Math 6610: Analysis of Numerical Methods, |
Linear algebraic preliminaries

Department of Mathematics, University of Utah

Fall 2025

Accompanying text:  Trefethen and Bau 1997, Lectures 1, 2, 3
Atkinson 1989, Sections 7.1, 7.3
Salgado and Wise 2022, Sections 1.1, 1.2

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: LA preliminaries



Notation D01-S02(a)

We'll use some standard math notation
-C R,N
-V, 3!

{r e C | Im{z} e N}

—z=z+iyforz,ye R = z=2% =2 — iy
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Notation D01-S02(b)

We'll use some standard math notation
-C R,N
-V, 3!

{r e C | Im{z} e N}

—z=z+iyforz,ye R = z=2% =2 — iy

Vectors, matrices, etc:
-ueC"
- AeCm*"
— linear independence
— rank
— (conjugate) transpose
— determinant
— matrix inverse

— subspaces defined by A: range, kernel, cokernel, corange
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Hilbertian structure D01-S03(a)

C™ endowed with the standard inner product is a Hilbert space. If u,v € C",
(u,v),
- Z(u,v)

-—ulw

ul|

- Proj,u
— orthogonal and orthonormal sets

All the above is also well-defined in R"™.
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Matrices and matrix algebra D01-504(a)

An m x n matrix A is a tableau of elements (from R or C):

aii a2 -+ Qln
a1 a2 a2n, e .

A= : - eC™, (A)jk = ajk, je[m]keln]
am1 am?2 te Amn

A matrix is “just” a vector with “2D" indices.

Matrices come with a natural algebra, i.e., sum and product operations involving matrices:
— Product of a scalar and a matrix
— Sum of two matrices (of the same size)

— Product of two matrices (of conforming sizes)

AeC™",BeC™" — ABeC™"* (AB);x =) ajbu.

=1
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The “four fundamental subspaces” D01-505(a)
Let A € C™*" be given. The four fundamental subspaces are uniquely defined:

C™ 5 R(A) = range(A) = Im(A), the “column space” of A

C" > R(A*) = corange(A), the “row space” or “corange’ of A.

C"™ o K(A) = ker(A), the “nullspace” or "kernel” of A

C™ o K(A™*) = coker(A), the “left nullspace” or “cokernel” of A.
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The “four fundamental subspaces” D01-505(b)

Let A € C™*" be given. The four fundamental subspaces are uniquely defined:
C™ 5 R(A) = range(A) = Im(A), the “column space” of A

C" > R(A*) = corange(A), the “row space” or “corange’ of A.

C"™ o K(A) = ker(A), the “nullspace” or "kernel” of A

C™ o K(A™*) = coker(A), the “left nullspace” or “cokernel” of A.

Essentially by definition: K(A) contains all vectors v satisfying Av = 0. l.e., if wy,...,w, € C" are
conjugate-tranposed rows of A, then v is orthogonal to span{wi,...wx}.
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The “four fundamental subspaces” D01-505(c)

Let A e C™*™ be given. The four fundamental subspaces are uniquely defined:
C™ 5 R(A) = range(A) = Im(A), the “column space” of A

C" > R(A*) = corange(A), the “row space” or “corange’ of A.

C"™ o K(A) = ker(A), the “nullspace” or "kernel” of A

C™ o K(A™*) = coker(A), the “left nullspace” or “cokernel” of A.

Essentially by definition: KC(A) contains all vectors v satisfying Av = 0. l.e., if wi,...,w, € C" are
conjugate-tranposed rows of A, then v is orthogonal to span{wi,...wx}.

Theorem (Fundamental Theorem of Linear Algebra)
For any A e C™*™,

n = dim corange(A) + dimker(A),  corange(A) L ker(A), C" = corange(A) @ ker(A)
m = dimrange(A) + dim coker(A), range(A) L coker(A), C™ = range(A) @ coker(A)
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Norms D01-S06(a)

Metrizing linear spaces is a big business in mathematics.

Given a vector space V, amap |- | : V — R is a norm if it satisfies all the following properties:
- |z|>0 VeV

|z =0iffx=0

lz +yl <z + [yl vz, yeV

- Jlez| = |e||z] Yz eV, ce T,

We are mostly concerned with standard examples V = R", C™, C™*", etc.
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Vector norms

The “standard” examples of vector norms are the ¢ norms.

With x € C™:
llf = ) |asl”,
J€ln]

le]oo == max |a;|,
Jjeln]

D01-507(a)
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Vector norms

The “standard” examples of vector norms are the ¢ norms.

With x € C™:
l2lf = > |asl?,
J€ln]
|0 == max |z;],
J€ln]
Example

Show that | - |2 on C" is a norm.

D01-507(b)
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Matrix norms D01-508(a)
One straightforward identification of norms on matrices are “entrywise” ones:
Alp.p = [Ivec(A)]p, pe[l,0],

where vec(+) is the vectorization function.
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Matrix norms D01-S08(b)

One straightforward identification of norms on matrices are “entrywise” ones:
|Allpp = [[vec(A)]p, pe (1,0,
where vec(+) is the vectorization function.

There are “mixed” entrywise norm definitions, corresponding to taking ¢¥ vector norms of each row, and
then a vector £9 norm of the resulting vector of norms,

a/p\ /4

P

1AL, =1 D | D) lai;

je[n] \ie[m]
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Matrix norms D01-S08(c)

One straightforward identification of norms on matrices are “entrywise” ones:
|Allpp = [[vec(A)]p, pe (1,0,
where vec(+) is the vectorization function.

There are “mixed” entrywise norm definitions, corresponding to taking ¢¥ vector norms of each row, and
then a vector £9 norm of the resulting vector of norms,

a/p\ /4

P

1AL, =1 D | D) lai;

je[n] \ie[m]

A particularly useful entrywise norm is the Frobenius norm,

|AllF = [[A]2,.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: LA preliminaries



Induced matrix norms D01-5S09(a)

A more conceptual collection of matrix norms are induced by vector norms.

By viewing A € C™*™ as the mapping & — Az, norms can be defined as the maximum relative “size” of

this mapping:
pe[l,0].

(Note that A can be rectangular here.)

That these are proper norms is direct from the fact that | - ||, is a norm on C™.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: LA preliminaries



Norm equivalence D01-510(a)

A rather important and useful fact is that any two norms on the same finite-dimensional vector space are
equivalent.

Theorem (All norms on a finite-dimensional space are equivalent)

Let V' be an n-dimensional vector space, and let | - |+ and | - |+ be any two norms on this space. Then
there are strictly positive constants ¢ and k such that for all x € V,

clels < o]+ < kx|
The constants ¢ and k can depend on V' (in particular n) and the choice of | - |« and || - ||+, but not on x.

Note that the above applies equally to spaces containing vectors or matrices.
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Norm equivalence D01-S10(b)

A rather important and useful fact is that any two norms on the same finite-dimensional vector space are
equivalent.

Theorem (All norms on a finite-dimensional space are equivalent)

Let V' be an n-dimensional vector space, and let | - |+ and | - |+ be any two norms on this space. Then
there are strictly positive constants ¢ and k such that for all x € V,

el < 2]+ < kla]s.
The constants ¢ and k can depend on V' (in particular n) and the choice of | - |« and || - ||+, but not on x.
Note that the above applies equally to spaces containing vectors or matrices.
The good news: Norm equivalence suggests it doesn't matter which norm you pick.

The bad news: To prove something, it typically matters which norm you pick.
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A zoo of norms, formulas, and equivalences D01-S11(a)

Example

Compute ¢ and k such that,
clelr < [zl < k1, VaeC"

Also, identify examples of vectors x that achieve the upper and lower bounds above.
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A zoo of norms, formulas, and equivalences D01-S11(b)

Example

Compute ¢ and k such that,
clAf < A2 < kA, vVAeC™"

Also, identify examples of matrices A that achieve the upper and lower bounds above.
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A zoo of norms, formulas, and equivalences D01-S11(c)

Example

Compute | A|2, where,
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Hilbertian structure D01-S12(a)

Of special interest are the norms arising from inner products: these norms induce Euclidean-like geometry
(Hilbert spaces).

The prototypical example on C" is the ¢? norm: for x,y € C", we have,

<£l:7y> = y*ili = Z miy;kv Hwng = <£E,13>

i€[n]

Inner products are bilinear forms (technically “sesquilinear” for the complex field C).
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Hilbertian structure D01-S12(b)

Of special interest are the norms arising from inner products: these norms induce Euclidean-like geometry
(Hilbert spaces).

The prototypical example on C" is the ¢? norm: for x,y € C", we have,
<£l:7y> = y*ili = Z miy;kv Hwng = <£E,13>

i€[n]
Inner products are bilinear forms (technically “sesquilinear” for the complex field C).

One of the most useful algebraic properties of inner products that give rise to a norm | - | is the
Cauchy-Schwarz inequality:

K, y)| < ]|y

From this property one can observe that the following geometric structure of elements x, y is reasonable:

_ (=Y o Ly iff (o us —
cos (£L(z,y)) = el Tyl 1y iff (x,y) =0.
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Hilbertian structure D01-S12(c)

Of special interest are the norms arising from inner products: these norms induce Euclidean-like geometry
(Hilbert spaces).

The prototypical example on C" is the ¢? norm: for x,y € C", we have,
<£l:7y> = y*ili = Z miy;kv Hwng = <£E,13>

i€[n]
Inner products are bilinear forms (technically “sesquilinear” for the complex field C).

One of the most useful algebraic properties of inner products that give rise to a norm | - | is the
Cauchy-Schwarz inequality:

K, y)l < [=[]y]
From this property one can observe that the following geometric structure of elements x, y is reasonable:

(x,y) :
cos (L(z,y)) = —5, z lyiff (z,y)=0.
Iz 1yl
There are Hilbertian norms even for matrices, with a common example being the Frobenius norm:
<A7 B>F =Tr (B*A) ) HA”%‘ = <A7 A>F
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The Pythagorean Theorem D01-S13(a)

The sledgehammer killing an ant way to prove the Pythagorean Theorem: Let @1, 2 be two orthogonal
vectors (say in C™).

Since (x1,x2) = 0, then
|1 + @23 = (21 + 2,21 + 22)
={x1,x1) + (X2, T2) + {(®1, T2) + (T2, T1)
—_— Y~
0 0

= [a1 ] + =l
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The Pythagorean Theorem D01-S13(b)

The sledgehammer killing an ant way to prove the Pythagorean Theorem: Let @1, 2 be two orthogonal
vectors (say in C™).

Since (x1,x2) = 0, then
|1 + @23 = (21 + 2,21 + 22)
={x1,x1) + (X2, T2) + {(®1, T2) + (T2, T1)
—_— Y~
0 0

= [a1 ] + =l

One of the more useful extensions of this (not apparent from n = 2) is: If x1,... @) are k mutually
orthogonal vectors in C", then,

Jjelk]

2
Dl = a3
=T

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: LA preliminaries



References | D01-S14(a)
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