Math 6610: Analysis of Numerical Methods, |
Power iteration and the QR algorithm

Department of Mathematics, University of Utah

Fall 2025

Resources:  Trefethen and Bau 1997, Lectures 24, 25, 28
Atkinson 1989, Sections 9.1-9.3, 9.5
Siili and Mayers 2003, Sections 5.1, 5.2, 5.7
Salgado and Wise 2022, Sections 8.3, 8.4, 8.6

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Computing eigenvalues D08-S02(a)

We now have enough machinery to tackle computing eigenvalues.
Our first set of observations will surround the operation A — A(A).

The conceptually straightforward approach to computing eigenvalues is to implement what we do on paper:
compute roots of the characteristic polynomial. l.e., given A € C"*", compute,

A(A) = pa (0), pa(z) = det(A — zI)
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Computing eigenvalues D08-S02(b)
We now have enough machinery to tackle computing eigenvalues.

Our first set of observations will surround the operation A — A(A).

The conceptually straightforward approach to computing eigenvalues is to implement what we do on paper:
compute roots of the characteristic polynomial. l.e., given A € C"*", compute,

A(A) = pa (0), pa(z) = det(A — zI)

It turns out numerically implementing this is a bad idea, for at least two reasons.

One main motivation for computing roots is that we typically compute roots by hand using elementary
operations (arithmetic + rational power).
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Roots of polynomials, | D08-503(a)

However, we cannot use elementary operations in general.
Theorem (Abel-Ruffini, or “Abel’s impossibility"”)

General polynomials of degree 5 or more have roots that are not expressible through elementary operations
on the polynomial coefficients.

If Ae C""", then degpa = n. And the coefficients of pa are explicit (rational) functions of the matrix
entries.
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Roots of polynomials, | D08-503(b)

However, we cannot use elementary operations in general.
Theorem (Abel-Ruffini, or “Abel’s impossibility"”)

General polynomials of degree 5 or more have roots that are not expressible through elementary operations
on the polynomial coefficients.

If Ae C""", then degpa = n. And the coefficients of pa are explicit (rational) functions of the matrix
entries.

Hence, for matrices of size 5 x 5 or larger, we simply cannot compute eigenvalues in a finite number of
numerical elementary operations.

(This is yet another data point that computing eigenvalues is significantly harder than solving linear
systems, or orthogonalizing vectors, or computing determinants, etc.)
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Roots of polynomials, | D08-503(c)

However, we cannot use elementary operations in general.
Theorem (Abel-Ruffini, or “Abel’s impossibility"”)

General polynomials of degree 5 or more have roots that are not expressible through elementary operations
on the polynomial coefficients.

If Ae C""", then degpa = n. And the coefficients of pa are explicit (rational) functions of the matrix
entries.

Hence, for matrices of size 5 x 5 or larger, we simply cannot compute eigenvalues in a finite number of
numerical elementary operations.

(This is yet another data point that computing eigenvalues is significantly harder than solving linear
systems, or orthogonalizing vectors, or computing determinants, etc.)

The upshot: Any eigenvalue algorithm must be an iterative scheme that approximates eigenvalues.

With this realization, numerically computing roots of characteristic polynomials is fine, but there is no real
motivation to stick with this procedure if there's a better alternative.
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Roots of polynomials, Il D08-504(a)

However, there is a strong reason to not compute roots of polynomials: it's generally an ill-conditioned
operation.

Consider
pa(z) =az’ +bz+c=2"—2z+1.

With f(a,b,c) = p, (0), then rz(1,—2,1) is infinity, i.e., this explicit operation is terribly ill-conditioned.
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Roots of polynomials, I D08-504(b)

However, there is a strong reason to not compute roots of polynomials: it's generally an ill-conditioned
operation.

Consider

pa(z) =az’ +bz+c=2"—2z+1.
With f(a,b,c) = p, (0), then rz(1,—2,1) is infinity, i.e., this explicit operation is terribly ill-conditioned.
A similar example is pa(z) = 2z, which corresponds to the 2 x 2 zero matrix. The roots of the perturbed

polynomial z® — € are z = +4/¢, and this root perturbation /€ is much greater than the coefficient
perturbation e.
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Roots of polynomials, Il D08-505(a)

—2,1), yet we know that the (absolute)

All of this is a bit surprising, since A = I yields (a,b,c) = (1,
condition number of I — A(I) is unity. (Bauer-Fike)

The operation A — (a, b, ¢) introduces some ill-conditioning artifacts.
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Roots of polynomials, Il D08-505(b)

All of this is a bit surprising, since A = I yields (a,b,c) = (1,—2,1), yet we know that the (absolute)
condition number of I — A(I) is unity. (Bauer-Fike)

The operation A — (a, b, ¢) introduces some ill-conditioning artifacts.

One can achieve similar results more generally: Consider Wilkinson's polynomial,

20

p(z) = [[ (== )

J=1

The roots are explicit, simple, and real. HO\?fver, minisc T perturbations of the polynomial coefficients still
lead to large changes in the roots. /

& peake 0(l0"™)

VPIx)
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Matrix powers D08-506(a)

All of the this is just to say: Let's not compute roots of characteristic polynomials.

A simple, naive alternative is power iteration. For A € C"*", let's assume simple eigenvalues with a

dominant eigenvalue:

{)\1,.. ,)\n} = )\(A), |>\1| > j:max ‘)\J|

2,...,m

Given a vector &, we'll compute an eigenvector by analyzing A*x for k > 1.
p g y yZzing
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Matrix powers D08-S06(b)

All of the this is just to say: Let's not compute roots of characteristic polynomials.

A simple, naive alternative is power iteration. For A € C"*", let's assume simple eigenvalues with a
dominant eigenvalue:

{)\1,.. ,)\n} = )\(A), |>\1| > j:max ‘)\J|

2,...,m
Given a vector , we'll compute an eigenvector by analyzing A*x for k » 1.

The motivation of this approach is the following: let A be diagonalizable, and let & have an expansion in a
basis comprised of eigenvectors of A:

—1
T = Z cjv;j, c=V "z, V =(v1 v2 - vy),

jeln]
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Matrix powers D08-S06(c)

All of the this is just to say: Let's not compute roots of characteristic polynomials.

A simple, naive alternative is power iteration. For A € C"*", let's assume simple eigenvalues with a
dominant eigenvalue:

{)\1,.. ,)\n} = )\(A), |>\1| > j:max ‘)\J|

2,...,m
Given a vector , we'll compute an eigenvector by analyzing A*x for k » 1.

The motivation of this approach is the following: let A be diagonalizable, and let & have an expansion in a
basis comprised of eigenvectors of A:

z= ), cvj, c=V'z, V=(v1 vz -+ vn),
jeln]
If we assume that ¢1 # 0, (i.e., ¢ span{va,...,v,}) then
1

<1,

n
ko k A
A m—clv1+chrjvj, lr;| = ‘A_
j=2 !

Afx = Z Cj)\?"]j —
jeln]

AY

and therefore if k& » 1, then A*x ~ A\fv,.

(UofU — Mathematics/SCI) Math 6610: Power iteration and the QR algorithm
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Power iteration D08-507(a)

As long as [Ai| > |)\;| for j > 2, then A*z ~ v;.
— A”g for large k can be a vector with huge norm. lteratively normalizing would fix this.

— If"%is approximately an eigenvector of A, then Ra(x) = "’”m‘ﬁ; is approximately its corresponding

eigenvalue.
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Power iteration D08-S07(b)

As long as [Ai| > |)\;| for j > 2, then A*z ~ v;.

— A"gx for large k can be a vector with huge norm. lteratively normalizing would fix this.

- |%/IS approximately an eigenvector of A, then Ra(x) = "’”m‘ﬁ; is approximately its corresponding

eigenvalue.

These leads to the following algorithm, Power iteration:

0. Randomly initialize x¢, set j = 0.
A

1. Compute ;41 = Az T3

2. Compute pjr1 = Ra(x;t1).

3

. Set j « j + 1, return to step 1.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Power iteration D08-S07(c)

As long as [Ai| > |)\;| for j > 2, then A*z ~ v;.

— A"gx for large k can be a vector with huge norm. lteratively normalizing would fix this.

¥ Ax

— If v is approximately an eigenvector of A, then Ra(x) = I is approximately its corresponding

eigenvalue.

These leads to the following algorithm, Power iteration:

0. Randomly initialize x¢, set j = 0.

Ax
1. Compute ;11 = ——2—.
P i+1 = TAg, s

2. Compute pj11 = Ra(xjt1).
3. Set j « j + 1, return to step 1.

Observations: re l' ve|] =9 y"’(c\ /._ (/~ rk
— For large k, we expect (uk, i) ~ (A1, v1).

— The error scales like ¥, where r = max;>27;.
(In the language of iterative methods, this is linear convergence, i.e., the exponent is linear in k.)

This algorithm is fine, but is generally slow if r is close to 1.
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Deflation D08-S08(a)

Power iteration allows us to compute, in principle, a single eigenpair.

Computing the rest using this simple approach would essentially require that we “remove” (A1, v1) from A.
Such a “removal” procedure is called deflation.
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Deflation D08-S08(b)

Power iteration allows us to compute, in principle, a single eigenpair.

Computing the rest using this simple approach would essentially require that we “remove” (A1, v1) from A.
Such a “removal” procedure is called deflation.

Here's a simple strategy for deflation of normal matrices. When A is normal, then,

A= Z )\j’Uj’U?,

jeln]

so “removing’ (A1,v1) can be accomplished as:

n
. *k *
A2 = A — )\1’01’01 = Z )\jvj'vj 3
Jj=2
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Deflation D08-S08(c)

Power iteration allows us to compute, in principle, a single eigenpair.

Computing the rest using this simple approach would essentially require that we “remove” (A1, v1) from A.
Such a “removal”’ procedure is called deflation.

Here's a simple strategy for deflation of normal matrices. When A is normal, then,
A= Z )\j’Uj’U?,
jeln]
so “removing’ (A1,v1) can be accomplished as:
n
AQ = A — )\1’01’01k = Z )\j’Uj’U?,
j=2
Now if [A2]| > |A;| for j = 3, we can perform power iteration on Ay to compute an approximation to

()\2,’02).

This in principle gives us a concrete (implementable) strategy for computing the full eigendecomposition of
a normal matrix: perform power iteration, deflate, perform power iteration, deflate, etc.

(This deflation strategy is called Hotelling deflation, and is generally not numerically stable.)
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Simultaneous power iteration, | D08-509(a)

The whole restarting of power iteration after deflation seems a little wasteful.

We can do a little better using simultaneous power iteration. We'll illustrate with 2 vectors, (x1, x2):

L1 = V(V_lwl) = Z Cj,1U;
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Simultaneous power iteration, | D08-509(b)

The whole restarting of power iteration after deflation seems a little wasteful.

We can do a little better using simultaneous power iteration. We'll illustrate with 2 vectors, (x1, x2):

j€[n]
xy = V(V ay) = Z Cj 20
j€ln]
Now consider y, = AFa,; for k » 1:
Y, = Cl,1>\’f’v1 + 02,1)\1502 + e Yo = 01,2>\If01 + C2 2)\12€U2 + o
< k
- Z_ ll = 1}
(o A . 9.2 ¥
31T Y ' peL

E M NLs ')"J" :!?3 = 3': C«,:’\ukv; "'Cz,,!\zk‘/
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Simultaneous power iteration, | D08-509(c)

The whole restarting of power iteration after deflation seems a little wasteful.

We can do a little better using simultaneous power iteration. We'll illustrate with 2 vectors, (x1, x2):

jeln]
xy = V(V ay) = Z Cj 20
j€[n]
Now consider y, = AFa,; for k » 1:
k k k k
Y, = C1,1A V1 + C2,1 V2 + -+, Yy = C12A1V1 + C22 302 + - -+

If we assume |A1| > |A2| > |A;] for j = 3, then
2<%~ Y, (ﬂf'/;) k
j}vl =G, At "'Cz,;.)" V;Vl

orthogonal projector onto v;.

QR
(¥, v2) ~ (¢, qu) R

where g, ~ v1, and g, approximately parallel to (I — P1)vs, with P, the

(‘IfD,).g,.-.a
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Simultaneous power iteration, | D08-510(a)

Hence, a QR decomposition of simultaneous power iteration yields a Q matrix that is approximately the Q
matrix in a QR decomposition of the eigenvector matrix. l.e., by performing thin QR decompositions:

Ak(azl 5132) = Q(k)R(k), (’Ul ’02) = QR,
(k) ~ i
then Q' ~ Q for large k, where each matrix has 2 columns. Q l/, (,T._D )V
Y
an I/

‘]} k>7>?] ° (\/ Vz): kv z IIG?-P}./
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Simultaneous power iteration, | D08-510(b)

Hence, a QR decomposition of simultaneous power iteration yields a Q matrix that is approximately the Q
matrix in a QR decomposition of the eigenvector matrix. l.e., by performing thin QR decompositions:

A (@1 x2) = QWRW, (v1 v2) = QR,
then Q) ~ Q for large k, where each matrix has 2 columns.

Generalizing this a bit: assume |[A\1| > |A2| > -+ > |\,|. Then for a generic full-rank n x n matrix X:

AFx = QW R™ V = QR,

/1

yields Q) ~ Q. /
?lgﬂvﬂ’(cf‘l’/‘ mal-,«.)(
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Simultaneous power iteration, | D08-510(c)

Hence, a QR decomposition of simultaneous power iteration yields a Q matrix that is approximately the Q
matrix in a QR decomposition of the eigenvector matrix. l.e., by performing thin QR decompositions:

A¥ (@, @) = QW RW, (v1 v2) = QR,
then Q) ~ Q for large k, where each matrix has 2 columns.
Generalizing this a bit: assume |[A\1| > |A2| > -+ > |\,|. Then for a generic full-rank n x n matrix X:
A*X = QW RW V =QR,

yields Q(’“) ~ Q. For, e.g., normal matrices, QQ is unitary, so that Q(k) is actually a matrix of
eigenvectors. (!)

So, for normal matrices, this is yet another algorithm: compute the QR decomposition of A* X, which
approximates eigenvectors, then use the Rayleigh quotient to approximate eigenvectors.

R4 (v)=A,

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Power iteration recap D08-S11(a)

Whether we do “standard” or simultaneous power iteration:
— For normal matrices, both are directly implementable algorithms to compute the full spectrum
— These methods work in principle for eigenvalues with well-separated magnitudes.

— They generally fail when there are eigenvalues with the same magnitude.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Power iteration recap D08-S11(b)

Whether we do “standard” or simultaneous power iteration:

— For normal matrices, both are directly implementable algorithms to compute the full spectrum
— These methods work in principle for eigenvalues with well-separated magnitudes.

— They generally fail when there are eigenvalues with the same magnitude.

One could choose X = I for simultaneous power iteration, so that the matrix under consideration is just
AF

For both iterations, we are essentially computing A" (or its action on some vector). This matrix can be
terribly ill-conditioned if k& » 1.

Therefore, while these procedures conceptually work, they probably aren’t well-conditioned.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Some key realizations D08-S12(a)

We have seen that the @ factor in a QR decomposition of A (i.e., A*I) is an object of interest.

A compilation of some observations:
—If A" = QP R™ | then Q™) ~ Q, where V = QR.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Some key realizations D08-S12(b)

We have seen that the @ factor in a QR decomposition of A (i.e., A*I) is an object of interest.

A compilation of some observations:
—If A" = QP R™ | then Q™) ~ Q, where V = QR.

— We can compute Q*) as the product of other unitary matrices: define A; = A.
> Compute A; = Q,R;
> Define A1 = Rij
> Repeat

Then: Q™ = Q,Q,...Q, ~ Q.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Some key realizations D08-S12(c)

We have seen that the @ factor in a QR decomposition of A (i.e., A*I) is an object of interest.

A compilation of some observations:
—If A" = QP R™ | then Q™) ~ Q, where V = QR.

— We can compute Q*) as the product of other unitary matrices: define A; = A.
> Compute A; = Q,R;
> Define A1 = Rij
> Repeat

Then: Q™ = Q,Q,...Q, ~ Q.

— The matrix Q identifies a similarity transform that triangularizes A.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Some key realizations D08-S12(d)

We have seen that the @ factor in a QR decomposition of A (i.e., A*I) is an object of interest.

A compilation of some observations:
—If A" = QP R™ | then Q™) ~ Q, where V = QR.

— We can compute Q*) as the product of other unitary matrices: define A; = A.
> Compute A; = Q,R;
> Define A1 = Rij
> Repeat

Then: Q™ = Q,Q,...Q, ~ Q.

— The matrix Q identifies a similarity transform that triangularizes A.

- Ajn = R;Q; = QFQ,R;Q; = Q7 A;Q, = An; a¢R|

le., Aj11 = (QTQT) A (Qng)
> = 7
. fo RO Q"4 Q

b= @A Q9 = @74
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Some key realizations D08-S12(e)

We have seen that the @ factor in a QR decomposition of A (i.e., A*I) is an object of interest.

A compilation of some observations:
—If A" = QP R™ | then Q™) ~ Q, where V = QR.

— We can compute Q*) as the product of other unitary matrices: define A; = A.
> Compute A; = Q,R;
> Define A1 = Rij
> Repeat

Then: Q™ = Q,Q,...Q, ~ Q.

— The matrix Q identifies a similarity transform that triangularizes A.

- Aj1 = Rij = Q?QjRij = Q;kAJQ]
le, Ajp1 = (QF --QF) A(Q,--- Q).

l.e.: Ay “should” be close to Q* AQ for large k.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



The QR algorithm D08-S13(a)

We have motivated the proof of the following:

Theorem

Let A e C™ ™ have eigenvalues that satisfy |\;| > |\;+1| for j € [n — 1]. With A1 = A, define the
sequence of matrices,

R .
A; T Q,R;, Aj1 = R;Q,, j=1

Then A; converges to the (upper triangular) Schur form of A, and hence its diagonal entries contain \(A).

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



The QR algorithm D08-S13(b)

We have motivated the proof of the following:

Theorem

Let A e C™ ™ have eigenvalues that satisfy |\;| > |\;+1| for j € [n — 1]. With A1 = A, define the
sequence of matrices,

QR :
A; = Q,R;, Ajn = R;Q;, j=1
Then A; converges to the (upper triangular) Schur form of A, and hence its diagonal entries contain \(A).

The mechanical, iterative procedure defined above is the QR Algorithm. (Not the QR decomposition.)

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Stability D08-S14(a)

The QR algorithm is celebrated because it is numerically stable: each iteration of the QR algorithm
performs:

A=QR — A< RQ =Q*AQ.

l.e., it is just a sequence of unitary similarity transforms on A, so we expect numerical stability.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Stability D08-S14(b)

The QR algorithm is celebrated because it is numerically stable: each iteration of the QR algorithm
performs:

A=QR — A< RQ =Q*AQ.
l.e., it is just a sequence of unitary similarity transforms on A, so we expect numerical stability.

Recall that the “orthogonal triangularization” strategy of QR decompositions computes Rin A = QR
through a sequence of left-applications of unitary transformations (Givens rotations or Householder
reflectors).

To implement the QR algorithm, one simply re-uses these transforms on the right of A.

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm



Stability D08-S14(c)

The QR algorithm is celebrated because it is numerically stable: each iteration of the QR algorithm
performs:

A=QR — A< RQ =Q*AQ.
l.e., it is just a sequence of unitary similarity transforms on A, so we expect numerical stability.

Recall that the “orthogonal triangularization” strategy of QR decompositions computes Rin A = QR
through a sequence of left-applications of unitary transformations (Givens rotations or Householder
reflectors).

To implement the QR algorithm, one simply re-uses these transforms on the right of A.

NB: We have not solved all our problems! The QR algorithm is implicitly just power iteration in disguise,
and power iteration isn't really that great....

Instructor: A. Narayan (UofU — Mathematics/SCl) Math 6610: Power iteration and the QR algorithm
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