Math 6610: Analysis of Numerical Methods, |
The LU and Cholesky decompositions
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Fall 2025

Resources:  Trefethen and Bau 1997, Lectures 20, 21, 23
Atkinson 1989, Chapter 1
Salgado and Wise 2022, Chapter 3

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky



Gaussian elimination D06-S02(a)
Let A € C™™" be an invertible matrix, and let b€ C™ be any vector.

Our goal is to compute the solution & € C™ to the linear system,

Ax =0b
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Gaussian elimination D06-502(b)
Let A € C™™" be an invertible matrix, and let b€ C™ be any vector.
Our goal is to compute the solution & € C™ to the linear system,
Ax =0b
One “standard" way to do this starts by forming the augmented rectangular matrix
(A b)e ™"t

and proceeds to perform elimination steps to transform the left n x n block into the identity matrix.
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Row operations, | D06-5S03(a)

If we record the row operations needed to perform Gaussian elimination, then we can work only on the
matrix A.

Consider a matrix A with columns (a;)7_;:
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Row operations, | D06-S03(b)

If we record the row operations needed to perform Gaussian elimination, then we can work only on the
matrix A.

Consider a matrix A with columns (a;)7_;:

If a1,1 # 0, then by standard Gaussian elimination, we replace row j with itself minus a scaled version of
row 1 to eliminate entries in column 1.
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l.e., if r;F is row j of A, then for j > 1, replace row j with, | )
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In particular, this shows that 7, can be reconstructed in terms of 7*; and 1. or (',."

-/ )

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky



Row operations, Il D06-5S04(a)

After row operations that transform the first column to a multiple of e;, we have
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Row operations, |l D06-5S05(a)

If we continue triangular elimination from A, until the last column we obtain,

A=Li L, 1A,, Ah : UP/&‘ ﬁ’\.af‘jat/w.

where A, is an upper-triangular matrix, and each L; has the form,
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Row operations, |l D06-S05(b)

If we continue triangular elimination from A, until the last column we obtain,
A=L;---L,_1A,,

where A, is an upper-triangular matrix, and each L; has the form,

LJ = el RIS ej—l EJ e]+1 o o e en ,

where £; is a vector with jth component ¢; ; =1, and ¢, = 0 for £ < j. Note that each L; is lower
triangular, and one can show that

LiLisi= (e - e-1 £ Lt ez - en ),

so that L := ]—[2:11 L; is also Mtriangular.
dowe

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky



The LU factorization D06-S06(a)
We have just shown that, if all our elimination steps successfully complete, then
A = LU,

where L is lower-triangular, and U is upper-triangular.
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The LU factorization D06-S06(b)
We have just shown that, if all our elimination steps successfully complete, then
A=LU,
where L is lower-triangular, and U is upper-triangular.
How can the steps fail?

Theorem

A has an LU decomposition if and only if det A; # 0 for all j = 1,...,n, where A; is the principal
(upper-left) j x j submatrix of A.
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LU factorization utility D06-S07(a)

The LU factorization/decomposition has several uses;

— It's how we solve linear systems (elﬂ’/‘ On Mm,ll"?f‘!)

— If an LU factorization for A is available, then solving Az = b requires only O(n?) operations.
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LU factorization utility D06-507(b)

The LU factorization/decomposition has several uses;

— It's how we solve linear systems

— If an LU factorization for A is available, then solving Az = b requires only O(n?) operations.

— det A = det LdetU.
Let A € C™*™ be an invertible matrix. If Gaussian elimination succeeds, then

A=1LU,

where L and U are lower- and upper-triangular, respectively.
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LU factorization utility

The LU factorization/decomposition has several uses;

— It's how we solve linear systems

D06-S07(c)

— If an LU factorization for A is available, then solving Az = b requires only O(n?) operations.

— det A = det LdetU.
Let A € C™*™ be an invertible matrix. If Gaussian elimination succeeds, then

A= LU,
where L and U are lower- and upper-triangular, respectively.

“Standard” Gaussian elimination fails in some cases, e.g., with
0 1
(1),
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LU and Gaussian elimination D06-508(a)
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Pivoting [ |1 [.efcm,ng,w@, e ) D06-509(a)
The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.
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Pivoting D06-S09(b)

The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.

General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)
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Pivoting D06-S09(c)

The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.

General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)

This results in the decomposition,
A=P,L, P;L, --- P, 1L, U,

where P; is a permutation matrix that permutes row j with row k for some k > j.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky



Pivoting D06-S09(d)
The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.

General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)

This results in the decomposition,
A=P,L, P;L, --- P, 1L, U,

where P is a permutation matrix that permutes row j with row k for some k£ > j. One can show that
L;P, = P,L; if j < k for some other lower-triangular matrix L;, so that
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“Pivoted” LU D06-510(a)
In fact, we can show that this row pivoting strategy always works.

Theorem

\ 7.
J',

If A e C"™" js invertible, then there exists
— a permutation matrix P, /
— a lower-triangular matrix L,
— an upper-triangular matrix U,

such that
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More pivoting D06-S11(a)

Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A = P1L1 P2L2 s Pn—an—l U Qn—lQn—Q o 'Ql)

where both P; and @, are permutation matrices.
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More pivoting D06-S11(b)

Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A = P1L1 P2L2 s Pn—an—l U Qn—lQn—Q o 'le

where both P; and @, are permutation matrices.

This achieves the full-pivoted LU decomposition,

PAQ = LU.
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More pivoting D06-S11(c)

Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A = P1L1 P2L2 s Pn—an—l U Qn—lQn—Q o 'le

where both P; and @, are permutation matrices.

This achieves the full-pivoted LU decomposition,
PAQ = LU.

An alternative is rook pivoting, which performs a permutation similar to the above, except that at
elimination step j, the maximum is sought only over row j and column j.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky



More pivoting D06-S11(d)
Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A = P1L1 P2L2 s Pn—an—l U Qn—lQn—Q o 'le

where both P; and @, are permutation matrices.

This achieves the full-pivoted LU decomposition,
PAQ = LU.

An alternative is rook pivoting, which performs a permutation similar to the above, except that at
elimination step j, the maximum is sought only over row j and column j.  All flavors of LU factorizations
require O(n*) complexity with explicit, small multiplying constant.

But the choice of pivoting can substantially affect the actual runtime (the constant).
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Hermitian positive-definite matrices D06-512(a)

Assume A € C™*" is Hermitian positive definite.

Our investigation of LU decompositions specializes considerably in this case.
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Hermitian positive-definite matrices D06-512(b)

Assume A € C™*" is Hermitian positive definite.

Our investigation of LU decompositions specializes considerably in this case.

First we note some properties of A:
— A is invertible
— The diagonal entries of A are real and strictly positive
— If Be C™*™ with m < n is of full rank, then BAB¥* is positive-definite

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky



LU on positive-definite matrices D06-513(a)

A general positive-definite matrix A has the form

a — v —
v A2

Consider performing elimination on A:
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LU on positive-definite matrices D06-513(b)

A general positive-definite matrix A has the form

J— v J—

a
_ |
A_ v A2
|

Consider performing elimination on A:

A=LB* =

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky



Symmetric factorizations D06-514(a)

A= L,B*

We can perform a single step of Gaussian elimination on B:
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Symmetric factorizations D06-514(b)

A =L,B*

We can perform a single step of Gaussian elimination on B:
— O —
B =1,

a

a
O A2 _ 'v'v* )
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The Cholesky factorization D06-515(a)

A=1L,

1
|
0 A2_'u'v
|

Note that Az — *°— must be positive definite since L1 is invertible.
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The Cholesky factorization D06-515(b)

i .
A_Ll 0 A2_'U'v*

| a

Note that Az — *°— must be positive definite since L1 is invertible.

Thus, we can repeat this process:

~ ~ ES
A— (L1L2---Ln_1) (Lng---Ln_l)
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The Cholesky factorization

A=1L,

1
|
0 A2_'u'v
|

Note that Az — *°— must be positive definite since L1 is invertible.

Thus, we can repeat this process:

~ o~ ~ ~ o~ ~ ES
A— (LlLQ---Ln_l) (Lle---Ln_l)

Theorem

D06-515(c)

Every Hermitian positive definite matrix A has a unique symmetric LU, or Cholesky, decomposition:

A = LL*, where L is lower-triangular and invertible.

Instructor: A. Narayan (UofU — Mathematics/SCl)
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Pivoted Cholesky D06-516(a)

One can perform symmetric pivoting on a Hermitian positive-definite matrix A: A = PLL*P*.

This could be used to pivot maximum-magnitude diagonal entries to the front.
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Pivoted Cholesky D06-516(b)

One can perform symmetric pivoting on a Hermitian positive-definite matrix A: A = PLL*P*.
This could be used to pivot maximum-magnitude diagonal entries to the front.
However, pivoted Cholesky decompositions have another use:

Theorem

Every Hermitian positive semi-definite matrix A has a pivoted Cholesky decomposition: A = PLL* P¥*,
where L is lower-triangular but need not invertible. This decomposition is in general not unique.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky



Pivoted Cholesky D06-516(c)

One can perform symmetric pivoting on a Hermitian positive-definite matrix A: A = PLL*P*.
This could be used to pivot maximum-magnitude diagonal entries to the front.
However, pivoted Cholesky decompositions have another use:

Theorem

Every Hermitian positive semi-definite matrix A has a pivoted Cholesky decomposition: A = PLL* P¥*,
where L is lower-triangular but need not invertible. This decomposition is in general not unique.

Why do we care about Cholesky decompositions? For positive-definite matrices:
— Not having to deal with pivoting is of considerable computational savings (but doesn’'t change
asymptotic complexity)
— The Cholesky decomposition provides a “whitening” transform, e.g., for ¢ — =* Ax.

— Low-rank updates of Cholesky factors are (very) useful.
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LDU and LDL* decompositions D06-517(a)
A minor generalization of LU for a generic matrix: If A is invertible, then we can always write,

PA = LU,
where P is a permutation matrix.

By construction:
— The diagonal of L is all ones
— The diagonal of U contains the non-zero pivot entries

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky



LDU and LDL* decompositions D06-517(b)

A minor generalization of LU for a generic matrix: If A is invertible, then we can always write,
PA = LU,
where P is a permutation matrix.

By construction:
— The diagonal of L is all ones
— The diagonal of U contains the non-zero pivot entries
Let D be a diagonal matrix with the pivot entries of U, then we can write,

PA = LDU,

where both L and U have ones on the diagonal. This is the (pivoted) LDU decomposition of A.
(There are some niche cases when doing this decomposition of A is slightly preferable.)

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky



LDU and LDL* decompositions D06-517(c)

A minor generalization of LU for a generic matrix: If A is invertible, then we can always write,
PA = LU,
where P is a permutation matrix.

By construction:
— The diagonal of L is all ones
— The diagonal of U contains the non-zero pivot entries
Let D be a diagonal matrix with the pivot entries of U, then we can write,

PA = LDU,

where both L and U have ones on the diagonal. This is the (pivoted) LDU decomposition of A.
(There are some niche cases when doing this decomposition of A is slightly preferable.)

For Hermitian positive semi-definite matrices, we can write
PAP* = LDL*

(Or without permutations if A is positive definite.) This is the LDL” decomposition of A.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: LU + Cholesky
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