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Applied Complex Variables and Asymptotic Methods

MATH 6720 – Section 001 – Spring 2024
Homework 7

Asymptotic Methods

Due: Friday, April 19, 2024

Below, problem C in section A.B is referred to as exercise A.B.C.
Text: Complex Variables: Introduction and Applications, Ablowitz & Fokas,

Exercises: 5.7.1
5.7.5
6.1.1
6.1.2
6.2.2
6.2.3
6.2.5
6.3.1
6.3.3

Submit your homework assignment on Canvas via Gradescope.

5.7.1. Show that the “cross ratios” associated with the points (z, 0, 1,−1) and (w, i, 2, 4) are
(z+1)/2z and (w−4)(2−i)/2(i−w), respectively. Use these to find the bilinear transformation
that maps 0, 1,−1 to i, 2, 4.

Solution: The cross-ratio for (z, 0, 1,−1) is given by,

X(z, 0, 1,−1) =
(z −−1)(1− 0)

(z − 0)(1−−1)
=

z + 1

2z
.

The cross-ratio for (w, i, 2, 4) is given by,

X(w, i, 2, 4) =
(w − 4)(2− i)

(w − i)(2− 4)
=

(
i− 2

2

)
w − 4

w − i

In order to compute the requested bilinear transformation, we recall that cross-ratios are
invariant under such transformations. Therefore, this map is given by,

X(z, 0, 1,−1) = X(w, i, 2, 4),

which, after some algebra, can be written as,

w = w(z) =
(8− 3i)z + i

(3− i)z + 1

5.7.5. Let C1 be the circle with center i/2 passing through 0, and let C2 be the circle with
center i/4 passing through 0 (see Figure 5.7.7 in the text). Let D be the region enclosed by C1
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and C2. Show that the inversion w1 = 1/z maps D onto the strip −2 < Im (w)1 < −1 and the
transformation w2 = eπw1 maps this strip to the upper half plane. Use these results to find a
conformal mapping that maps D onto the unit disk.

Solution: We will use the fact that bilinear transformations map generalized circles to gen-
eralized circles, and hence also transformed regions bounded by generalized circles to regions
bounded by generalized circles. First, we seek to establish that w1(z) = 1/z transforms D to
the strip −2 < Im (w)1 < −1. The sets C1 and C2 are given by the set of z satisfying:

C1 : z =
i

2
+

1

2
eiθ, C2 : z =

i

4
+

1

4
eiθ,

where θ ∈ [0, 2π) is a free parameter. The image of these points under the map w1 is given by,

C1 : w1(z) =
2

i+ eiθ
=

2(cos θ − i− i sin θ)

2(1 + sin θ)
=

cos θ

1 + sin θ
− i,

and as θ ranges over [0, 2π), then the real part of the above expression takes on every extended
real value, but Im (w)1 (z) = −1. Hence

w1(C1) =
{
z ∈ C

∣∣ Im (z) = −1
}
.

Similarly,

C2 : w1(z) =
4

i+ eiθ
=

2 cos θ

1 + sin θ
− 2i,

and hence,

w1(C2) =
{
z ∈ C

∣∣ Im (z) = −2
}
.

Finally, we have w1(3i/4) = −4
3 i, i.e., Im (w)1 (3i/4) ∈ (−1,−2), which establishes that,

w1(D) =
{
z ∈ C

∣∣ − 2 < Im (z) < −1
}
.

Our next task is to show that the map w2 = w2(z) = eπz maps the strip w1(D) to the upper
half plane. Note that,

−2 < Im (z) < −1 =⇒ Im (w2(z)) = Im (eπz) = eπRe(z) sin(πIm (z)) > 0

where the last inequality uses the fact that ex > 0 for any real x. Thus, we have,

w2(w1(D)) =
{
z ∈ C

∣∣ Im (z) > 0
}
.

Note also that w2 is conformal: w′
2(z) = πeπz ̸= 0. To finally map to the unit disk, note that

for any a, b ∈ C satisfying Im (a) > 0 and |b| = 1, then the map

w3(z) = b
z − a

z − a
,

maps the upper half plane to the unit disk. (Again we can check that the real axis, Im (z) = 0,
is mapped to the unit circle, and z = a in the upper half plane is mapped to the origin.) Thus,
for any such choice of a, b, then the composition,

w(z) = (w3 ◦ w2 ◦ w1) (z),

maps D to the unit disk, and does so conformally since w1, w2, and w3 are all conformal.

6.1.1.
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(a) Consider the function

f(ϵ) = eϵ.

Find the asymptotic expansion of f(ϵ) in powers of ϵ as ϵ → 0.
(b) Similarly for the function

f(ϵ) = e−
1
ϵ ,

find the asymptotic expansion of f(ϵ) in powers of ϵ as ϵ → 0.

Solution:
(a) There are a handful of ways to establish this. We’ll use Taylor expansions: For ϵ suffi-

ciently small, we have,

f(ϵ) =

N∑
n=0

ϵn

n!
+ O(ϵN+1).

Hence, we formally have the asymptotic expansion,

f(ϵ) =
∞∑
n=0

anϵ
n, an =

1

n!
.

(b) For variety, we’ll use a different strategy for this part. (Note that we assume ϵ > 0.) If
we seek an expansion of the form,

f(ϵ) =
∞∑
n=0

anϵ
n,

then the coefficients an can be computed recursively by,

an = lim
ϵ→0

f(ϵ)−
∑n−1

m=0 amϵm

ϵn
, n ≥ 1.

For n = 0, a striaghtforward computation shows that,

f(ϵ) = o(ϵ0) = o(1),

and therefore a0 = 0. Now fix some n ≥ 1, and suppose that am = 0 for every 0 ≤ m < n.
Then,

an = lim
ϵ→0

f(ϵ)−
∑n−1

m=0 amϵm

ϵn
= lim

ϵ→0
ϵ−ne−

1
ϵ = 0.

Hence, we have shown through induction that an = 0 for every n, so that we have the
asymptotic expansion,

f(ϵ) =
∞∑
n=0

anϵ
n, an = 0.
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6.1.2. Show that both the functions (1+x)−1 and (1+e−x)(1+x)−1 possess the same asymp-
totic expansion as x → ∞.

Solution: We assume x is real and positive. First we compute the asymptotic expansion (in
powers of 1/x) for (1 + x)−1. We have,

1

1 + x
=

1

x

1

1 + 1
x

x>1
=

1

x

∞∑
n=0

1

xn
=

∞∑
n=1

1

xn
.

Note that asymptotic expansions are additive, so the result will be shown if we can establish
that

e−x

1 + x

has an asymptotic expansion of 0. We can accomplish this in a similar fashion to the previous
problem: first note that

e−x

1 + x
= o(1), as x → ∞.

So that the leading behavior of the asymptotic expansion is 0. Then we again recursively
compute asymptotic expansion coefficients,

e−x

1 + x
=

∞∑
n=0

an
xn

=⇒ an = lim
x→∞

e−x

1+x −
∑n−1

m=0
am
xm

1
xn

,

and another inductive argument (see the solution of 6.1.1) shows that all these coefficients

vanish. Hence the asymptotic expansion of e−x

1+x is,

e−x

1 + x
= 0, as x → ∞.

Then by exercising additivity of asymptotic expansions, we have the identical expansions,

1

1 + x
=

∞∑
n=1

1

xn
=

1

1 + x
+

e−x

1 + x
=

1 + e−x

1 + x
, as x → ∞.

6.2.2. Use integration by parts to obtain the first two terms of the asymptotic expansion of∫ ∞

1
e−k(t2+1) dt.

Solution: We explicitly exercise integration by parts. (Alternatively, with some preliminary
manipulations, one could simply exercise integration by parts formulas from the text.) We
have ∫ ∞

1
e−k(t2+1) dt =

∫ ∞

1

1

2t
2te−k(t2+1) dt

(IbP)
= −e−k(t2+1)

2kt

∣∣∞
1

− 1

2k

∫ ∞

1

1

t2
e−k(t2+1) dt

=
1

2k
e−2k − 1

2k

∫ ∞

1

1

t2
e−k(t2+1) dt,
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and a second integration by parts on the last integral yields,∫ ∞

1

1

t2
e−k(t2+1) dt

(IbP)
= − 1

2t3k
e−k(t2+1)

∣∣∞
1

− 3

2k

∫ ∞

1

1

t4
e−k(t2+1) dt

=
e−2k

2k
− 3

2k

∫ ∞

1

1

t4
e−k(t2+1) dt,

and so putting things together yields,∫ ∞

1
e−k(t2+1) dtdt =

1

2k
e−2k − e−2k

4k2
− 3

4k2

∫ ∞

1

1

t4
e−k(t2+1) dt,

and thus, ∫ ∞

1
e−k(t2+1) dt ∼ e−2k

2k
− e−2k

4k2

6.2.3. Use Watson’s Lemma to obtain an infinite asymptotic expansion of

I(k) =

∫ π

0
e−ktt−

1
3 cos t dt,

as k → ∞.

Solution: We translate to the appropriate notation in Watson’s Lemma:

• b = π < ∞

• f(t) = t−1/3 cos t, satisfying, |f(t)| ≤ ϵ−1/3 for all t ≥ ϵ > 0.

• Near t = 0+, f behaves like,

f(t) ∼ tα
∞∑
n=0

ant
βn,

with α = −1/3 > −1, and β = 2 > 0, and an given by,

an =
(−1)n

(2n)!

Thus, by Watson’s Lemma,

I(k) ∼
∞∑
n=0

an
Γ(α+ βn+ 1)

kα+βn+1

=

∞∑
n=0

(−1)n

(2n)!

Γ
(
2n+ 2

3

)
k2n+2/3

, k → ∞

6.2.5. Use Laplace’s method to determine the leading behavior (first term) of

I(k) =

∫ 1
2

− 1
2

e−k sin4 t dt
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as k → ∞.

Solution: We have f(t) = 1 and ϕ(t) = sin4 t, and thus,

ϕ′(t) = 4 sin3 t cos t,

which vanishes only at t = 0. Since ϕ(1/2) = ϕ(−1/2) > ϕ(0), then t = 0 is the global
minimum of ϕ over [−1/2, 1/2]. To use Laplace’s method, we’ll need to compute higher order
derivatives:

ϕ′′(t) = 12 sin2 t cos2 t− 4 sin4 t = 12 sin2 t cos2 t− 4ϕ(t)

ϕ(3)(t) = 24 sin t cos3 t− 24 sin3 t cos t− 4ϕ′(t)

ϕ(4)(t) = 24 cos4 t− 72 sin2 t cos2 t− 72 sin2 t cos2 t+ 24 sin4 t− 4ϕ′′(t).

We can directly observe that ϕ′(0) = ϕ′′(0) = ϕ(3)(0) = 0, with ϕ(4)(0) = 24 > 0. Hence, we
cannot use the standard technique of Laplace’s method, e.g., Lemma 6.2.3. However, this falls
into the category of Example 6.2.10 with p = 4, and so equation (6.2.15) can directly be used:

I(k) ∼ f(0)ekϕ(0)(
kϕ(4)(0)

4!

)1/4

2Γ
(
1
4

)
4

=
Γ
(
1
4

)
2k1/4

(Note that for equation 6.2.15, the ϕ function in the book is the negative of the ϕ function
here.)

6.3.1. Use integration by parts to obtain the asymptotic expansion as k → ∞ of the following
integrals up to order 1

k2
:

(a)
∫ 2
0 (sin t+ t)eikt dt

(b)
∫∞
0

eikt

1+t2
dt

Solution:
(a) Via integration by parts, we compute,∫ 2

0
(sin t+ t)eikt dt

(IbP)
= −i(2 + sin 2)

e2ik

k
+

i

k

∫ 2

0
(cos t+ 1)eikt dt

(IbP)
= −i(2 + sin 2)

e2ik

k
+

1

k2

[
e2ik(1 + cos 2)− 2

]
+

1

k2

∫ 2

0
sin t eikt dt.

Thus, to order 1/k2,∫ 2

0
(sin t+ t)eikt dt ∼ −i(2 + sin 2)

e2ik

k
+

1

k2

[
e2ik(1 + cos 2)− 2

]
, k → ∞.

(b) Again via integration by parts:∫ ∞

0

eikt

1 + t2
dt

(IbP)
=

i

k
+

2

ik

∫ ∞

0

teikt

(1 + t2)2
dt

(IbP)
=

i

k
+

2

ik

[
0− 1

ik

∫ ∞

0

(1− 3t2)eikt

(1 + t2)3
dt

]
,

since the boundary terms for the second integration by parts vanish. Thus to order 1/k2,∫ ∞

0

eikt

1 + t2
dt ∼ i

k
, k → ∞
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6.3.3. Use the method of stationary phase to find the leading behavior of the following integrals
as k → ∞:
(a)

∫ 1
0 tan t eikt

4
dt

(b)
∫ 2

1
2
(1 + t)e

ik
(

t3

3
−t

)
dt

Solution:
(a) As with many of these problems, there is more than one way to proceed. For example,

for this problem one can directly use equation (6.3.15b) in the text. We will proceed
in a different manner (obtaining the same result). First we note that ϕ(t) = t4, and so
ϕ′(t) = 0 only when t = 0. Hence, it is the neighborhood of t = 0 that produces the
dominant contribution to the integral. In a neighbhorhood of t = 0, we have,

tan t ∼ t,

and hence we have ∫ 1

0
tan t eikt

4
dt ∼

∫ 1

0
teikt

4
dt,

and since integrating over all t > 0 does not introduce any terms comparable to the
integration around t = 0, we in turn have,∫ 1

0
tan t eikt

4
dt ∼

∫ 1

0
teikt

4
dt ∼

∫ ∞

0
teikt

4
dt

Owing to equation (6.3.5) in the text with γ = 1, ν = k, and p = 4, then∫ ∞

0
teikt

4
dt =

1√
k

Γ
(
1
2

)
4

eiπ/4 =
1√
k

√
πeiπ/4

4
.

Putting all this together, we have,∫ 1

0
tan t eikt

4
dt ∼

∫ ∞

0
teikt

4
dt ∼ 1√

k

√
πeiπ/4

4

Note that the above approach is not different from the approach used to derive equation
(6.3.15b) in the text. Indeed, this equation is derived by more formally performing the
steps above.

(b) For this integral, we have ϕ(t) = t3

3 − t, which satisfies,

ϕ′(1) = 0, ϕ′(t) ̸= 0, for t ∈
[
1

2
, 2

]
\{1}.

Note that while f(t) ̸= 0 at the endpoints, this only affects higher order contributions
and not the leading order behavior. (I.e., we can still use stationary phase to determine
the leading order behavior.) Then we have that,

ϕ(t)− ϕ(1) ∼ ϕ′′(1)

2
(t− 1)2 + o((t− 1)2) = (t− 1)2 + o((t− 1)2),

f(t) ∼ 2(t− 1)0 + (t− 1) = 2 + o(1),

and hence we can use equation (6.3.10) in the text with c = 1, α = 1, β = 2, γ = 0,
µ = 1, ϕ(1) = −2/3, to obtain,∫ 2

1
2

(1 + t)e
ik
(

t3

3
−t

)
dt ∼ e−2ik/32Γ

(
1

2

)
eiπ/4

1√
k
=

1√
k

(
2
√
πe−2ik/3eiπ/4

)
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