Math 6610: Analysis of Numerical Methods, |
The QR decomposition

Department of Mathematics, University of Utah

Fall 2025

Resources:  Trefethen and Bau 1997, Lectures 20, 21, 23
Atkinson 1989, Chapter 1
Salgado and Wise 2022, Chapter 3

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization of vectors D07-502(a)
The main goal of orthogonalization:
Given {a;}jc(n) © C™ with n < m, compute {q,}c[n) such that:

<qj7 qk> = 0.k, span{ai,...,an} = span{q,,...,q,}

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization of vectors D07-S02(b)

The main goal of orthogonalization:

Given {a;}jc(n) © C™ with n < m, compute {q,}c[n) such that:

<qj7 qk> = 0k, span{ai,...,an} = span{q,,...,q,}
Why?
One reason is that the C™-orthogonal projector onto span{ai,...,a,} is given by,
P =QQ*, Q=@ 9 - a,

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Gram-Schmidt orthogonalization D07-503(a)

One essentially explicit algorithm to orthogonalize is Gram-Schmidt.

This algorithm is “triangular orthogonalization”: l.e., it's an algorithm that orthogonalizes vectors by
accessing them in a triangular pattern.

Input: n vectors {@;} c[n]- (Assume they’re linearly independent for now.)
Output: n vectors {q;}je[n]-

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Gram-Schmidt orthogonalization D07-503(b)

One essentially explicit algorithm to orthogonalize is Gram-Schmidt.

This algorithm is “triangular orthogonalization”: l.e., it's an algorithm that orthogonalizes vectors by
accessing them in a triangular pattern.

Input: n vectors {a;} e[n]. (Assume they're linearly independent for now.)
Output: n vectors {q;}jc[n]

Basic idea is induction:

1. Set q, = cand j = 1.

Taxlz
2. Since {q,,...,q;} have been computed:
> Define ¢; 1 = (I — Pj)ajt1, where P is the orthogonal projector onto {qy,...,q,}.
> Set q; 11 =4;41/19541 02
3. If j =n —1, quit. Otherwise, j < 7 + 1 and go back to step 2.
If the input vectors are linearly independent, this procedure cannot fail.
(At least, not in exact arithmetic....)

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Gram-Schmidt to QR D07-S04(a)

{ala"'7an} - {q17~~.7qn}a
Span{ala"'aaj}:Span{q17"'aqj} je[n]

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Gram-Schmidt to QR D07-S04(b)

{0,17...70,”} - {q17~~.7qn}a
Spa‘n{ala”'aaj}:Spa‘n{qh"'aqj} je[n]

We can rewrite this to explicitly express the original vectors a; in terms of the orthogonalized vectors g;.

At each step:

1
4= (I-Pj)a; = a;=rj;q;+ 2 Thily,  Th = 4ra; ={a;, qp),
33 keli—1]
where T3 = H(I — Pj)(lj”z.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Gram-Schmidt to QR D07-S04(c)

{G/l,...,an} - {q17~~.aqn}7
Spa‘n{ala”'aaj}:Spa‘n{qh"'aqj} JE[TL]

We can rewrite this to explicitly express the original vectors a; in terms of the orthogonalized vectors g;.

At each step:

1
a4 = (I-Pj)a; = a;=rj;q;+ 2 Thily,  Th = 4ra; ={a;, qp),
3. kel—1]
where T3 = H(I — Pj)ajHQ.

If Ae C™"" has a; as columns, and Q € C™*™ has g, as columns, then this is equivalent to,
A =QR, (R)jk =Tjk-

Columnwise: this expression is a record of how to reconstruct columns of A from the orthonormal columns

of Q.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR




The QR decomposition D07-S05(a)

In fact, these computations implies the following result:

Theorem

Let A e C™*™ be any matrix. Then there exists a unitary matrix @ € C™*™, and an upper-triangular
matrix R € C™*" such that

A=QR.

If A has full rank, then the diagonal entries of R can be chosen to be positive.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



The QR decomposition D07-S05(b)

In fact, these computations implies the following result:

Theorem

Let A e C™*™ be any matrix. Then there exists a unitary matrix @ € C™*™, and an upper-triangular
matrix R € C™*" such that

A=QR.
If A has full rank, then the diagonal entries of R can be chosen to be positive.

We previously considered n = rank(A) < m. The remaining m — n columns of Q are an(y) orthonormal
completion of {q;,...q,}.

Other cases:
— m = rank(A) < n: Only m vectors are linearly independent.
Qe C™™, and R is short+fat.
- m =n>r =rank(A): Columns of A are dependent.
The first r columns of Q span the range of A.
R is upper triangular, but the main diagonal may have zeros, and the last m — r rows of R vanish.
— “Thin” QR: If rank(A) < n, then Q has only r columns.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization, summary D07-5S06(a)

In summary:
Given {a;}jc(n) € C™, compute {q;}jc[n] such that:

<qj7 qk> = 0jk, span{ai,...,an} = span{q,,...,q,}
Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

A=QR, A
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with R upper triangular.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization, summary D07-S06(b)
In summary:
Given {a;}jc(n) € C™, compute {q;}jc[n] such that:

<qj,qk> = 0jk, span{ai,...,an} = span{q,,...,q,}

Any algorithm to accomplish this (e.g., Gram-Schmidt) implies:

14=Q_Fl7 A= al a2 an s Q: q, q, q, ,
with R upper triangular. “Classical” Gram-Schmidt numerically does:
u;

u; = aj —Pj_laj, qj = ‘

T2’ range(P;) = span{q,,...,q;}.
J

It turns out this is unstable &

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



“Modified” Gram-Schmidt D07-S07(a)

W
u; = aj — Pjaa;, q; = “u7|‘27 range(P;) = span{qy, .. '7qj}'
J
The cause of numerical instability is that, if a; is nearly parallel to span{q,,..., qul}, this projection step

can produce numerically incorrect results. (More precisely, the inner products ¢ ; for k < j don't
accurately represent the coordinates of a;.)

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



“Modified” Gram-Schmidt D07-S07(b)

W
u; = aj — Pjaa;, q; = H'Uf]”2, range(P;) = span{qy, .. '7qj}'
J
The cause of numerical instability is that, if a; is nearly parallel to span{q,, ... ,qul}, this projection step

can produce numerically incorrect results. (More precisely, the inner products ¢ ; for k < j don't
accurately represent the coordinates of a;.)

This problem can be fixed with a “modified” version of Gram-Schmidt, which computes ri1 ; by first
orthogonalizing a; against g, :
1. Set u; = aj;, j € [n]
2. Set q, = H:ﬁ and j = 1.
3. For £>1: Set 11,0 = q¥ue, and we = ug — r1.q;.
4. Since w11 is orthogonal to g, k € [j]:
> Set g;y 1 =ujs1/llujs1]2
» For{>j+1: Setrji1,= q;ﬂrlué.
> For £ > j + 1: Set uy = uy — Ti+1,6d541-
5. If j =n —1, quit. Otherwise, j < j + 1 and go back to step 5.
Thus, the projections are computed “one at a time".

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization D07-508(a)

We've seen “classical” (unstable) Gram-Schmidt and “modified” Gram-Schmidt.

In terms of stability, modified Gram-Schmidt effectively fixes the problem.

Both of these operations are “triangular orthogonalization”, i.e., they perform the operation,
A— AR' = Q.

In terms of (¢£>-type) conditioning, this operation suffers a condition number of x(R).

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Orthogonalization D07-S08(b)

We've seen “classical” (unstable) Gram-Schmidt and “modified” Gram-Schmidt.

In terms of stability, modified Gram-Schmidt effectively fixes the problem.

Both of these operations are “triangular orthogonalization”, i.e., they perform the operation,
A— AR ' =Q.

In terms of (£*-type) conditioning, this operation suffers a condition number of x(R).

Instead of attempting to compute Q, we could attempt to compute R.
This amounts to “orthogonal triangularization”. The reason to cnosider this is that the operation,

A~ Q*A=R,
is a much more well-conditioned operation.

There are two high-level strategies for orthogonal triangularization:
— Givens rotations: performs 2 X 2 unitary operations

— Householder reflectors: performs dimension-n unitary operations

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Householder reflectors D07-5S09(a)

Let P be an orthogonal projection matrix. Then I — 2P is Hermitian, unitary, and involutory (is its own
inverse).

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Householder reflectors D07-S09(b)

Let P be an orthogonal projection matrix. Then I — 2P is Hermitian, unitary, and involutory (is its own
inverse).

Thus, application of this matrix, @ — (I — 2P)x, is well-conditioned.
In particular, if P is a rank-1 projector, then there is a unit vector v such that
P = vo™.

(And in particular, © — (I — 2P)x does not require (expensive) matrix-vector multiplications.)

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors D07-S10(a)

Our main use of these reflectors is the following:

iven @ . We W, ieve:
Given © € C™, we want to achieve
Householder reflector

x — lz]eer,

for some 0 € [0,2, 7).

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors
Our main use of these reflectors is the following:
Given & € C™, we want to achieve:
g  Householder reflector le]e?es,
for some 0 € [0,2, 7).

This is achieved by the reflector I — 2vv*, with v given by

xr — H;L'Hewel
v = T it
| — |lz]ee|

for arbitrary 6.

D07-510(b)

Instructor: A. Narayan (UofU — Mathematics/SCI)

Math 6610: Orthogonalization and QR



Use of Householder reflectors D07-S10(c)

Our main use of these reflectors is the following:

Given = € C™, we want to achieve:

Householder reflector 6
T < |x)e” e,

for some 0 € [0,2, 7).

This is achieved by the reflector I — 2vv*, with v given by

xr — H;L'Hewel
v = T it
| — |lz]ee|

for arbitrary 6.

For numerical stability, this reflector should make large changes to x, rather than small changes.
The largest change is achieved by selecting
i0 L1

eV = -
1]

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors, |1 D07-S11(a)

We now have the following procedure:
Given € C™, we compute v € C™ such that

(I —2P)x = (I —vv™)x = cey,

for some scalar ce C.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors, |1 D07-S11(b)

We now have the following procedure:
Given € C™, we compute v € C™ such that

(I —2P)x = (I —vv™)x = cey,
for some scalar ce C.

Put another way: we can, via an efficiently-applicable unitary transform, map x to e;.
The idea now is that one

— first reflects the first column to e;

— then reflects rows 2 through n of column 2 to es

— then reflects rows 3 through n of column 3 to e3

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Use of Householder reflectors, |1 D07-S11(c)

We now have the following procedure:
Given € C™, we compute v € C™ such that

(I —2P)x = (I —vv™)x = cey,
for some scalar c e C.

Put another way: we can, via an efficiently-applicable unitary transform, map x to e;.
The idea now is that one

— first reflects the first column to e;
— then reflects rows 2 through n of column 2 to es

— then reflects rows 3 through n of column 3 to e3

We expect Householder reflectors to be stable since we are simply applying unitary (well-conditioned)
matrices to A.

(This is in fact what a typical standard implementations of QR decomposition uses.)

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Givens Rotations D07-S12(a)

In real arithmetic, a Givens rotation is a 2 x 2 matrix defined by a 3-tuple (3, j,0) € [m] x [n] x [0, 27):

cosf) —sinf
sinf  cosf

Gy iy = R(9) R(9) = (

For real matrices, this accomplishes a rotation of 6 radians in the two-dimensional (%, j) plane.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Givens Rotations D07-S12(b)

In real arithmetic, a Givens rotation is a 2 x 2 matrix defined by a 3-tuple (3, j,0) € [m] x [n] x [0, 27):

cosf) —sinf
Gig ti.5y = R(0) R(0) = ( sinf  cosf )

For real matrices, this accomplishes a rotation of 6 radians in the two-dimensional (%, j) plane.

An alternative to Householder reflectors:

— In column 1, use row 1 to eliminate row j via a Givens rotation, for j = 2,... n.
— In column 2, use row 2 to eliminate row j via a Givens rotation, for j = 3,...,n.
Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Givens Rotations D07-S12(c)

In real arithmetic, a Givens rotation is a 2 x 2 matrix defined by a 3-tuple (i, 7,0) € [m] x [n] x [0, 27):

cosf) —sinf >

Giijy i,y = R(0) R(0) = ( sinf  cosf

For real matrices, this accomplishes a rotation of 6 radians in the two-dimensional (i, 5) plane.

An alternative to Householder reflectors:
— In column 1, use row 1 to eliminate row j via a Givens rotation, for j = 2,... n.

— In column 2, use row 2 to eliminate row j via a Givens rotation, for j = 3,...,n.

While both Householder reflectors and Givens rotations are both effective (well-conditioned), Householder
reflectors are generally employed for generic dense QR decomposition operations since they require fewer
conceptual and computational steps.

(To zero out column 1, we need just one Householder reflector, but n — 1 Givens rotations.)

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Least-squares solutions D07-S13(a)

If Ae C™*™ and b e C", we are interested in computing the least-squares solution to
Ax =0b

This arises in several situations, e.g., data fitting.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Least-squares solutions D07-S13(b)

If Ae C™ ™ and be C", we are interested in computing the least-squares solution to
Az =b

This arises in several situations, e.g., data fitting.

The following is a result we have essentially already proven:

Theorem

Suppose A € C™*"™ has full column rank (n). Then, for any b e C", there is a unique solution x that
solves

arg min | Az — bj3.
xzeCn

Furthermore, this solution x is the unique solution to A* Ax = A*b, and the residual r := b — Az is
orthogonal to range(A).

The system A* Az = A*b is called the normal equations.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Computational solutions D07-S14(a)

While the normal equations are typically useful for analysis, they are typically not used for computation.
A=QR = z = R'Q%b.

In most cases, the QR decomposition is used through the above procedure, largely for stability reasons.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Computational solutions D07-S14(b)

While the normal equations are typically useful for analysis, they are typically not used for computation.
A=QR = z = R'Q%b.

In most cases, the QR decomposition is used through the above procedure, largely for stability reasons.

One can still use this same idea if A doesn’t have full column rank, but has to be more careful.

E.g., Q should only span the range of A.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Column-pivoted QR D07-S15(a)
Finally, we note that QR can fail when A does not have full column rank, rank(A) = r < n.
One standard way to address this is by column pivoting.

If doing triangular orthogonalization (Gram-Schmidt-type): At orthogonalization step j, identify column
index k satisfying:

lar — Pj1akl, = |ac — Pj1ac,, L=

Then interchange (permute) columns k and j. Repeat at every orthogonalization step. This results in the
factorization:

AP = QR.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR



Column-pivoted QR D07-S15(b)

Finally, we note that QR can fail when A does not have full column rank, rank(A) = r < n.
One standard way to address this is by column pivoting.

If doing orthogonal triangularization (Householder/Givens): At step j, with S = {j,5 + 1,...,n}, identify
column index k satisfying:

[As,k 2 =

|2 = |As,e

Then interchange (permute) columns k& and j. Repeat at every step. This (again) results in the
factorization:

AP = QR.

Instructor: A. Narayan (UofU — Mathematics/SCI) Math 6610: Orthogonalization and QR
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