DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH
Analysis of Numerical Methods I
MATH 6610 — Section 001 — Fall 2025
Homework 5
SVD, II

Due Wednesday, September 24, 2025

Submission instructions:
Submit your assignment on gradescope.

Problem assignment:

1. (“Inf-sup” constants) Let A € C™*" be arbitrary. Consider the non-negative constant,

_ [z Ay|
= inf sup @ ————.
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Show that 5 > 0 iff A is invertible. You may use inf / min and sup / max interchangeably for
this problem.

. (Interlacing of singular values) Let A € C"™*" and let Q € Cm=Dxm gatisty QQ* = 1.
Compute bounds for the singular values of QA in terms of the singular values of A.

. (Density of full-rank matrices) Let A € C™*". Show that in any matrix norm || - ||, A can be
approximated to arbitrary tolerance (say € > 0) by a full-rank matrix B = B(e).

. (The Polar decomposition) The matrix exponential e? of a diagonal matrix D is the diagonal
matrix formed by elementwise exponentiating the diagonal entries. The matrix exponential of
10, where ® € C"*" is a Hermitian matrix is given by,

¢® = velAvE, ®=VAV",
where the latter equality is the eigenvalue decomposition of ©.
(a) Show that if U is any n x n unitary matrix, then it can be written as e’® for some Hermitian
matrix ©.
(b) Let A € C™™" be arbitrary. Show that A has the decompositions,
A = Re® = ¢©5,

where all matrices are square, ® is Hermitian, and R and S are Hermitian positive semi-
definite matrices that are similar to each other.

5. (Moore-Penrose Pseudoinverse) Let A € C™*™ have rank r < min{m,n} and reduced SVD,

A=UZV*
The Moore-Penrose pseudoinverse of A is,

At =vVETlU.
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(a) Prove that if A is invertible, then AT = A~

(b) Prove that the matrices AA"T, ATA, I — AA" and I — A" A are all projection matrices,
and characterize their ranges and kernels in terms of subspaces defined by A. Are these
matrices orthogonal projectors?

(c) Give conditions under which A = AATA.

(d) Give conditions under which each of the more standard “inverse” equality AT A = I, holds.
What about for AAT = I,,,?

(e) Is the operation A — AT well-conditioned? ILe., for general A and a perturbation B, can
|(A+ B)" — A*||/||A"]| be controlled by ||B||/||A||? If so, provide a condition number. If
not, describe why not.

6. (Linear dimension reduction with PCA)
In a programming language of your choice, plot PCA-compressed representations and embed-
dings of the Yale Face Database:
https://www.kaggle.com/datasets/olgabelitskaya/yale-face-database
For this problem, you will consider three experiments:

Ezperiment A. For this experiment, grayscale images can be viewed as a matrix A of numbers,
where the dimensions of the matrix correspond to the pixel dimensions of the image. Approx-
imate an image A by a rank-k PCA approximation. (Pick a couple of your favorites.) When
plotting the original images versus the approximations, how does the accuracy depend on k7
Does the accuracy qualitatively depend on what kind of image (face) you use?

Ezperiment B. In order to treat an image as a single data point, vectorize its matrix repre-
sentation (i.e., unwind the matrix into a vector of length m). For an experiment with n data
points (images), let A € R"™*™ be the resulting matrix. Use the rank-k PCA compression of
A, each column of this rank-k matrix (appropriately unwound) is an approximation of one of
the images. Explore the accuracy of rank-k compression for some values of k (experiment!).
How does the qualitative accuracy of this experiment compare to the previous one?

Ezxperiment C. In the context of Experiment B, an embedding of a data point is a size-k vector
of projected coefficients. (This is the vector ¢ from the previous assignment that explains
PCA.) Plot embeddings of the data in 2 and 3 dimensions (so that they can be visualized).
Are there any discernable patterns of the embedded data in light of classifications of each face
in the original data?

In the above, design the details your own experiments: from all the images in a Yale database,
select a couple of sets of them (maybe all of them, maybe only the ones with glasses, etc), and
investigate the accuracy of rank-k approximation. Your assignment should sufficiently explain
the details of your experiment(s) so that the experiment is reproducible, and should present
some numerical results (plots) that are briefly discussed.

Note that PCA is a reduction scheme since in this context a rank-k matrix requires only O(km)
storage instead of, e.g., O(m?) storage, which is a substantial difference if k < m.
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