Math 6610: Analysis of Numerical Methods, I Linear algebraic preliminaries

Department of Mathematics, University of Utah

Fall 2025

Accompanying text: Trefethen and Bau 1997, Lectures 1, 2, 3
Atkinson 1989, Sections 7.1, 7.3
Salgado and Wise 2022, Sections 1.1, 1.2

Notation D01-S02(a)

We'll use some standard math notation

- C, ℝ, N
- $\in , \forall, \exists, !$
- $\{x \in \mathbb{C} \mid \operatorname{Im}\{x\} \in \mathbb{N}\}\$
- $-z=x+iy \text{ for } x,y\in\mathbb{R} \Longrightarrow \bar{z}=z^*\coloneqq x-iy$

Notation D01-S02(b)

We'll use some standard math notation

```
- \mathbb{C}, \mathbb{R}, \mathbb{N}

- \in, \forall, \exists, !

- \{x \in \mathbb{C} \mid \text{Im}\{x\} \in \mathbb{N}\}

- z = x + iy for x, y \in \mathbb{R} \implies \bar{z} = z^* := x - iy
```

Vectors, matrices, etc:

- $\boldsymbol{u} \in \mathbb{C}^n$
- $A \in \mathbb{C}^{m \times n}$
- linear independence
- rank
- (conjugate) transpose
- determinant
- matrix inverse
- subspaces defined by A: range, kernel, cokernel, corange

 \mathbb{C}^n endowed with the standard inner product is a Hilbert space. If $u, v \in \mathbb{C}^n$,

- $\langle oldsymbol{u}, oldsymbol{v}
 angle$, $\|oldsymbol{u}\|$
- $\angle(\boldsymbol{u}, \boldsymbol{v})$
- $u \perp v$
- $\operatorname{Proj}_{\boldsymbol{v}} \boldsymbol{u}$
- orthogonal and orthonormal sets

All the above is also well-defined in \mathbb{R}^n .

An $m \times n$ matrix \boldsymbol{A} is a tableau of elements (from $\mathbb R$ or $\mathbb C$):

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{C}^{m \times n}, \qquad (A)_{j,k} = a_{j,k}, \qquad j \in [m], k \in [n]$$

A matrix is "just" a vector with "2D" indices.

Matrices come with a natural algebra, i.e., sum and product operations involving matrices:

- Product of a scalar and a matrix
- Sum of two matrices (of the same size)
- Product of two matrices (of conforming sizes)

$$\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{B} \in \mathbb{C}^{n \times k} \implies \mathbf{A} \mathbf{B} \in \mathbb{C}^{m \times k}, \ (AB)_{j,k} = \sum_{\ell=1}^{n} a_{j\ell} b_{\ell k}.$$

Let $A \in \mathbb{C}^{m \times n}$ be given. The four fundamental subspaces are uniquely defined:

- $-\mathbb{C}^m\supset\mathcal{R}(A)=\mathrm{range}(A)=\mathrm{Im}(A)$, the "column space" of A
- $\mathbb{C}^n\supset\mathcal{R}(\boldsymbol{A^*})=\operatorname{corange}(\boldsymbol{A})$, the "row space" or "corange" of $\boldsymbol{A}.$
- $\mathbb{C}^n\supset\mathcal{K}(m{A})=\ker(m{A})$, the "nullspace" or "kernel" of $m{A}$
- $\mathbb{C}^m\supset\mathcal{K}(A^*)=\operatorname{coker}(A)$, the "left nullspace" or "cokernel" of A.

Let $A \in \mathbb{C}^{m \times n}$ be given. The four fundamental subspaces are uniquely defined:

- $-\mathbb{C}^m\supset\mathcal{R}(m{A})=\mathrm{range}(m{A})=\mathrm{Im}(m{A})$, the "column space" of $m{A}$
- $\mathbb{C}^n\supset\mathcal{R}(\boldsymbol{A^*})=\operatorname{corange}(\boldsymbol{A})$, the "row space" or "corange" of $\boldsymbol{A}.$
- $-\mathbb{C}^n\supset\mathcal{K}(A)=\ker(A)$, the "nullspace" or "kernel" of A
- $\mathbb{C}^m \supset \mathcal{K}(A^*) = \operatorname{coker}(A)$, the "left nullspace" or "cokernel" of A.

Essentially by definition: $\mathcal{K}(A)$ contains all vectors v satisfying Av = 0. I.e., if $w_1, \ldots, w_n \in \mathbb{C}^n$ are conjugate-transposed rows of A, then v is orthogonal to $\mathrm{span}\{w_1, \ldots w_n\}$.

Let $A \in \mathbb{C}^{m \times n}$ be given. The four fundamental subspaces are uniquely defined:

- $\mathbb{C}^m \supset \mathcal{R}(A) = \operatorname{range}(A) = \operatorname{Im}(A)$, the "column space" of A
- $\mathbb{C}^n\supset\mathcal{R}(\boldsymbol{A^*})=\operatorname{corange}(\boldsymbol{A})$, the "row space" or "corange" of $\boldsymbol{A}.$
- $-\mathbb{C}^n\supset\mathcal{K}(m{A})=\ker(m{A})$, the "nullspace" or "kernel" of $m{A}$
- $-\mathbb{C}^m\supset\mathcal{K}(A^*)=\operatorname{coker}(A)$, the "left nullspace" or "cokernel" of A.

Essentially by definition: $\mathcal{K}(A)$ contains all vectors v satisfying Av = 0. I.e., if $w_1, \ldots, w_n \in \mathbb{C}^n$ are conjugate-transposed rows of A, then v is orthogonal to $\mathrm{span}\{w_1, \ldots w_n\}$.

Theorem (Fundamental Theorem of Linear Algebra)

For any $\mathbf{A} \in \mathbb{C}^{m \times n}$,

$$n = \dim \operatorname{corange}(\mathbf{A}) + \dim \ker(\mathbf{A}), \qquad \operatorname{corange}(\mathbf{A}) \perp \ker(\mathbf{A}), \qquad \mathbb{C}^n = \operatorname{corange}(\mathbf{A}) \oplus \ker(\mathbf{A})$$

 $m = \dim \operatorname{range}(\mathbf{A}) + \dim \operatorname{coker}(\mathbf{A}), \qquad \operatorname{range}(\mathbf{A}) \perp \operatorname{coker}(\mathbf{A}), \qquad \mathbb{C}^m = \operatorname{range}(\mathbf{A}) \oplus \operatorname{coker}(\mathbf{A})$

Norms D01-S06(a)

Metrizing linear spaces is a big business in mathematics.

Given a vector space V, a map $\|\cdot\|:V\to\mathbb{R}$ is a *norm* if it satisfies all the following properties:

- $-\|\boldsymbol{x}\| \geqslant 0 \ \forall \boldsymbol{x} \in V$
- $\|x\| = 0 \text{ iff } x = 0$
- $\|x + y\| \le \|x\| + \|y\| \ \forall x, y \in V$
- $\|c\boldsymbol{x}\| = |c|\|\boldsymbol{x}\| \ \forall \boldsymbol{x} \in V, \ c \in \mathbb{C}.$

We are mostly concerned with standard examples $V = \mathbb{R}^n, \mathbb{C}^n, \mathbb{C}^{m \times n}$, etc.

The "standard" examples of vector norms are the ℓ^p norms.

With $\boldsymbol{x} \in \mathbb{C}^n$:

$$\begin{aligned} \|\boldsymbol{x}\|_{p}^{p} &\coloneqq \sum_{j \in [n]} |x_{j}|^{p}, & p \in [1, \infty) \\ \|\boldsymbol{x}\|_{\infty} &\coloneqq \max_{j \in [n]} |x_{j}|, & p = \infty. \end{aligned}$$

The "standard" examples of vector norms are the ℓ^p norms.

With $\boldsymbol{x} \in \mathbb{C}^n$:

$$\|\boldsymbol{x}\|_{p}^{p} := \sum_{j \in [n]} |x_{j}|^{p}, \qquad p \in [1, \infty)$$
$$\|\boldsymbol{x}\|_{\infty} := \max_{j \in [n]} |x_{j}|, \qquad p = \infty.$$

Example

Show that $\|\cdot\|_2$ on \mathbb{C}^n is a norm.

One straightforward identification of norms on matrices are "entrywise" ones:

$$\|\mathbf{A}\|_{p,p} \coloneqq \|\operatorname{vec}(\mathbf{A})\|_{p}, \qquad p \in [1, \infty],$$

where $vec(\cdot)$ is the *vectorization* function.

One straightforward identification of norms on matrices are "entrywise" ones:

$$\|\mathbf{A}\|_{p,p} := \|\operatorname{vec}(\mathbf{A})\|_p, \qquad p \in [1, \infty],$$

where $vec(\cdot)$ is the *vectorization* function.

There are "mixed" entrywise norm definitions, corresponding to taking ℓ^p vector norms of each row, and then a vector ℓ^q norm of the resulting vector of norms,

$$\|\boldsymbol{A}\|_{p,q} \coloneqq \left(\sum_{j\in[n]} \left(\sum_{i\in[m]} |a_{i,j}|^p\right)^{q/p}\right)^{1/q}.$$

One straightforward identification of norms on matrices are "entrywise" ones:

$$\|\mathbf{A}\|_{p,p} := \|\operatorname{vec}(\mathbf{A})\|_{p}, \qquad p \in [1, \infty],$$

where $vec(\cdot)$ is the *vectorization* function.

There are "mixed" entrywise norm definitions, corresponding to taking ℓ^p vector norms of each row, and then a vector ℓ^q norm of the resulting vector of norms,

$$\|\boldsymbol{A}\|_{p,q} := \left(\sum_{j \in [n]} \left(\sum_{i \in [m]} |a_{i,j}|^p\right)^{q/p}\right)^{1/q}.$$

A particularly useful entrywise norm is the Frobenius norm,

$$\|\boldsymbol{A}\|_{F} \coloneqq \|\boldsymbol{A}\|_{2,2}.$$

A more conceptual collection of matrix norms are induced by vector norms.

By viewing $A \in \mathbb{C}^{m \times n}$ as the mapping $x \mapsto Ax$, norms can be defined as the maximum relative "size" of this mapping:

$$\|\boldsymbol{A}\|_p \coloneqq \sup_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\|\boldsymbol{A}\boldsymbol{x}\|_p}{\|\boldsymbol{x}\|_p}, \qquad p \in [1, \infty].$$

(Note that A can be rectangular here.)

That these are proper norms is direct from the fact that $\|\cdot\|_p$ is a norm on \mathbb{C}^m .

A rather important and useful fact is that any two norms on the same <u>finite-dimensional</u> vector space are <u>equivalent</u>.

Theorem (All norms on a finite-dimensional space are equivalent)

Let V be an n-dimensional vector space, and let $\|\cdot\|_*$ and $\|\cdot\|_+$ be any two norms on this space. Then there are strictly positive constants c and k such that for all $x \in V$,

$$c\|\boldsymbol{x}\|_{\boldsymbol{*}} \leqslant \|\boldsymbol{x}\|_{+} \leqslant k\|\boldsymbol{x}\|_{\boldsymbol{*}}.$$

The constants c and k can depend on V (in particular n) and the choice of $\|\cdot\|_*$ and $\|\cdot\|_+$, but not on x.

Note that the above applies equally to spaces containing vectors or matrices.

A rather important and useful fact is that any two norms on the same <u>finite-dimensional</u> vector space are *equivalent*.

Theorem (All norms on a finite-dimensional space are equivalent)

Let V be an n-dimensional vector space, and let $\|\cdot\|_*$ and $\|\cdot\|_+$ be any two norms on this space. Then there are strictly positive constants c and k such that for all $x \in V$,

$$c\|\boldsymbol{x}\|_{\boldsymbol{*}} \leqslant \|\boldsymbol{x}\|_{+} \leqslant k\|\boldsymbol{x}\|_{\boldsymbol{*}}.$$

The constants c and k can depend on V (in particular n) and the choice of $\|\cdot\|_*$ and $\|\cdot\|_+$, but not on x.

Note that the above applies equally to spaces containing vectors or matrices.

The good news: Norm equivalence suggests it doesn't matter which norm you pick.

The bad news: To prove something, it typically matters which norm you pick.

Example

Compute c and k such that,

$$c\|\boldsymbol{x}\|_1 \leqslant \|\boldsymbol{x}\|_2 \leqslant k\|\boldsymbol{x}\|_1,$$

 $\forall x \in \mathbb{C}^n$.

Also, identify examples of vectors x that achieve the upper and lower bounds above.

Example

Compute c and k such that,

$$c\|\mathbf{A}\|_{1} \leqslant \|\mathbf{A}\|_{2} \leqslant k\|\mathbf{A}\|_{1},$$

$$\forall \ \boldsymbol{A} \in \mathbb{C}^{m \times n}$$

Also, identify examples of matrices A that achieve the upper and lower bounds above.

Example

Compute $\|\boldsymbol{A}\|_2$, where,

$$\mathbf{A} = \left(\begin{array}{cc} -2 & -1 \\ 1 & 2 \end{array} \right)$$

Of special interest are the norms arising from inner products: these norms induce Euclidean-like geometry (Hilbert spaces).

The prototypical example on \mathbb{C}^n is the ℓ^2 norm: for $x,y\in\mathbb{C}^n$, we have,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{y}^* \boldsymbol{x} = \sum_{i \in [n]} x_i y_i^*, \qquad \|\boldsymbol{x}\|_2^2 = \langle \boldsymbol{x}, \boldsymbol{x} \rangle.$$

Inner products are *bilinear* forms (technically "sesquilinear" for the complex field \mathbb{C}).

Of special interest are the norms arising from inner products: these norms induce Euclidean-like geometry (Hilbert spaces).

The prototypical example on \mathbb{C}^n is the ℓ^2 norm: for $x,y\in\mathbb{C}^n$, we have,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{y}^* \boldsymbol{x} = \sum_{i \in [n]} x_i y_i^*, \qquad \|\boldsymbol{x}\|_2^2 = \langle \boldsymbol{x}, \boldsymbol{x} \rangle.$$

Inner products are *bilinear* forms (technically "sesquilinear" for the complex field \mathbb{C}).

One of the most useful algebraic properties of inner products that give rise to a norm $\|\cdot\|$ is the *Cauchy-Schwarz* inequality:

$$|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \leqslant \|\boldsymbol{x}\| \|\boldsymbol{y}\|$$

From this property one can observe that the following geometric structure of elements x, y is reasonable:

$$\cos\left(igtriangleup(oldsymbol{x},oldsymbol{y})
ight)\coloneqqrac{\left\langleoldsymbol{x},oldsymbol{y}
ight
angle}{\left\|oldsymbol{x}
ight\|\left\|oldsymbol{y}
ight\|}, \qquad \qquad oldsymbol{x}\perpoldsymbol{y} ext{ iff }\left\langleoldsymbol{x},oldsymbol{y}
ight
angle=0.$$

Of special interest are the norms arising from inner products: these norms induce Euclidean-like geometry (Hilbert spaces).

The prototypical example on \mathbb{C}^n is the ℓ^2 norm: for $x,y\in\mathbb{C}^n$, we have,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{y}^* \boldsymbol{x} = \sum_{i \in [n]} x_i y_i^*, \qquad \|\boldsymbol{x}\|_2^2 = \langle \boldsymbol{x}, \boldsymbol{x} \rangle.$$

Inner products are *bilinear* forms (technically "sesquilinear" for the complex field \mathbb{C}).

One of the most useful algebraic properties of inner products that give rise to a norm $\|\cdot\|$ is the *Cauchy-Schwarz* inequality:

$$|\langle oldsymbol{x}, oldsymbol{y}
angle| \leqslant \|oldsymbol{x}\| \|oldsymbol{y}\|$$

From this property one can observe that the following geometric structure of elements x, y is reasonable:

$$\cos\left(\angle(oldsymbol{x},oldsymbol{y})
ight) \coloneqq rac{\langle oldsymbol{x},oldsymbol{y}
angle}{\|oldsymbol{x}\| \|oldsymbol{y}\|}, \qquad \qquad oldsymbol{x} \perp oldsymbol{y} ext{ iff } \langle oldsymbol{x},oldsymbol{y}
angle = 0.$$

There are Hilbertian norms even for matrices, with a common example being the Frobenius norm:

$$\langle A, B \rangle_F := \operatorname{Tr} (B^* A),$$
 $\|A\|_F^2 = \langle A, A \rangle_F$

The sledgehammer killing an ant way to prove the Pythagorean Theorem: Let x_1 , x_2 be two orthogonal vectors (say in \mathbb{C}^n).

Since $\langle \boldsymbol{x}_1, \boldsymbol{x}_2 \rangle = 0$, then

$$\begin{aligned} \|\boldsymbol{x}_1 + \boldsymbol{x}_2\|_2^2 &= \langle \boldsymbol{x}_1 + \boldsymbol{x}_2, \boldsymbol{x}_1 + \boldsymbol{x}_2 \rangle \\ &= \langle \boldsymbol{x}_1, \boldsymbol{x}_1 \rangle + \langle \boldsymbol{x}_2, \boldsymbol{x}_2 \rangle + \underbrace{\langle \boldsymbol{x}_1, \boldsymbol{x}_2 \rangle}_{0} + \underbrace{\langle \boldsymbol{x}_2, \boldsymbol{x}_1 \rangle}_{0} \\ &= \|\boldsymbol{x}_1\|_2^2 + \|\boldsymbol{x}_2\|_2^2. \end{aligned}$$

The sledgehammer killing an ant way to prove the Pythagorean Theorem: Let x_1 , x_2 be two orthogonal vectors (say in \mathbb{C}^n).

Since $\langle \boldsymbol{x}_1, \boldsymbol{x}_2 \rangle = 0$, then

$$\begin{aligned} \|\boldsymbol{x}_1 + \boldsymbol{x}_2\|_2^2 &= \langle \boldsymbol{x}_1 + \boldsymbol{x}_2, \boldsymbol{x}_1 + \boldsymbol{x}_2 \rangle \\ &= \langle \boldsymbol{x}_1, \boldsymbol{x}_1 \rangle + \langle \boldsymbol{x}_2, \boldsymbol{x}_2 \rangle + \underbrace{\langle \boldsymbol{x}_1, \boldsymbol{x}_2 \rangle}_0 + \underbrace{\langle \boldsymbol{x}_2, \boldsymbol{x}_1 \rangle}_0 \\ &= \|\boldsymbol{x}_1\|_2^2 + \|\boldsymbol{x}_2\|_2^2. \end{aligned}$$

One of the more useful extensions of this (not apparent from n=2) is: If $x_1, \ldots x_k$ are k mutually orthogonal vectors in \mathbb{C}^n , then,

$$\left\|\sum_{j\in[k]}oldsymbol{x}_j
ight\|_2^2 = \sum_{j\in[k]}\left\|oldsymbol{x}_j
ight\|_2^2$$

References I D01-S14(a)

Atkinson, Kendall (1989). An Introduction to Numerical Analysis. New York: Wiley. ISBN: 978-0-471-62489-9.

Salgado, Abner J. and Steven M. Wise (2022). *Classical Numerical Analysis: A Comprehensive Course*. Cambridge: Cambridge University Press. ISBN: 978-1-108-83770-5. DOI: 10.1017/9781108942607.

Trefethen, Lloyd N. and David Bau (1997). *Numerical Linear Algebra*. SIAM: Society for Industrial and Applied Mathematics. ISBN: 0-89871-361-7.