DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH

Analysis of Numerical Methods I MATH 6610 – Section 001 – Fall 2025 Homework 7 The QR decomposition

Due Wednesday, October 22, 2025

Submission instructions:

Submit your assignment on gradescope.

Problem assignment:

- 1. (Hadamard's inequality) Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ have columns \mathbf{a}_j for $j \in [n]$. Prove that $|\det \mathbf{A}| \leq \prod_{j \in [n]} \|\mathbf{a}_j\|_2$.
- **2.** (Cholesky and QR) Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ be full rank, and have QR decomposition A = QR. Write the Cholesky factor L of A^*A in terms of Q and R.
- 3. (Householder reflectors) Let H = I 2P be a Householder reflector, where P is a rank-1 orthogonal projector. Show that H is Hermitian, unitary, and an involution (is its own inverse).
- **4.** Let $A \in \mathbb{C}^{n \times n}$. Let $A^k = Q^{(k)} R^{(k)}$ denote the QR decomposition of A^k . (A^k is the k-fold product of A, but the superscript in $Q^{(k)}$ is just an index.) Consider the following iterative definition:
 - $A_1 = A$
 - $A_j = Q_j R_j$ for $j \ge 1$ (the QR decomposition of A_j).
 - $A_{j+1} := R_j Q_j$ for $j \ge 1$.

Prove that for any $k \in \mathbb{N}$,

$$oldsymbol{Q}^{(k)} = \prod_{j=1}^k oldsymbol{Q}_j = oldsymbol{Q}_1 \cdots oldsymbol{Q}_k, \qquad \qquad oldsymbol{R}^{(k)} = \prod_{j=k}^1 oldsymbol{R}_j = oldsymbol{R}_k \cdots oldsymbol{R}_1.$$

5. Let $A \in \mathbb{C}^{n \times n}$, and let V be a(ny) matrix whose columns are the eigenvectors of A. (If A is non-defective, this is the standard eigenvector matrix, if A is defective then it's a matrix of generalized eigenvectors in the Jordan normal form of A.) Consider the QR decomposition V = QR, and define $B = Q^*AQ$. Identify in general which entries of the matrix B are nonzero, and relate (Q, B) to another matrix decomposition we've discussed in class.