## DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH

# Analysis of Numerical Methods I MATH 6610 – Section 001 – Fall 2025 Homework 8 Power iteration

#### Due Wednesday, October 29, 2025

#### **Submission instructions:**

Submit your assignment on gradescope.

### Problem assignment:

1. Let  $A \in \mathbb{C}^{m \times n}$ , with  $p = \min\{m, n\}$ , have column-pivoted QR decomposition given by AP = QR, where P is the permutation matrix, with the convention that the diagonal elements of R are chosen as non-negative numbers. Show that (a)  $(R)_{j+1,j+1} \leq (R)_{j,j}$  for  $j \in [p-1]$ , and that (b)

$$rank(\mathbf{A}) = max \left\{ j \in [p] \mid (R)_{j,j} > 0 \right\}.$$

2. (Column-pivoted QR as greedy determinant maximization) Let  $\mathbf{A} \in \mathbb{C}^{m \times n}$  have rank n, and suppose that the column-pivoted QR decomposition is applied to  $\mathbf{A}$ . In particular, the column pivoting strategy selects a sequence of column indices  $\{c_1, \ldots, c_n\}$ , such that  $\mathbf{AP} = \mathbf{QR}$ , where  $\mathbf{P}$  is the permutation matrix satisfying  $(\mathbf{P})_{c_j,j} = 1$ . Show that, for  $j \in [n-1]$ ,

$$c_{j+1} = \operatorname*{argmax}_{k \in [n]} \det(\boldsymbol{B}^* \boldsymbol{B}), \qquad \boldsymbol{B} = \boldsymbol{A}_{*C_{j,k}}, \qquad C_{j,k} = \{c_1, \dots, c_j\} \bigcup \{k\},$$

where  $A_{*S}$  is the  $m \times |S|$  matrix formed from the S-indexed columns of A.

**3.** Let  $x \in \mathbb{C}^n$  be fixed but arbitrary, and nonzero. The Householder reflector H taking x to a multiple of  $e_1$  has the form  $H = I - 2P = I - 2vv^*$ , for some unit norm vector  $v \in \mathbb{C}^n$ . Show that

$$oldsymbol{v} = rac{oldsymbol{x} - coldsymbol{e}_1}{\|oldsymbol{x} - coldsymbol{e}_1\|_2}, \qquad \qquad rac{c}{\|oldsymbol{x}\|_2} = \left\{ egin{array}{c} e^{i heta}, & x_1 = 0, ext{ with } heta \in \mathbb{R} ext{ arbitrary} \\ \pm rac{x_1}{\|x_1\|}, & x_1 
eq 0. \end{array} 
ight.$$

- **4.** (Hessenberg matrices) A matrix is an *upper Hessenberg* matrix if its entries below its main subdiagonal vanish. I.e.,  $\mathbf{H}$  is upper Hessenberg if  $(H)_{j,k} = 0$  for j > k + 1. Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$ .
  - (a) Use (a sequence of) Householder reflectors to construct a unitary similarity transform that takes A to an upper Hessenberg matrix. (And hence preserves its spectrum.)
  - (b) Assume **A** is Hermitian. What does this imply about the structure of the transformed version of **A** from the previous part? In this context, why might this transformation be useful for (numerically) determining the spectrum of **A**?
- 5. (The Rayleigh-Ritz method) Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$ , and let  $\mathbf{U} \in \mathbb{C}^{n \times p}$  with  $p \leq n$  have orthonormal columns. Consider  $\mathbf{B} = \mathbf{U}^* \mathbf{A} \mathbf{U} \in \mathbb{C}^{p \times p}$ . If  $(\lambda, \mathbf{v})$  is a(ny) eigenpair of  $\mathbf{A}$ , show that  $\lambda$  is an eigenvalue of  $\mathbf{B}$  if  $\mathbf{v} \in \text{range}(\mathbf{U})$ , and describe how to compute the eigenvector  $\mathbf{v}$  from the  $\mathbf{U}$  and the corresponding eigenpair of  $\mathbf{B}$ .

- 6. (Arnoldi iteration) Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$  and let  $\mathbf{q}_1 \in \mathbb{C}^n$  be an arbitrarily chosen unit-norm vector. The *Arnoldi iteration* is the implementation of (modified) Gram-Schmidt orthogonalization to the sequence of vectors  $\mathbf{q}_1, \mathbf{A}\mathbf{q}_1, \mathbf{A}^2\mathbf{q}_1, \ldots, \mathbf{A}^{k-1}\mathbf{q}_1$  for some  $k \leq n$ , which produces a sequence of orthonormal vectors  $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_k$ . For this problem, you may assume that these k vectors are linearly independent.
- (a) Show that the Arnoldi iteration equivalently can be implemented iteratively, by first orthogonalizing  $Aq_1$  against  $q_1$  to produce  $q_2$ , then orthogonalizing  $Aq_2$  against  $q_1, q_2$  to produce  $q_3$ , then orthogonalizing  $Aq_3$  against  $q_1, q_2, q_3$  to produce  $q_4$ , etc.

  (In fact this implementation is "the" Arnoldi iteration, rather than the previously described approach, and the point here is that one never directly computes the action of  $A^k$  for large k against a vector.)
- (b) Fix  $p \leq n$ , and let  $Q \in \mathbb{C}^{n \times p}$  be a matrix whose columns are  $q_1, \ldots, q_p$  from the Arnoldi iteration  $(p \leq k)$ . Define  $B := Q^*AQ$ . What can you say about the structure/entries of B?
- (c) Informally, how would you expect the spectrum of  $\boldsymbol{B}$  to relate to that of  $\boldsymbol{A}$ ? (I'm not asking for a proof here, but just an educated and well-motivated prediction.)