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Gaussian elimination D06-502(a)
Let A € C™"*™ be an invertible matrix, and let b € C™ be any vector.
Our goal is to compute the solution € C™ to the linear system,

Ax=0b
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Gaussian elimination D06-502(b)
Let A € C™"*™ be an invertible matrix, and let b € C™ be any vector.
Our goal is to compute the solution € C™ to the linear system,
Az =b
One “standard" way to do this starts by forming the augmented rectangular matrix
(A b) e Cm("HD),

and proceeds to perform elimination steps to transform the left n x n block into the identity matrix.
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Row operations, | D06-S03(a)

If we record the row operations needed to perform Gaussian elimination, then we can work only on the
matrix A.

Consider a matrix A with columns (a;)}_1:
aj,1

aj,2

Aj,n
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Row operations, | D06-S03(b)

If we record the row operations needed to perform Gaussian elimination, then we can work only on the
matrix A.

Consider a matrix A with columns (a;)}_1:

aj,1
a;,2

Aj,n

If a1,1 # 0, then by standard Gaussian elimination, we replace row j with itself minus a scaled version of
row 1 to eliminate entries in column 1.

le., if 7 is row j of A, then for j > 1, replace row j with,
~% * Qj,1 %
J

r, = T'j - 1
ai;

In particular, this shows that r; can be reconstructed in terms of 7; and r1.
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Row operations, Il D06-S04(a)

After row operations that transform the first column to a multiple of e1, we have

‘ - 015 (n-1) -

A= L As, Li=| ¢ ,
‘ I(n_1)x(n-1)

with A5 the matrix

A, a® . a®

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: LU + Cholesky



Row operations, Il D06-S05(a)

If we continue triangular elimination from A, until the last column we obtain,
A = Ll et LnflAny

where A,, is an upper-triangular matrix, and each L; has the form,

where £; is a vector with jth component £; ; =1, and £;; = 0 for k < j.
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Row operations, Il D06-S05(b)
If we continue triangular elimination from A, until the last column we obtain,
A = Ll et LnflAny

where A,, is an upper-triangular matrix, and each L; has the form,

where £; is a vector with jth component £; ; =1, and ¢ = 0 for K < j. Note that each L; is lower
triangular, and one can show that

LiLisi= (e - e £ £y €2 - ey ),

so that L := H;:ll L; is also upper-triangular.
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The LU factorization D06-S06(a)
We have just shown that, if all our elimination steps successfully complete, then
A=1LU,

where L is lower-triangular, and U is upper-triangular.
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The LU factorization D06-S06(b)
We have just shown that, if all our elimination steps successfully complete, then
A=1LU,
where L is lower-triangular, and U is upper-triangular.
How can the steps fail?

Theorem

A has an LU decomposition if and only if det A; # 0 for all j = 1,...,n, where A; is the principal
(upper-left) j x j submatrix of A.
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LU factorization utility D06-507(a)

The LU factorization/decomposition has several uses;

— It's how we solve linear systems
— If an LU factorization for A is available, then solving Az = b requires only O(n?) operations.

— det A = det LdetU.
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Instructor: A. Narayan (UofU — Mathematics/SCI)



LU factorization utility D06-S07(b)

The LU factorization/decomposition has several uses;

— It's how we solve linear systems
— If an LU factorization for A is available, then solving Az = b requires only O(n?) operations.

— det A = det LdetU.
Let A € C™*" be an invertible matrix. If Gaussian elimination succeeds, then

A=LU,

where L and U are lower- and upper-triangular, respectively.
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LU factorization utility D06-S07(c)

The LU factorization/decomposition has several uses;

— It's how we solve linear systems
— If an LU factorization for A is available, then solving Az = b requires only O(n?) operations.

— det A = det LdetU.
Let A € C™*" be an invertible matrix. If Gaussian elimination succeeds, then

A=LU,
where L and U are lower- and upper-triangular, respectively.

“Standard” Gaussian elimination fails in some cases, e.g., with

A=((1) é)
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LU and Gaussian elimination D06-508(a)
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Pivoting D06-S09(a)
The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.

We know pivoting by another name: permutations.
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Pivoting D06-S09(b)

The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.
We know pivoting by another name: permutations.

General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: LU + Cholesky



Pivoting D06-S09(c)

The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.
We know pivoting by another name: permutations.

General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)

This results in the decomposition,
A=P,L, P;,Ly, --- P, 1L, 11U,

where P; is a permutation matrix that permutes row j with row k for some k > j.
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Pivoting D06-S09(d)

The standard approach to “fixing” this problem is pivoting, which interchanges rows and/or columns.
We know pivoting by another name: permutations.

General pivoting strategy: permute rows so that diagonal elements during elimination are non-zero.
(For stability, pivot so that diagonal elements have maximum magnitude.)

This results in the decomposition,
A=P,L, P;,Ly, --- P, 1L, 11U,

where P; is a permutation matrix that permutes row j with row k for some k > j.  One can show that
L;Py = PiLj if j <k for some other lower-triangular matrix L;, so that

o (ir) (1)
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“Pivoted” LU D06-510(a)
In fact, we can show that this row pivoting strategy always works.

Theorem

If A e C™*" is invertible, then there exists
— a permutation matrix P,
— a lower-triangular matrix L,
— an upper-triangular matrix U,

such that

PA=LU
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More pivoting D06-S11(a)

Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A=P,L, P3Ly --- P, 1L, U Qn—lQn—Q Q)

where both P; and Q; are permutation matrices.
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More pivoting D06-S11(b)

Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A=P,L, P3Ly --- P, 1L, U Qn—lQn—Q Q)

where both P; and Q; are permutation matrices.

This achieves the full-pivoted LU decomposition,

PAQ = LU.
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More pivoting D06-S11(c)
Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A=P,L, P3Ly --- P, 1L, U Qn—lQn—Q Q)

where both P; and Q; are permutation matrices.

This achieves the full-pivoted LU decomposition,
PAQ=LU.

An alternative is rook pivoting, which performs a permutation similar to the above, except that at
elimination step j, the maximum is sought only over row j and column j.
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More pivoting D06-S11(d)
Row pivoting is not the only option.

For example, full pivoting permutes both lower rows and rightmost columns in search of a
maximum-magnitude pivot.

A=P,L, P3Ly --- P, 1L, U Qn—lQn—Q Q)

where both P; and Q; are permutation matrices.

This achieves the full-pivoted LU decomposition,
PAQ=LU.

An alternative is rook pivoting, which performs a permutation similar to the above, except that at
elimination step j, the maximum is sought only over row j and column j. All flavors of LU factorizations
require O(n®) complexity with explicit, small multiplying constant.

But the choice of pivoting can substantially affect the actual runtime (the constant).
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Hermitian positive-definite matrices D06-512(a)

Assume A € C™*" is Hermitian positive definite.

Our investigation of LU decompositions specializes considerably in this case.
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Hermitian positive-definite matrices

Assume A € C™*" is Hermitian positive definite.

Our investigation of LU decompositions specializes considerably in this case.

First we note some properties of A:
— A is invertible
— The diagonal entries of A are real and strictly positive
— If Be C™*™ with m < n is of full rank, then BAB* is positive-definite

D06-512(b)
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LU on positive-definite matrices D06-S13(a)

A general positive-definite matrix A has the form
a
v A2

Consider performing elimination on A:
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LU on positive-definite matrices D06-S13(b)

A general positive-definite matrix A has the form

a - ’U* —
_ |
A= v A2
|

Consider performing elimination on A:

A=LB*=
1 Az =2

—oe— =
~
— o —=2
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Symmetric factorizations D06-S14(a)

A=L,B*

We can perform a single step of Gaussian elimination on B:
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Symmetric factorizations

A=L,B*
We can perform a single step of Gaussian elimination on B:

— 0 —

a

a
|
0 Ay — 2
|

D06-514(b)
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The Cholesky factorization D06-S15(a)

1

_ |
A=Li| A,

|

Note that A> — ®2— must be positive definite since L1 is invertible.
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The Cholesky factorization D06-S15(b)

1 - 0 —
A-L| | i
Note that Ay — % must be positive definite since L, is invertible.
Thus, we can repeat this process:
~ o~ ~ ~ o~ ~ *
A= (L1L2 e Lnfl) (Lle Lnfl)
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The Cholesky factorization D06-S15(c)

1 - 0 —
A-L| | i
Note that Ay — % must be positive definite since L, is invertible.
Thus, we can repeat this process:
~ o~ ~ ~ o~ ~ *
A= <L1L2 e Lnfl) (L1L2 Lnfl)

Theorem

Every Hermitian positive definite matrix A has a unique symmetric LU, or Cholesky, decomposition:
A = LL*, where L is lower-triangular and invertible.
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Pivoted Cholesky D06-516(a)

One can perform symmetric pivoting on a Hermitian positive-definite matrix A: A = PLL*P*.

This could be used to pivot maximum-magnitude diagonal entries to the front.
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Pivoted Cholesky D06-S16(b)

One can perform symmetric pivoting on a Hermitian positive-definite matrix A: A = PLL*P*.
This could be used to pivot maximum-magnitude diagonal entries to the front.
However, pivoted Cholesky decompositions have another use:

Theorem

Every Hermitian positive semi-definite matrix A has a pivoted Cholesky decomposition: A = PLL* P*,
where L is lower-triangular but need not invertible. This decomposition is in general not unique.
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Pivoted Cholesky D06-516(c)

One can perform symmetric pivoting on a Hermitian positive-definite matrix A: A = PLL*P*.
This could be used to pivot maximum-magnitude diagonal entries to the front.
However, pivoted Cholesky decompositions have another use:

Theorem

Every Hermitian positive semi-definite matrix A has a pivoted Cholesky decomposition: A = PLL* P*,
where L is lower-triangular but need not invertible. This decomposition is in general not unique.

Why do we care about Cholesky decompositions? For positive-definite matrices:
— Not having to deal with pivoting is of considerable computational savings (but doesn't change
asymptotic complexity)
— The Cholesky decomposition provides a “whitening” transform, e.g., for  — x=* Ax.

— Low-rank updates of Cholesky factors are (very) useful.
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LDU and LDL* decompositions D06-517(a)

A minor generalization of LU for a generic matrix: If A is invertible, then we can always write,
PA=LU,

where P is a permutation matrix.

By construction:
— The diagonal of L is all ones
— The diagonal of U contains the non-zero pivot entries
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LDU and LDL* decompositions D06-517(b)

A minor generalization of LU for a generic matrix: If A is invertible, then we can always write,
PA=LU,
where P is a permutation matrix.
By construction:
— The diagonal of L is all ones

— The diagonal of U contains the non-zero pivot entries
Let D be a diagonal matrix with the pivot entries of U, then we can write,

PA = LDU,

where both L and U have ones on the diagonal. This is the (pivoted) LDU decomposition of A.
(There are some niche cases when doing this decomposition of A is slightly preferable.)
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LDU and LDL* decompositions D06-517(c)

A minor generalization of LU for a generic matrix: If A is invertible, then we can always write,
PA=LU,
where P is a permutation matrix.

By construction:
— The diagonal of L is all ones
— The diagonal of U contains the non-zero pivot entries
Let D be a diagonal matrix with the pivot entries of U, then we can write,

PA = LDU,

where both L and U have ones on the diagonal. This is the (pivoted) LDU decomposition of A.
(There are some niche cases when doing this decomposition of A is slightly preferable.)

For Hermitian positive semi-definite matrices, we can write
PAP* = LDL*

(Or without permutations if A is positive definite.) This is the LDLT decomposition of A.
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