption is that the underlier evolves according to a geometric
Brownian motion:

dS “ µSdt ` �SdB, Sp0q “ S0,

where B is a standard Brownian motion, and pµ,�q are the continuous-time drift and volatility, respectively.

Now recall Itô’s Lemma: a function of an Itô process is another Itô process, and its corresponding SDE can be
written as functions of the original SDE.

Applying this to fpSt, tq:

df “
ˆ Bf

Bt ` Bf
BS µS ` 1

2
�
2
S
2 B2

f

BS2

˙
dt ` �S

Bf
BS dB
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The delta-hedge portfolio D24-S07(a)

Putting this all together, we have the following evolution law for the delta-hedge portfolio:

dP “ ´
ˆ Bf

Bt ` 1

2
�
2
S
2 B2

f

BS2

˙
dt,

i.e., this portfolio is deterministic, and hence riskless.

In a no-arbitrage market, the only way this portfolio is an efficient one is if it evolves according to the risk-free
security:

dP “ rPdt.

Then recalling our formula for P

´
ˆ Bf

Bt ` 1

2
�
2
S
2 B2

f

BS2

˙
dt “ dP “ rPdt “ r

ˆ
´f ` Bf

BS S

˙
dt,

i.e.,

Bf
Bt ` rS

Bf
BS ` 1

2
�
2
S
2 B2

f

BS2
´ rf “ 0
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The delta-hedge portfolio D24-S07(b)

Putting this all together, we have the following evolution law for the delta-hedge portfolio:

dP “ ´
ˆ Bf

Bt ` 1

2
�
2
S
2 B2

f

BS2

˙
dt,

i.e., this portfolio is deterministic, and hence riskless.

In a no-arbitrage market, the only way this portfolio is an efficient one is if it evolves according to the risk-free
security:

dP “ rPdt.

Then recalling our formula for P

´
ˆ Bf

Bt ` 1

2
�
2
S
2 B2

f

BS2

˙
dt “ dP “ rPdt “ r

ˆ
´f ` Bf

BS S

˙
dt,

i.e.,

Bf
Bt ` rS

Bf
BS ` 1

2
�
2
S
2 B2

f

BS2
´ rf “ 0
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The delta-hedge portfolio D24-S07(c)

Putting this all together, we have the following evolution law for the delta-hedge portfolio:

dP “ ´
ˆ Bf

Bt ` 1

2
�
2
S
2 B2

f

BS2

˙
dt,

i.e., this portfolio is deterministic, and hence riskless.

In a no-arbitrage market, the only way this portfolio is an efficient one is if it evolves according to the risk-free
security:

dP “ rPdt.

Then recalling our formula for P

´
ˆ Bf

Bt ` 1

2
�
2
S
2 B2

f

BS2

˙
dt “ dP “ rPdt “ r

ˆ
´f ` Bf

BS S

˙
dt,

i.e.,

Bf
Bt ` rS

Bf
BS ` 1

2
�
2
S
2 B2

f

BS2
´ rf “ 0
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The Black-Scholes equation D24-S08(a)

The PDE we have just derived is called the Black-Scholes (partial differential) equation:

Bf
Bt ` rS

Bf
BS ` 1

2
�
2
S
2 B2

f

BS2
´ rf “ 0

It is typically supplemented with boundary and terminal conditions:

fpS, T q “ payoff function
fp0, tq “ 0 for all time
fpx, tqfor large x

The goal is to identify/compute a solution to the Black-Scholes equation, i.e., fps, 0q.

For sufficiently complicated examples (e.g., non-constant µ,�), this equation is numerically solved.

However, in simplified cases, we can compute exact solutions.
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The Black-Scholes equation D24-S08(b)

The PDE we have just derived is called the Black-Scholes (partial differential) equation:

Bf
Bt ` rS

Bf
BS ` 1

2
�
2
S
2 B2

f

BS2
´ rf “ 0

It is typically supplemented with boundary and terminal conditions:

fpS, T q “ payoff function
fp0, tq “ 0 for all time
fpx, tqfor large x

The goal is to identify/compute a solution to the Black-Scholes equation, i.e., fps, 0q.

For sufficiently complicated examples (e.g., non-constant µ,�), this equation is numerically solved.

However, in simplified cases, we can compute exact solutions.
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European options D24-S09(a)
For a European call option, the payoff is,

fps, T q “ maxts ´ K, 0u.
Our asymptotic condition is,

fps, tq Ñ s ´ K, as s Ñ 8.

We can solve this equation analytically (though we’ll omit most steps). The basic ideas:
– Reverse time: ⌧ “ T ´ t.
– Discount the price: ups, ⌧q “ e

r⌧
fps, ⌧q

– Transform space: x „ log s ` c⌧

These transformations make the PDE a rather familiar one:

Bu
B⌧ “ 1

2
�
2 B2

u

Bx2
, upx, 0q “ Kpex ´ 1qHpxq,

with Hpxq the Heaviside function.

This can be solved with somewhat standard methods, e.g., using the heat kernel:

upx, ⌧q “
ª 8

´8
u0pyqGpx, y, ⌧qdy, Gpx, y, ⌧q “ 1

�
?
2⇡⌧

exp

ˆ ´px ´ yq2
2�2⌧

˙
.

Once upx, T q is computed, we have fps, 0q.
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European options D24-S09(b)
For a European call option, the payoff is,

fps, T q “ maxts ´ K, 0u.
Our asymptotic condition is,

fps, tq Ñ s ´ K, as s Ñ 8.

We can solve this equation analytically (though we’ll omit most steps). The basic ideas:
– Reverse time: ⌧ “ T ´ t.
– Discount the price: ups, ⌧q “ e

r⌧
fps, ⌧q

– Transform space: x „ log s ` c⌧

These transformations make the PDE a rather familiar one:

Bu
B⌧ “ 1

2
�
2 B2

u

Bx2
, upx, 0q “ Kpex ´ 1qHpxq,

with Hpxq the Heaviside function.

This can be solved with somewhat standard methods, e.g., using the heat kernel:

upx, ⌧q “
ª 8

´8
u0pyqGpx, y, ⌧qdy, Gpx, y, ⌧q “ 1

�
?
2⇡⌧

exp

ˆ ´px ´ yq2
2�2⌧

˙
.

Once upx, T q is computed, we have fps, 0q.
A. Narayan (U. Utah – Math/SCI) Math 5760/6890: The Black-Scholes-Merton Model



European options D24-S09(c)
For a European call option, the payoff is,

fps, T q “ maxts ´ K, 0u.
Our asymptotic condition is,

fps, tq Ñ s ´ K, as s Ñ 8.

We can solve this equation analytically (though we’ll omit most steps). The basic ideas:
– Reverse time: ⌧ “ T ´ t.
– Discount the price: ups, ⌧q “ e

r⌧
fps, ⌧q

– Transform space: x „ log s ` c⌧

These transformations make the PDE a rather familiar one:

Bu
B⌧ “ 1

2
�
2 B2

u

Bx2
, upx, 0q “ Kpex ´ 1qHpxq,

with Hpxq the Heaviside function.

This can be solved with somewhat standard methods, e.g., using the heat kernel:

upx, ⌧q “
ª 8

´8
u0pyqGpx, y, ⌧qdy, Gpx, y, ⌧q “ 1

�
?
2⇡⌧

exp

ˆ ´px ´ yq2
2�2⌧

˙
.

Once upx, T q is computed, we have fps, 0q.
A. Narayan (U. Utah – Math/SCI) Math 5760/6890: The Black-Scholes-Merton Model



European call D24-S10(a)

The solution for the European call is:

fps, tq “ �pd`qs ´ �pd´qKe
´rpT´tq

,

where �p¨q is the CDF of the standard normal:

�pyq “ 1?
2⇡

ª y

´8
e

´x2{2dx,

and d˘ are given by,

d` “ 1

�
?
T ´ t

ˆ
log

´
s

K

¯
`

ˆ
r ` �

2

2

˙
pT ´ tq

˙
,

d´ “ d` ´ �
?
T ´ t

Note that this allows us to price the derivative for any t P r0, T s.
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