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Gaussian elimination D06-S02(a)

Let A P C
nˆn be an invertible matrix, and let b P C

n be any vector.

Our goal is to compute the solution x P C
n to the linear system,

Ax “ b

One “standard" way to do this starts by forming the augmented rectangular matrix

pA bq P C
nˆpn`1q,

and proceeds to perform elimination steps to transform the left n ˆ n block into the identity matrix.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Gaussian elimination D06-S02(b)

Let A P C
nˆn be an invertible matrix, and let b P C

n be any vector.

Our goal is to compute the solution x P C
n to the linear system,

Ax “ b

One “standard" way to do this starts by forming the augmented rectangular matrix

pA bq P C
nˆpn`1q,

and proceeds to perform elimination steps to transform the left n ˆ n block into the identity matrix.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Row operations, I D06-S03(a)

If we record the row operations needed to perform Gaussian elimination, then we can work only on the
matrix A.

Consider a matrix A with columns pajq
n
j“1:

A “

¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚, aj “

¨

˚

˚

˚

˝

aj,1

aj,2

...
aj,n

˛

‹

‹

‹

‚

If a1,1 ‰ 0, then by standard Gaussian elimination, we replace row j with itself minus a scaled version of
row 1 to eliminate entries in column 1.

I.e., if r˚
j is row j of A, then for j ą 1, replace row j with,

rr˚
j “ r˚

j ´
aj,1

a1,1
r˚
1

In particular, this shows that rj can be reconstructed in terms of rrj and r1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Row operations, I D06-S03(b)

If we record the row operations needed to perform Gaussian elimination, then we can work only on the
matrix A.

Consider a matrix A with columns pajq
n
j“1:

A “

¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚, aj “

¨

˚

˚

˚

˝

aj,1

aj,2

...
aj,n

˛

‹

‹

‹

‚

If a1,1 ‰ 0, then by standard Gaussian elimination, we replace row j with itself minus a scaled version of
row 1 to eliminate entries in column 1.

I.e., if r˚
j is row j of A, then for j ą 1, replace row j with,

rr˚
j “ r˚

j ´
aj,1

a1,1
r˚
1

In particular, this shows that rj can be reconstructed in terms of rrj and r1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Row operations, II D06-S04(a)

After row operations that transform the first column to a multiple of e1, we have

A “ L1A2, L1 “

¨

˚

˚

˝

´ 01ˆpn´1q ´

ℓ
Ipn´1qˆpn´1q

˛

‹

‹

‚

,

with A2 the matrix

A2 “

¨

˚

˚

˚

˝

a1,1

0
a

p2q

2 ¨ ¨ ¨ a
p2q
n...

0

˛

‹

‹

‹

‚

.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Row operations, III D06-S05(a)

If we continue triangular elimination from A2, until the last column we obtain,

A “ L1 ¨ ¨ ¨Ln´1An,

where An is an upper-triangular matrix, and each Lj has the form,

Lj “

¨

˝ e1 ¨ ¨ ¨ ej´1 ℓj ej`1 ¨ ¨ ¨ en

˛

‚,

where ℓj is a vector with jth component ℓj,j “ 1, and ℓj,k “ 0 for k ă j. Note that each Lj is lower
triangular, and one can show that

LjLj`1 “
`

e1 ¨ ¨ ¨ ej´1 ℓj ℓj`1 ej`2 ¨ ¨ ¨ en

˘

,

so that L :“
śn´1

j“1 Lj is also upper-triangular.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Row operations, III D06-S05(b)

If we continue triangular elimination from A2, until the last column we obtain,

A “ L1 ¨ ¨ ¨Ln´1An,

where An is an upper-triangular matrix, and each Lj has the form,

Lj “

¨

˝ e1 ¨ ¨ ¨ ej´1 ℓj ej`1 ¨ ¨ ¨ en

˛

‚,

where ℓj is a vector with jth component ℓj,j “ 1, and ℓj,k “ 0 for k ă j. Note that each Lj is lower
triangular, and one can show that

LjLj`1 “
`

e1 ¨ ¨ ¨ ej´1 ℓj ℓj`1 ej`2 ¨ ¨ ¨ en

˘

,

so that L :“
śn´1

j“1 Lj is also upper-triangular.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



The LU factorization D06-S06(a)

We have just shown that, if all our elimination steps successfully complete, then

A “ LU ,

where L is lower-triangular, and U is upper-triangular.

How can the steps fail?

Theorem
A has an LU decomposition if and only if detAj ‰ 0 for all j “ 1, . . . , n, where Aj is the principal
(upper-left) j ˆ j submatrix of A.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



The LU factorization D06-S06(b)

We have just shown that, if all our elimination steps successfully complete, then

A “ LU ,

where L is lower-triangular, and U is upper-triangular.

How can the steps fail?

Theorem
A has an LU decomposition if and only if detAj ‰ 0 for all j “ 1, . . . , n, where Aj is the principal
(upper-left) j ˆ j submatrix of A.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



LU factorization utility D06-S07(a)

The LU factorization/decomposition has several uses;

– It’s how we solve linear systems

– If an LU factorization for A is available, then solving Ax “ b requires only Opn2
q operations.

– detA “ detL detU .

Let A P C
nˆn be an invertible matrix. If Gaussian elimination succeeds, then

A “ LU ,

where L and U are lower- and upper-triangular, respectively.

“Standard” Gaussian elimination fails in some cases, e.g., with

A “

ˆ

0 1
1 0

˙

.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



LU factorization utility D06-S07(b)

The LU factorization/decomposition has several uses;

– It’s how we solve linear systems

– If an LU factorization for A is available, then solving Ax “ b requires only Opn2
q operations.

– detA “ detL detU .

Let A P C
nˆn be an invertible matrix. If Gaussian elimination succeeds, then

A “ LU ,

where L and U are lower- and upper-triangular, respectively.

“Standard” Gaussian elimination fails in some cases, e.g., with

A “

ˆ

0 1
1 0

˙

.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



LU factorization utility D06-S07(c)

The LU factorization/decomposition has several uses;

– It’s how we solve linear systems

– If an LU factorization for A is available, then solving Ax “ b requires only Opn2
q operations.

– detA “ detL detU .

Let A P C
nˆn be an invertible matrix. If Gaussian elimination succeeds, then

A “ LU ,

where L and U are lower- and upper-triangular, respectively.

“Standard” Gaussian elimination fails in some cases, e.g., with

A “

ˆ

0 1
1 0

˙

.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



LU and Gaussian elimination D06-S08(a)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Pivoting D06-S09(a)

The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.

General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)

This results in the decomposition,

A “ P 1L1 P 2L2 ¨ ¨ ¨ P n´1Ln´1U ,

where P j is a permutation matrix that permutes row j with row k for some k ě j. One can show that
LjP k “ P k

rLj if j ă k for some other lower-triangular matrix rLj , so that

A “

˜

n´1
ź

j“1

P j

¸ ˜

n´1
ź

j“1

rLj

¸

U .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Pivoting D06-S09(b)

The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.

General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)

This results in the decomposition,

A “ P 1L1 P 2L2 ¨ ¨ ¨ P n´1Ln´1U ,

where P j is a permutation matrix that permutes row j with row k for some k ě j. One can show that
LjP k “ P k

rLj if j ă k for some other lower-triangular matrix rLj , so that

A “

˜

n´1
ź

j“1

P j

¸ ˜

n´1
ź

j“1

rLj

¸

U .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Pivoting D06-S09(c)

The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.

General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)

This results in the decomposition,

A “ P 1L1 P 2L2 ¨ ¨ ¨ P n´1Ln´1U ,

where P j is a permutation matrix that permutes row j with row k for some k ě j. One can show that
LjP k “ P k

rLj if j ă k for some other lower-triangular matrix rLj , so that

A “

˜

n´1
ź

j“1

P j

¸ ˜

n´1
ź

j“1

rLj

¸

U .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Pivoting D06-S09(d)

The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.

General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)

This results in the decomposition,

A “ P 1L1 P 2L2 ¨ ¨ ¨ P n´1Ln´1U ,

where P j is a permutation matrix that permutes row j with row k for some k ě j. One can show that
LjP k “ P k

rLj if j ă k for some other lower-triangular matrix rLj , so that

A “

˜

n´1
ź

j“1

P j

¸ ˜

n´1
ź

j“1

rLj

¸

U .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



“Pivoted” LU D06-S10(a)

In fact, we can show that this row pivoting strategy always works.

Theorem
If A P C

nˆn is invertible, then there exists

– a permutation matrix P ,

– a lower-triangular matrix L,

– an upper-triangular matrix U ,

such that

PA “ LU

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



More pivoting D06-S11(a)

Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A “ P 1L1 P 2L2 ¨ ¨ ¨ P n´1Ln´1 U Qn´1Qn´2 ¨ ¨ ¨Q1,

where both P j and Qj are permutation matrices.

This achieves the full-pivoted LU decomposition,

PAQ “ LU .

An alternative is rook pivoting, which performs a permutation similar to the above, except that at
elimination step j, the maximum is sought only over row j and column j. All flavors of LU factorizations
require Opn3

q complexity with explicit, small multiplying constant.

But the choice of pivoting can substantially affect the actual runtime (the constant).

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



More pivoting D06-S11(b)

Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A “ P 1L1 P 2L2 ¨ ¨ ¨ P n´1Ln´1 U Qn´1Qn´2 ¨ ¨ ¨Q1,

where both P j and Qj are permutation matrices.

This achieves the full-pivoted LU decomposition,

PAQ “ LU .

An alternative is rook pivoting, which performs a permutation similar to the above, except that at
elimination step j, the maximum is sought only over row j and column j. All flavors of LU factorizations
require Opn3

q complexity with explicit, small multiplying constant.

But the choice of pivoting can substantially affect the actual runtime (the constant).

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



More pivoting D06-S11(c)

Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A “ P 1L1 P 2L2 ¨ ¨ ¨ P n´1Ln´1 U Qn´1Qn´2 ¨ ¨ ¨Q1,

where both P j and Qj are permutation matrices.

This achieves the full-pivoted LU decomposition,

PAQ “ LU .

An alternative is rook pivoting, which performs a permutation similar to the above, except that at
elimination step j, the maximum is sought only over row j and column j. All flavors of LU factorizations
require Opn3

q complexity with explicit, small multiplying constant.

But the choice of pivoting can substantially affect the actual runtime (the constant).

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



More pivoting D06-S11(d)

Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A “ P 1L1 P 2L2 ¨ ¨ ¨ P n´1Ln´1 U Qn´1Qn´2 ¨ ¨ ¨Q1,

where both P j and Qj are permutation matrices.

This achieves the full-pivoted LU decomposition,

PAQ “ LU .

An alternative is rook pivoting, which performs a permutation similar to the above, except that at
elimination step j, the maximum is sought only over row j and column j. All flavors of LU factorizations
require Opn3

q complexity with explicit, small multiplying constant.

But the choice of pivoting can substantially affect the actual runtime (the constant).

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Hermitian positive-definite matrices D06-S12(a)

Assume A P C
nˆn is Hermitian positive definite.

Our investigation of LU decompositions specializes considerably in this case.

First we note some properties of A:

– A is invertible

– The diagonal entries of A are real and strictly positive

– If B P C
mˆn with m ď n is of full rank, then BAB˚ is positive-definite

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Hermitian positive-definite matrices D06-S12(b)

Assume A P C
nˆn is Hermitian positive definite.

Our investigation of LU decompositions specializes considerably in this case.

First we note some properties of A:

– A is invertible

– The diagonal entries of A are real and strictly positive

– If B P C
mˆn with m ď n is of full rank, then BAB˚ is positive-definite

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



LU on positive-definite matrices D06-S13(a)

A general positive-definite matrix A has the form

A “

¨

˚

˚

˝

a ´ v˚
´

v A2

˛

‹

‹

‚

.

Consider performing elimination on A:

A “ L1B
˚

“

¨

˚

˚

˝

1 ´ 0 ´

v
a

I

˛

‹

‹

‚

¨

˚

˚

˝

a ´ v˚
´

0 A2 ´ vv˚

a

˛

‹

‹

‚

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



LU on positive-definite matrices D06-S13(b)

A general positive-definite matrix A has the form

A “

¨

˚

˚

˝

a ´ v˚
´

v A2

˛

‹

‹

‚

.

Consider performing elimination on A:

A “ L1B
˚

“

¨

˚

˚

˝

1 ´ 0 ´

v
a

I

˛

‹

‹

‚

¨

˚

˚

˝

a ´ v˚
´

0 A2 ´ vv˚

a

˛

‹

‹

‚

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Symmetric factorizations D06-S14(a)

A “ L1B
˚

We can perform a single step of Gaussian elimination on B:

B “ L1

¨

˚

˚

˝

a ´ 0 ´

0 A2 ´ vv˚

a

˛

‹

‹

‚

,

i.e.,

A “ L1

¨

˚

˚

˝

a ´ 0 ´

0 A2 ´ vv˚

a

˛

‹

‹

‚

L˚
1 “ rL1

¨

˚

˚

˝

1 ´ 0 ´

0 A2 ´ vv˚

a

˛

‹

‹

‚

rL
˚

1 .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Symmetric factorizations D06-S14(b)

A “ L1B
˚

We can perform a single step of Gaussian elimination on B:

B “ L1

¨

˚

˚

˝

a ´ 0 ´

0 A2 ´ vv˚

a

˛

‹

‹

‚

,

i.e.,

A “ L1

¨

˚

˚

˝

a ´ 0 ´

0 A2 ´ vv˚

a

˛

‹

‹

‚

L˚
1 “ rL1

¨

˚

˚

˝

1 ´ 0 ´

0 A2 ´ vv˚

a

˛

‹

‹

‚

rL
˚

1 .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



The Cholesky factorization D06-S15(a)

A “ rL1

¨

˚

˚

˝

1 ´ 0 ´

0 A2 ´ vv˚

a

˛

‹

‹

‚

rL
˚

1 .

Note that A2 ´ vv˚

a
must be positive definite since rL1 is invertible.

Thus, we can repeat this process:

A “

´

rL1
rL2 ¨ ¨ ¨ rLn´1

¯ ´

rL1
rL2 ¨ ¨ ¨ rLn´1

¯˚

“: LL˚.

Theorem
Every Hermitian positive definite matrix A has a unique symmetric LU, or Cholesky, decomposition:
A “ LL˚, where L is lower-triangular and invertible.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



The Cholesky factorization D06-S15(b)

A “ rL1

¨

˚

˚

˝

1 ´ 0 ´

0 A2 ´ vv˚

a

˛

‹

‹

‚

rL
˚

1 .

Note that A2 ´ vv˚

a
must be positive definite since rL1 is invertible.

Thus, we can repeat this process:

A “

´

rL1
rL2 ¨ ¨ ¨ rLn´1

¯ ´

rL1
rL2 ¨ ¨ ¨ rLn´1

¯˚

“: LL˚.

Theorem
Every Hermitian positive definite matrix A has a unique symmetric LU, or Cholesky, decomposition:
A “ LL˚, where L is lower-triangular and invertible.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



The Cholesky factorization D06-S15(c)

A “ rL1

¨

˚

˚

˝

1 ´ 0 ´

0 A2 ´ vv˚

a

˛

‹

‹

‚

rL
˚

1 .

Note that A2 ´ vv˚

a
must be positive definite since rL1 is invertible.

Thus, we can repeat this process:

A “

´

rL1
rL2 ¨ ¨ ¨ rLn´1

¯ ´

rL1
rL2 ¨ ¨ ¨ rLn´1

¯˚

“: LL˚.

Theorem
Every Hermitian positive definite matrix A has a unique symmetric LU, or Cholesky, decomposition:
A “ LL˚, where L is lower-triangular and invertible.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Pivoted Cholesky D06-S16(a)

One can perform symmetric pivoting on a Hermitian positive-definite matrix A: A “ PLL˚P ˚.

This could be used to pivot maximum-magnitude diagonal entries to the front.

However, pivoted Cholesky decompositions have another use:

Theorem
Every Hermitian positive semi-definite matrix A has a pivoted Cholesky decomposition: A “ PLL˚P ˚,
where L is lower-triangular but need not invertible. This decomposition is in general not unique.

Why do we care about Cholesky decompositions? For positive-definite matrices:

– Not having to deal with pivoting is of considerable computational savings (but doesn’t change
asymptotic complexity)

– The Cholesky decomposition provides a “whitening” transform, e.g., for x ÞÑ x˚Ax.

– Low-rank updates of Cholesky factors are (very) useful.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Pivoted Cholesky D06-S16(b)

One can perform symmetric pivoting on a Hermitian positive-definite matrix A: A “ PLL˚P ˚.

This could be used to pivot maximum-magnitude diagonal entries to the front.

However, pivoted Cholesky decompositions have another use:

Theorem
Every Hermitian positive semi-definite matrix A has a pivoted Cholesky decomposition: A “ PLL˚P ˚,
where L is lower-triangular but need not invertible. This decomposition is in general not unique.

Why do we care about Cholesky decompositions? For positive-definite matrices:

– Not having to deal with pivoting is of considerable computational savings (but doesn’t change
asymptotic complexity)

– The Cholesky decomposition provides a “whitening” transform, e.g., for x ÞÑ x˚Ax.

– Low-rank updates of Cholesky factors are (very) useful.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



Pivoted Cholesky D06-S16(c)

One can perform symmetric pivoting on a Hermitian positive-definite matrix A: A “ PLL˚P ˚.

This could be used to pivot maximum-magnitude diagonal entries to the front.

However, pivoted Cholesky decompositions have another use:

Theorem
Every Hermitian positive semi-definite matrix A has a pivoted Cholesky decomposition: A “ PLL˚P ˚,
where L is lower-triangular but need not invertible. This decomposition is in general not unique.

Why do we care about Cholesky decompositions? For positive-definite matrices:

– Not having to deal with pivoting is of considerable computational savings (but doesn’t change
asymptotic complexity)

– The Cholesky decomposition provides a “whitening” transform, e.g., for x ÞÑ x˚Ax.

– Low-rank updates of Cholesky factors are (very) useful.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



LDU and LDL˚ decompositions D06-S17(a)

A minor generalization of LU for a generic matrix: If A is invertible, then we can always write,

PA “ LU ,

where P is a permutation matrix.

By construction:
– The diagonal of L is all ones
– The diagonal of U contains the non-zero pivot entries

Let D be a diagonal matrix with the pivot entries of U , then we can write,

PA “ LD rU ,

where both L and U have ones on the diagonal. This is the (pivoted) LDU decomposition of A.
(There are some niche cases when doing this decomposition of A is slightly preferable.)

For Hermitian positive semi-definite matrices, we can write

PAP ˚
“ LDL˚

(Or without permutations if A is positive definite.) This is the LDLT decomposition of A.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



LDU and LDL˚ decompositions D06-S17(b)

A minor generalization of LU for a generic matrix: If A is invertible, then we can always write,

PA “ LU ,

where P is a permutation matrix.

By construction:
– The diagonal of L is all ones
– The diagonal of U contains the non-zero pivot entries

Let D be a diagonal matrix with the pivot entries of U , then we can write,

PA “ LD rU ,

where both L and U have ones on the diagonal. This is the (pivoted) LDU decomposition of A.
(There are some niche cases when doing this decomposition of A is slightly preferable.)

For Hermitian positive semi-definite matrices, we can write

PAP ˚
“ LDL˚

(Or without permutations if A is positive definite.) This is the LDLT decomposition of A.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky



LDU and LDL˚ decompositions D06-S17(c)

A minor generalization of LU for a generic matrix: If A is invertible, then we can always write,

PA “ LU ,

where P is a permutation matrix.

By construction:
– The diagonal of L is all ones
– The diagonal of U contains the non-zero pivot entries

Let D be a diagonal matrix with the pivot entries of U , then we can write,

PA “ LD rU ,

where both L and U have ones on the diagonal. This is the (pivoted) LDU decomposition of A.
(There are some niche cases when doing this decomposition of A is slightly preferable.)

For Hermitian positive semi-definite matrices, we can write

PAP ˚
“ LDL˚

(Or without permutations if A is positive definite.) This is the LDLT decomposition of A.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: LU + Cholesky
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