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Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization of vectors D07-S02(a)

The main goal of orthogonalization:

Given tajujPrns ! m with n " m, compute tqjujPrns such that:
@
qj , qk

D “ ωj,k, spanta1, . . . ,anu “ spantq1, . . . , qnu

Why?

One reason is that the m-orthogonal projector onto spanta1, . . . ,anu is given by,

P “ QQ˚, Q “
¨

˝ q1 q2 ¨ ¨ ¨ qn

˛

‚

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization of vectors D07-S02(b)

The main goal of orthogonalization:

Given tajujPrns ! m with n " m, compute tqjujPrns such that:
@
qj , qk

D “ ωj,k, spanta1, . . . ,anu “ spantq1, . . . , qnu

Why?

One reason is that the m-orthogonal projector onto spanta1, . . . ,anu is given by,

P “ QQ˚, Q “
¨

˝ q1 q2 ¨ ¨ ¨ qn

˛

‚

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Gram-Schmidt orthogonalization D07-S03(a)

One essentially explicit algorithm to orthogonalize is Gram-Schmidt.

This algorithm is “triangular orthogonalization”: I.e., it’s an algorithm that orthogonalizes vectors by
accessing them in a triangular pattern.

Input: n vectors tajujPrns. (Assume they’re linearly independent for now.)
Output: n vectors tqjujPrns.

Basic idea is induction:
1. Set q1 “ a1

}a1}2 , and j “ 1.

2. Since tq1, . . . , qju have been computed:
§ Define rqj`1 “ pI ´ P jqaj`1, where P j is the orthogonal projector onto tq1, . . . , qju.
§ Set qj`1 “ rqj`1{}rqj`1}2.

3. If j “ n ´ 1, quit. Otherwise, j # j ` 1 and go back to step 2.
If the input vectors are linearly independent, this procedure cannot fail.
(At least, not in exact arithmetic....)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Gram-Schmidt orthogonalization D07-S03(b)

One essentially explicit algorithm to orthogonalize is Gram-Schmidt.

This algorithm is “triangular orthogonalization”: I.e., it’s an algorithm that orthogonalizes vectors by
accessing them in a triangular pattern.

Input: n vectors tajujPrns. (Assume they’re linearly independent for now.)
Output: n vectors tqjujPrns.

Basic idea is induction:
1. Set q1 “ a1

}a1}2 , and j “ 1.

2. Since tq1, . . . , qju have been computed:
§ Define rqj`1 “ pI ´ P jqaj`1, where P j is the orthogonal projector onto tq1, . . . , qju.
§ Set qj`1 “ rqj`1{}rqj`1}2.

3. If j “ n ´ 1, quit. Otherwise, j # j ` 1 and go back to step 2.
If the input vectors are linearly independent, this procedure cannot fail.
(At least, not in exact arithmetic....)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Gram-Schmidt to QR D07-S04(a)

ta1, . . . ,anu $Ñ tq1, . . . , qnu ,
spanta1, . . . ,aju “ spantq1, . . . , qju j P rns

We can rewrite this to explicitly express the original vectors aj in terms of the orthogonalized vectors qj .

At each step:

qj “ 1
rj,j

pI ´ P jqaj ùñ aj “ rj,jqj `
ÿ

kPrj´1s
rk,jqk, rk,j :“ q˚

kaj “ xaj , qky ,

where rj,j “ }pI ´ P jqaj}2.

If A P mˆn has aj as columns, and Q P mˆn has qj as columns, then this is equivalent to,

A “ QR, pRqj,k “ rj,k.

Columnwise: this expression is a record of how to reconstruct columns of A from the orthonormal columns
of Q.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Gram-Schmidt to QR D07-S04(b)

ta1, . . . ,anu $Ñ tq1, . . . , qnu ,
spanta1, . . . ,aju “ spantq1, . . . , qju j P rns

We can rewrite this to explicitly express the original vectors aj in terms of the orthogonalized vectors qj .

At each step:

qj “ 1
rj,j

pI ´ P jqaj ùñ aj “ rj,jqj `
ÿ

kPrj´1s
rk,jqk, rk,j :“ q˚

kaj “ xaj , qky ,

where rj,j “ }pI ´ P jqaj}2.

If A P mˆn has aj as columns, and Q P mˆn has qj as columns, then this is equivalent to,

A “ QR, pRqj,k “ rj,k.

Columnwise: this expression is a record of how to reconstruct columns of A from the orthonormal columns
of Q.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Gram-Schmidt to QR D07-S04(c)

ta1, . . . ,anu $Ñ tq1, . . . , qnu ,
spanta1, . . . ,aju “ spantq1, . . . , qju j P rns

We can rewrite this to explicitly express the original vectors aj in terms of the orthogonalized vectors qj .

At each step:

qj “ 1
rj,j

pI ´ P jqaj ùñ aj “ rj,jqj `
ÿ

kPrj´1s
rk,jqk, rk,j :“ q˚

kaj “ xaj , qky ,

where rj,j “ }pI ´ P jqaj}2.

If A P mˆn has aj as columns, and Q P mˆn has qj as columns, then this is equivalent to,

A “ QR, pRqj,k “ rj,k.

Columnwise: this expression is a record of how to reconstruct columns of A from the orthonormal columns
of Q.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



The QR decomposition D07-S05(a)

In fact, these computations implies the following result:

Theorem
Let A P mˆn be any matrix. Then there exists a unitary matrix Q P mˆm, and an upper-triangular
matrix R P mˆn such that

A “ QR.

If A has full rank, then the diagonal entries of R can be chosen to be positive.

We previously considered n “ rankpAq " m. The remaining m ´ n columns of Q are an(y) orthonormal
completion of tq1, . . . qnu.

Other cases:
– m “ rankpAq % n: Only m vectors are linearly independent.

Q P mˆm, and R is short+fat.
– m & n ’ r “ rankpAq: Columns of A are dependent.

The first r columns of Q span the range of A.
R is upper triangular, but the main diagonal may have zeros, and the last m ´ r rows of R vanish.

– “Thin” QR: If rankpAq % n, then Q has only r columns.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR





The QR decomposition D07-S05(b)

In fact, these computations implies the following result:

Theorem
Let A P mˆn be any matrix. Then there exists a unitary matrix Q P mˆm, and an upper-triangular
matrix R P mˆn such that

A “ QR.

If A has full rank, then the diagonal entries of R can be chosen to be positive.

We previously considered n “ rankpAq " m. The remaining m ´ n columns of Q are an(y) orthonormal
completion of tq1, . . . qnu.

Other cases:
– m “ rankpAq % n: Only m vectors are linearly independent.

Q P mˆm, and R is short+fat.
– m & n ’ r “ rankpAq: Columns of A are dependent.

The first r columns of Q span the range of A.
R is upper triangular, but the main diagonal may have zeros, and the last m ´ r rows of R vanish.

– “Thin” QR: If rankpAq % n, then Q has only r columns.
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization, summary D07-S06(a)

In summary:

Given tajujPrns ! m, compute tqjujPrns such that:
@
qj , qk

D “ ωj,k, spanta1, . . . ,anu “ spantq1, . . . , qnu

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

A “ QR, A “
¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚, Q “
¨

˝ q1 q2 ¨ ¨ ¨ qn

˛

‚,

with R upper triangular. “Classical” Gram-Schmidt numerically does:

uj “ aj ´ P j´1aj , qj “ uj

}uj}2 , rangepP jq “ spantq1, . . . , qju.

It turns out this is unstable !

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization, summary D07-S06(b)

In summary:

Given tajujPrns ! m, compute tqjujPrns such that:
@
qj , qk

D “ ωj,k, spanta1, . . . ,anu “ spantq1, . . . , qnu

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

A “ QR, A “
¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚, Q “
¨

˝ q1 q2 ¨ ¨ ¨ qn

˛

‚,

with R upper triangular. “Classical” Gram-Schmidt numerically does:

uj “ aj ´ P j´1aj , qj “ uj

}uj}2 , rangepP jq “ spantq1, . . . , qju.

It turns out this is unstable !

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



“Modified” Gram-Schmidt D07-S07(a)

uj “ aj ´ P j´1aj , qj “ uj

}uj}2 , rangepP jq “ spantq1, . . . , qju.

The cause of numerical instability is that, if aj is nearly parallel to spantq1, . . . , qj´1u, this projection step
can produce numerically incorrect results. (More precisely, the inner products rk,j for k % j don’t
accurately represent the coordinates of aj .)

This problem can be fixed with a “modified” version of Gram-Schmidt, which computes rk`1,j by first
orthogonalizing aj against qk:

1. Set uj “ aj , j P rns
2. Set q1 “ a1

}a1}2 , and j “ 1.
3. For ε ’ 1: Set r1,ω “ q˚

1uω, and uω “ uω ´ r1,ωq1.
4. Since uj`1 is orthogonal to qk, k P rjs:

§ Set qj`1 “ uj`1{}uj`1}2
§ For ω ! j ` 1: Set rj`1,ω “ q˚

j`1uω.
§ For ω ! j ` 1: Set uω “ uω ´ rj`1,ωqj`1.

5. If j “ n ´ 1, quit. Otherwise, j # j ` 1 and go back to step 5.
Thus, the projections are computed “one at a time”.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



“Modified” Gram-Schmidt D07-S07(b)

uj “ aj ´ P j´1aj , qj “ uj

}uj}2 , rangepP jq “ spantq1, . . . , qju.

The cause of numerical instability is that, if aj is nearly parallel to spantq1, . . . , qj´1u, this projection step
can produce numerically incorrect results. (More precisely, the inner products rk,j for k % j don’t
accurately represent the coordinates of aj .)

This problem can be fixed with a “modified” version of Gram-Schmidt, which computes rk`1,j by first
orthogonalizing aj against qk:

1. Set uj “ aj , j P rns
2. Set q1 “ a1

}a1}2 , and j “ 1.
3. For ε ’ 1: Set r1,ω “ q˚

1uω, and uω “ uω ´ r1,ωq1.
4. Since uj`1 is orthogonal to qk, k P rjs:

§ Set qj`1 “ uj`1{}uj`1}2
§ For ω ! j ` 1: Set rj`1,ω “ q˚

j`1uω.
§ For ω ! j ` 1: Set uω “ uω ´ rj`1,ωqj`1.

5. If j “ n ´ 1, quit. Otherwise, j # j ` 1 and go back to step 5.
Thus, the projections are computed “one at a time”.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization D07-S08(a)

We’ve seen “classical” (unstable) Gram-Schmidt and “modified” Gram-Schmidt.

In terms of stability, modified Gram-Schmidt e!ectively fixes the problem.

Both of these operations are “triangular orthogonalization”, i.e., they perform the operation,

A (Ñ AR´1 “ Q.

In terms of (ε2-type) conditioning, this operation su!ers a condition number of ϑpRq.

Instead of attempting to compute Q, we could attempt to compute R.
This amounts to “orthogonal triangularization”. The reason to cnosider this is that the operation,

A (Ñ Q˚A “ R,

is a much more well-conditioned operation.

There are two high-level strategies for orthogonal triangularization:
– Givens rotations: performs 2 ˆ 2 unitary operations
– Householder reflectors: performs dimension-n unitary operations

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization D07-S08(b)

We’ve seen “classical” (unstable) Gram-Schmidt and “modified” Gram-Schmidt.

In terms of stability, modified Gram-Schmidt e!ectively fixes the problem.

Both of these operations are “triangular orthogonalization”, i.e., they perform the operation,

A (Ñ AR´1 “ Q.

In terms of (ε2-type) conditioning, this operation su!ers a condition number of ϑpRq.

Instead of attempting to compute Q, we could attempt to compute R.
This amounts to “orthogonal triangularization”. The reason to cnosider this is that the operation,

A (Ñ Q˚A “ R,

is a much more well-conditioned operation.

There are two high-level strategies for orthogonal triangularization:
– Givens rotations: performs 2 ˆ 2 unitary operations
– Householder reflectors: performs dimension-n unitary operations

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Householder reflectors D07-S09(a)

Let P be an orthogonal projection matrix. Then I ´ 2P is Hermitian, unitary, and involutory (is its own
inverse).

Thus, application of this matrix, x (Ñ pI ´ 2P qx, is well-conditioned.

In particular, if P is a rank-1 projector, then there is a unit vector v such that

P “ vv˚.

(And in particular, x (Ñ pI ´ 2P qx does not require (expensive) matrix-vector multiplications.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Householder reflectors D07-S09(b)

Let P be an orthogonal projection matrix. Then I ´ 2P is Hermitian, unitary, and involutory (is its own
inverse).

Thus, application of this matrix, x (Ñ pI ´ 2P qx, is well-conditioned.

In particular, if P is a rank-1 projector, then there is a unit vector v such that

P “ vv˚.

(And in particular, x (Ñ pI ´ 2P qx does not require (expensive) matrix-vector multiplications.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors D07-S10(a)

Our main use of these reflectors is the following:

Given x P m, we want to achieve:

x
Householder reflector$Ñ }x}eiεe1,

for some ϖ P r0, 2,ϱq.

This is achieved by the reflector I ´ 2vv˚, with v given by

v “ x ´ }x}eiεe1

}x ´ }x}eiεe1} ,

for arbitrary ϖ.

For numerical stability, this reflector should make large changes to x, rather than small changes.
The largest change is achieved by selecting

eiε “ ´ x1

|x1| .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors D07-S10(b)

Our main use of these reflectors is the following:

Given x P m, we want to achieve:

x
Householder reflector$Ñ }x}eiεe1,

for some ϖ P r0, 2,ϱq.

This is achieved by the reflector I ´ 2vv˚, with v given by

v “ x ´ }x}eiεe1

}x ´ }x}eiεe1} ,

for arbitrary ϖ.

For numerical stability, this reflector should make large changes to x, rather than small changes.
The largest change is achieved by selecting

eiε “ ´ x1

|x1| .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors D07-S10(c)

Our main use of these reflectors is the following:

Given x P m, we want to achieve:

x
Householder reflector$Ñ }x}eiεe1,

for some ϖ P r0, 2,ϱq.

This is achieved by the reflector I ´ 2vv˚, with v given by

v “ x ´ }x}eiεe1

}x ´ }x}eiεe1} ,

for arbitrary ϖ.

For numerical stability, this reflector should make large changes to x, rather than small changes.
The largest change is achieved by selecting

eiε “ ´ x1

|x1| .

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors, II D07-S11(a)

We now have the following procedure:
Given x P m, we compute v P m such that

pI ´ 2P qx “ pI ´ vv˚qx “ c e1,

for some scalar c P .

Put another way: we can, via an e"ciently-applicable unitary transform, map x to e1.
The idea now is that one

– first reflects the first column to e1

– then reflects rows 2 through n of column 2 to e2

– then reflects rows 3 through n of column 3 to e3

–
...

We expect Householder reflectors to be stable since we are simply applying unitary (well-conditioned)
matrices to A.

(This is in fact what a typical standard implementations of QR decomposition uses.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors, II D07-S11(b)

We now have the following procedure:
Given x P m, we compute v P m such that

pI ´ 2P qx “ pI ´ vv˚qx “ c e1,

for some scalar c P .

Put another way: we can, via an e"ciently-applicable unitary transform, map x to e1.
The idea now is that one

– first reflects the first column to e1

– then reflects rows 2 through n of column 2 to e2

– then reflects rows 3 through n of column 3 to e3

–
...

We expect Householder reflectors to be stable since we are simply applying unitary (well-conditioned)
matrices to A.

(This is in fact what a typical standard implementations of QR decomposition uses.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors, II D07-S11(c)

We now have the following procedure:
Given x P m, we compute v P m such that

pI ´ 2P qx “ pI ´ vv˚qx “ c e1,

for some scalar c P .

Put another way: we can, via an e"ciently-applicable unitary transform, map x to e1.
The idea now is that one

– first reflects the first column to e1

– then reflects rows 2 through n of column 2 to e2

– then reflects rows 3 through n of column 3 to e3

–
...

We expect Householder reflectors to be stable since we are simply applying unitary (well-conditioned)
matrices to A.

(This is in fact what a typical standard implementations of QR decomposition uses.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Givens Rotations D07-S12(a)

In real arithmetic, a Givens rotation is a 2 ˆ 2 matrix defined by a 3-tuple pi, j, ϖq P rms ˆ rns ˆ r0, 2ϱq:

Gti,ju,ti,ju “ Rpϖq Rpϖq “
ˆ

cos ϖ ´ sin ϖ
sin ϖ cos ϖ

˙

For real matrices, this accomplishes a rotation of ϖ radians in the two-dimensional pi, jq plane.

An alternative to Householder reflectors:
– In column 1, use row 1 to eliminate row j via a Givens rotation, for j “ 2, . . . , n.
– In column 2, use row 2 to eliminate row j via a Givens rotation, for j “ 3, . . . , n.

–
...

While both Householder reflectors and Givens rotations are both e!ective (well-conditioned), Householder
reflectors are generally employed for generic dense QR decomposition operations since they require fewer
conceptual and computational steps.
(To zero out column 1, we need just one Householder reflector, but n ´ 1 Givens rotations.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Givens Rotations D07-S12(b)

In real arithmetic, a Givens rotation is a 2 ˆ 2 matrix defined by a 3-tuple pi, j, ϖq P rms ˆ rns ˆ r0, 2ϱq:

Gti,ju,ti,ju “ Rpϖq Rpϖq “
ˆ

cos ϖ ´ sin ϖ
sin ϖ cos ϖ

˙

For real matrices, this accomplishes a rotation of ϖ radians in the two-dimensional pi, jq plane.

An alternative to Householder reflectors:
– In column 1, use row 1 to eliminate row j via a Givens rotation, for j “ 2, . . . , n.
– In column 2, use row 2 to eliminate row j via a Givens rotation, for j “ 3, . . . , n.

–
...

While both Householder reflectors and Givens rotations are both e!ective (well-conditioned), Householder
reflectors are generally employed for generic dense QR decomposition operations since they require fewer
conceptual and computational steps.
(To zero out column 1, we need just one Householder reflector, but n ´ 1 Givens rotations.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Givens Rotations D07-S12(c)

In real arithmetic, a Givens rotation is a 2 ˆ 2 matrix defined by a 3-tuple pi, j, ϖq P rms ˆ rns ˆ r0, 2ϱq:

Gti,ju,ti,ju “ Rpϖq Rpϖq “
ˆ

cos ϖ ´ sin ϖ
sin ϖ cos ϖ

˙

For real matrices, this accomplishes a rotation of ϖ radians in the two-dimensional pi, jq plane.

An alternative to Householder reflectors:
– In column 1, use row 1 to eliminate row j via a Givens rotation, for j “ 2, . . . , n.
– In column 2, use row 2 to eliminate row j via a Givens rotation, for j “ 3, . . . , n.

–
...

While both Householder reflectors and Givens rotations are both e!ective (well-conditioned), Householder
reflectors are generally employed for generic dense QR decomposition operations since they require fewer
conceptual and computational steps.
(To zero out column 1, we need just one Householder reflector, but n ´ 1 Givens rotations.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Least-squares solutions D07-S13(a)

If A P mˆn and b P n, we are interested in computing the least-squares solution to

Ax “ b

This arises in several situations, e.g., data fitting.

The following is a result we have essentially already proven:

Theorem
Suppose A P mˆn has full column rank (n). Then, for any b P n, there is a unique solution x that
solves

argmin
xP n

}Ax ´ b}22.

Furthermore, this solution x is the unique solution to A˚Ax “ A˚b, and the residual r :“ b ´ Ax is
orthogonal to rangepAq.

The system A˚Ax “ A˚b is called the normal equations.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Least-squares solutions D07-S13(b)

If A P mˆn and b P n, we are interested in computing the least-squares solution to

Ax “ b

This arises in several situations, e.g., data fitting.

The following is a result we have essentially already proven:

Theorem
Suppose A P mˆn has full column rank (n). Then, for any b P n, there is a unique solution x that
solves

argmin
xP n

}Ax ´ b}22.

Furthermore, this solution x is the unique solution to A˚Ax “ A˚b, and the residual r :“ b ´ Ax is
orthogonal to rangepAq.

The system A˚Ax “ A˚b is called the normal equations.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Computational solutions D07-S14(a)

While the normal equations are typically useful for analysis, they are typically not used for computation.

A “ QR ùñ x “ R´1Q˚b.

In most cases, the QR decomposition is used through the above procedure, largely for stability reasons.

One can still use this same idea if A doesn’t have full column rank, but has to be more careful.

E.g., Q should only span the range of A.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Computational solutions D07-S14(b)

While the normal equations are typically useful for analysis, they are typically not used for computation.

A “ QR ùñ x “ R´1Q˚b.

In most cases, the QR decomposition is used through the above procedure, largely for stability reasons.

One can still use this same idea if A doesn’t have full column rank, but has to be more careful.

E.g., Q should only span the range of A.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Column-pivoted QR D07-S15(a)

Finally, we note that QR can fail when A does not have full column rank, rankpAq “ r % n.

One standard way to address this is by column pivoting.

If doing triangular orthogonalization (Gram-Schmidt-type): At orthogonalization step j, identify column
index k satisfying:

}ak ´ P j´1ak}2 & }aω ´ P j´1aω}2 , ε & j

Then interchange (permute) columns k and j. Repeat at every orthogonalization step. This results in the
factorization:

AP “ QR.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR



Column-pivoted QR D07-S15(b)

Finally, we note that QR can fail when A does not have full column rank, rankpAq “ r % n.

One standard way to address this is by column pivoting.

If doing orthogonal triangularization (Householder/Givens): At step j, with S “ tj, j ` 1, . . . , nu, identify
column index k satisfying:

}AS,k}2 & }AS,ω}2, ε & j.

Then interchange (permute) columns k and j. Repeat at every step. This (again) results in the
factorization:

AP “ QR.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Orthogonalization and QR
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