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Salgado and Wise 2022, Sections 8.3, 8.4, 8.6
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Computing eigenvalues D08-S02(a)

We now have enough machinery to tackle computing eigenvalues.

Our first set of observations will surround the operation A ÞÑ λpAq.

The conceptually straightforward approach to computing eigenvalues is to implement what we do on paper:
compute roots of the characteristic polynomial. I.e., given A P C

nˆn, compute,

λpAq “ p´1
A p0q, pApzq “ detpA ´ zIq

It turns out numerically implementing this is a bad idea, for at least two reasons.

One main motivation for computing roots is that we typically compute roots by hand using elementary
operations (arithmetic + rational power).

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Computing eigenvalues D08-S02(b)

We now have enough machinery to tackle computing eigenvalues.

Our first set of observations will surround the operation A ÞÑ λpAq.

The conceptually straightforward approach to computing eigenvalues is to implement what we do on paper:
compute roots of the characteristic polynomial. I.e., given A P C

nˆn, compute,

λpAq “ p´1
A p0q, pApzq “ detpA ´ zIq

It turns out numerically implementing this is a bad idea, for at least two reasons.

One main motivation for computing roots is that we typically compute roots by hand using elementary
operations (arithmetic + rational power).

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Roots of polynomials, I D08-S03(a)

However, we cannot use elementary operations in general.

Theorem (Abel-Ruffini, or “Abel’s impossibility”)

General polynomials of degree 5 or more have roots that are not expressible through elementary operations
on the polynomial coefficients.

If A P C
nˆn, then deg pA “ n. And the coefficients of pA are explicit (rational) functions of the matrix

entries.

Hence, for matrices of size 5 ˆ 5 or larger, we simply cannot compute eigenvalues in a finite number of
numerical elementary operations.

(This is yet another data point that computing eigenvalues is significantly harder than solving linear
systems, or orthogonalizing vectors, or computing determinants, etc.)

The upshot: Any eigenvalue algorithm must be an iterative scheme that approximates eigenvalues.

With this realization, numerically computing roots of characteristic polynomials is fine, but there is no real
motivation to stick with this procedure if there’s a better alternative.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Roots of polynomials, I D08-S03(b)

However, we cannot use elementary operations in general.

Theorem (Abel-Ruffini, or “Abel’s impossibility”)

General polynomials of degree 5 or more have roots that are not expressible through elementary operations
on the polynomial coefficients.

If A P C
nˆn, then deg pA “ n. And the coefficients of pA are explicit (rational) functions of the matrix

entries.

Hence, for matrices of size 5 ˆ 5 or larger, we simply cannot compute eigenvalues in a finite number of
numerical elementary operations.

(This is yet another data point that computing eigenvalues is significantly harder than solving linear
systems, or orthogonalizing vectors, or computing determinants, etc.)

The upshot: Any eigenvalue algorithm must be an iterative scheme that approximates eigenvalues.

With this realization, numerically computing roots of characteristic polynomials is fine, but there is no real
motivation to stick with this procedure if there’s a better alternative.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Roots of polynomials, I D08-S03(c)

However, we cannot use elementary operations in general.

Theorem (Abel-Ruffini, or “Abel’s impossibility”)

General polynomials of degree 5 or more have roots that are not expressible through elementary operations
on the polynomial coefficients.

If A P C
nˆn, then deg pA “ n. And the coefficients of pA are explicit (rational) functions of the matrix

entries.

Hence, for matrices of size 5 ˆ 5 or larger, we simply cannot compute eigenvalues in a finite number of
numerical elementary operations.

(This is yet another data point that computing eigenvalues is significantly harder than solving linear
systems, or orthogonalizing vectors, or computing determinants, etc.)

The upshot: Any eigenvalue algorithm must be an iterative scheme that approximates eigenvalues.

With this realization, numerically computing roots of characteristic polynomials is fine, but there is no real
motivation to stick with this procedure if there’s a better alternative.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Roots of polynomials, II D08-S04(a)

However, there is a strong reason to not compute roots of polynomials: it’s generally an ill-conditioned
operation.

Consider

pApzq “ az2 ` bz ` c “ z2 ´ 2z ` 1.

With fpa, b, cq “ p´1
A p0q, then κf p1,´2, 1q is infinity, i.e., this explicit operation is terribly ill-conditioned.

A similar example is pApzq “ z2, which corresponds to the 2 ˆ 2 zero matrix. The roots of the perturbed
polynomial z2 ´ ϵ are z “ ˘

?
ϵ, and this root perturbation

?
ϵ is much greater than the coefficient

perturbation ϵ.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Roots of polynomials, II D08-S04(b)

However, there is a strong reason to not compute roots of polynomials: it’s generally an ill-conditioned
operation.

Consider

pApzq “ az2 ` bz ` c “ z2 ´ 2z ` 1.

With fpa, b, cq “ p´1
A p0q, then κf p1,´2, 1q is infinity, i.e., this explicit operation is terribly ill-conditioned.

A similar example is pApzq “ z2, which corresponds to the 2 ˆ 2 zero matrix. The roots of the perturbed
polynomial z2 ´ ϵ are z “ ˘

?
ϵ, and this root perturbation

?
ϵ is much greater than the coefficient

perturbation ϵ.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Roots of polynomials, III D08-S05(a)

All of this is a bit surprising, since A “ I yields pa, b, cq “ p1,´2, 1q, yet we know that the (absolute)
condition number of I ÞÑ λpIq is unity. (Bauer-Fike)

The operation A ÞÑ pa, b, cq introduces some ill-conditioning artifacts.

One can achieve similar results more generally: Consider Wilkinson’s polynomial,

ppzq “

20
ź

j“1

pz ´ jq.

The roots are explicit, simple, and real. However, miniscule perturbations of the polynomial coefficients still
lead to large changes in the roots.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Roots of polynomials, III D08-S05(b)

All of this is a bit surprising, since A “ I yields pa, b, cq “ p1,´2, 1q, yet we know that the (absolute)
condition number of I ÞÑ λpIq is unity. (Bauer-Fike)

The operation A ÞÑ pa, b, cq introduces some ill-conditioning artifacts.

One can achieve similar results more generally: Consider Wilkinson’s polynomial,

ppzq “

20
ź

j“1

pz ´ jq.

The roots are explicit, simple, and real. However, miniscule perturbations of the polynomial coefficients still
lead to large changes in the roots.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Matrix powers D08-S06(a)

All of the this is just to say: Let’s not compute roots of characteristic polynomials.

A simple, naïve alternative is power iteration. For A P C
nˆn, let’s assume simple eigenvalues with a

dominant eigenvalue:

tλ1, . . . , λnu “ λpAq, |λ1| ą max
j“2,...,n

|λj |.

Given a vector x, we’ll compute an eigenvector by analyzing Akx for k " 1.

The motivation of this approach is the following: let A be diagonalizable, and let x have an expansion in a
basis comprised of eigenvectors of A:

x “
ÿ

jPrns

cjvj , c “ V ´1x, V “ pv1 v2 ¨ ¨ ¨ vnq ,

If we assume that c1 ‰ 0, (i.e., x R spantv2, . . . ,vnu) then

Akx “
ÿ

jPrns

cjλ
k
jvj ùñ

1

λk
1

Akx “ c1v1 `

n
ÿ

j“2

cjr
k
j vj , |rj | “

ˇ

ˇ

ˇ

ˇ

λj

λ1

ˇ

ˇ

ˇ

ˇ

ă 1,

and therefore if k " 1, then Akx « λk
1v1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Matrix powers D08-S06(b)

All of the this is just to say: Let’s not compute roots of characteristic polynomials.

A simple, naïve alternative is power iteration. For A P C
nˆn, let’s assume simple eigenvalues with a

dominant eigenvalue:

tλ1, . . . , λnu “ λpAq, |λ1| ą max
j“2,...,n

|λj |.

Given a vector x, we’ll compute an eigenvector by analyzing Akx for k " 1.

The motivation of this approach is the following: let A be diagonalizable, and let x have an expansion in a
basis comprised of eigenvectors of A:

x “
ÿ

jPrns

cjvj , c “ V ´1x, V “ pv1 v2 ¨ ¨ ¨ vnq ,

If we assume that c1 ‰ 0, (i.e., x R spantv2, . . . ,vnu) then

Akx “
ÿ

jPrns

cjλ
k
jvj ùñ

1

λk
1

Akx “ c1v1 `

n
ÿ

j“2

cjr
k
j vj , |rj | “

ˇ

ˇ

ˇ

ˇ

λj

λ1

ˇ

ˇ

ˇ

ˇ

ă 1,

and therefore if k " 1, then Akx « λk
1v1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Matrix powers D08-S06(c)

All of the this is just to say: Let’s not compute roots of characteristic polynomials.

A simple, naïve alternative is power iteration. For A P C
nˆn, let’s assume simple eigenvalues with a

dominant eigenvalue:

tλ1, . . . , λnu “ λpAq, |λ1| ą max
j“2,...,n

|λj |.

Given a vector x, we’ll compute an eigenvector by analyzing Akx for k " 1.

The motivation of this approach is the following: let A be diagonalizable, and let x have an expansion in a
basis comprised of eigenvectors of A:

x “
ÿ

jPrns

cjvj , c “ V ´1x, V “ pv1 v2 ¨ ¨ ¨ vnq ,

If we assume that c1 ‰ 0, (i.e., x R spantv2, . . . ,vnu) then

Akx “
ÿ

jPrns

cjλ
k
jvj ùñ

1

λk
1

Akx “ c1v1 `

n
ÿ

j“2

cjr
k
j vj , |rj | “

ˇ

ˇ

ˇ

ˇ

λj

λ1

ˇ

ˇ

ˇ

ˇ

ă 1,

and therefore if k " 1, then Akx « λk
1v1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Power iteration D08-S07(a)

As long as |λ1| ą |λj | for j ě 2, then Akx « v1.

– Akx for large k can be a vector with huge norm. Iteratively normalizing would fix this.

– If v is approximately an eigenvector of A, then RApxq “ x˚Ax
}x}2

is approximately its corresponding
eigenvalue.

These leads to the following algorithm, Power iteration:

0. Randomly initialize x0, set j “ 0.

1. Compute xj`1 “
Axj

}Axj}2
.

2. Compute µj`1 “ RApxj`1q.

3. Set j Ð j ` 1, return to step 1.

Observations:

– For large k, we expect pµk,xkq « pλ1,v1q.

– The error scales like rk, where r “ maxjě2 rj .
(In the language of iterative methods, this is linear convergence, i.e., the exponent is linear in k.)

This algorithm is fine, but is generally slow if r is close to 1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Power iteration D08-S07(b)

As long as |λ1| ą |λj | for j ě 2, then Akx « v1.

– Akx for large k can be a vector with huge norm. Iteratively normalizing would fix this.

– If v is approximately an eigenvector of A, then RApxq “ x˚Ax
}x}2

is approximately its corresponding
eigenvalue.

These leads to the following algorithm, Power iteration:

0. Randomly initialize x0, set j “ 0.

1. Compute xj`1 “
Axj

}Axj}2
.

2. Compute µj`1 “ RApxj`1q.

3. Set j Ð j ` 1, return to step 1.

Observations:

– For large k, we expect pµk,xkq « pλ1,v1q.

– The error scales like rk, where r “ maxjě2 rj .
(In the language of iterative methods, this is linear convergence, i.e., the exponent is linear in k.)

This algorithm is fine, but is generally slow if r is close to 1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Power iteration D08-S07(c)

As long as |λ1| ą |λj | for j ě 2, then Akx « v1.

– Akx for large k can be a vector with huge norm. Iteratively normalizing would fix this.

– If v is approximately an eigenvector of A, then RApxq “ x˚Ax
}x}2

is approximately its corresponding
eigenvalue.

These leads to the following algorithm, Power iteration:

0. Randomly initialize x0, set j “ 0.

1. Compute xj`1 “
Axj

}Axj}2
.

2. Compute µj`1 “ RApxj`1q.

3. Set j Ð j ` 1, return to step 1.

Observations:

– For large k, we expect pµk,xkq « pλ1,v1q.

– The error scales like rk, where r “ maxjě2 rj .
(In the language of iterative methods, this is linear convergence, i.e., the exponent is linear in k.)

This algorithm is fine, but is generally slow if r is close to 1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Deflation D08-S08(a)

Power iteration allows us to compute, in principle, a single eigenpair.

Computing the rest using this simple approach would essentially require that we “remove” pλ1,v1q from A.
Such a “removal” procedure is called deflation.

Here’s a simple strategy for deflation of normal matrices. When A is normal, then,

A “
ÿ

jPrns

λjvjv
˚
j ,

so “removing” pλ1,v1q can be accomplished as:

A2 :“ A ´ λ1v1v
˚
1 “

n
ÿ

j“2

λjvjv
˚
j ,

Now if |λ2| ą |λj | for j ě 3, we can perform power iteration on A2 to compute an approximation to
pλ2,v2q.

This in principle gives us a concrete (implementable) strategy for computing the full eigendecomposition of
a normal matrix: perform power iteration, deflate, perform power iteration, deflate, etc.

(This deflation strategy is called Hotelling deflation, and is generally not numerically stable.)
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Deflation D08-S08(b)

Power iteration allows us to compute, in principle, a single eigenpair.

Computing the rest using this simple approach would essentially require that we “remove” pλ1,v1q from A.
Such a “removal” procedure is called deflation.

Here’s a simple strategy for deflation of normal matrices. When A is normal, then,

A “
ÿ

jPrns

λjvjv
˚
j ,

so “removing” pλ1,v1q can be accomplished as:

A2 :“ A ´ λ1v1v
˚
1 “

n
ÿ

j“2

λjvjv
˚
j ,

Now if |λ2| ą |λj | for j ě 3, we can perform power iteration on A2 to compute an approximation to
pλ2,v2q.

This in principle gives us a concrete (implementable) strategy for computing the full eigendecomposition of
a normal matrix: perform power iteration, deflate, perform power iteration, deflate, etc.

(This deflation strategy is called Hotelling deflation, and is generally not numerically stable.)
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Deflation D08-S08(c)

Power iteration allows us to compute, in principle, a single eigenpair.

Computing the rest using this simple approach would essentially require that we “remove” pλ1,v1q from A.
Such a “removal” procedure is called deflation.

Here’s a simple strategy for deflation of normal matrices. When A is normal, then,

A “
ÿ

jPrns

λjvjv
˚
j ,

so “removing” pλ1,v1q can be accomplished as:

A2 :“ A ´ λ1v1v
˚
1 “

n
ÿ

j“2

λjvjv
˚
j ,

Now if |λ2| ą |λj | for j ě 3, we can perform power iteration on A2 to compute an approximation to
pλ2,v2q.

This in principle gives us a concrete (implementable) strategy for computing the full eigendecomposition of
a normal matrix: perform power iteration, deflate, perform power iteration, deflate, etc.

(This deflation strategy is called Hotelling deflation, and is generally not numerically stable.)
Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Simultaneous power iteration, I D08-S09(a)

The whole restarting of power iteration after deflation seems a little wasteful.

We can do a little better using simultaneous power iteration. We’ll illustrate with 2 vectors, px1,x2q:

x1 “ V pV ´1x1q “
ÿ

jPrns

cj,1vj

x2 “ V pV ´1x2q “
ÿ

jPrns

cj,2vj

Now consider yj “ Akxj for k " 1:

y1 “ c1,1λ
k
1v1 ` c2,1λ

k
2v2 ` ¨ ¨ ¨ , y2 “ c1,2λ

k
1v1 ` c2,2λ

k
2v2 ` ¨ ¨ ¨

If we assume |λ1| ą |λ2| ą |λj | for j ě 3, then

py1 y2q
QR
« pq1 q2qR

where q1 « v1, and q2 approximately parallel to pI ´ P 1qv2, with P 1 the orthogonal projector onto v1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Simultaneous power iteration, I D08-S09(b)

The whole restarting of power iteration after deflation seems a little wasteful.

We can do a little better using simultaneous power iteration. We’ll illustrate with 2 vectors, px1,x2q:

x1 “ V pV ´1x1q “
ÿ

jPrns

cj,1vj

x2 “ V pV ´1x2q “
ÿ

jPrns

cj,2vj

Now consider yj “ Akxj for k " 1:

y1 “ c1,1λ
k
1v1 ` c2,1λ

k
2v2 ` ¨ ¨ ¨ , y2 “ c1,2λ

k
1v1 ` c2,2λ

k
2v2 ` ¨ ¨ ¨

If we assume |λ1| ą |λ2| ą |λj | for j ě 3, then

py1 y2q
QR
« pq1 q2qR

where q1 « v1, and q2 approximately parallel to pI ´ P 1qv2, with P 1 the orthogonal projector onto v1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Simultaneous power iteration, I D08-S09(c)

The whole restarting of power iteration after deflation seems a little wasteful.

We can do a little better using simultaneous power iteration. We’ll illustrate with 2 vectors, px1,x2q:

x1 “ V pV ´1x1q “
ÿ

jPrns

cj,1vj

x2 “ V pV ´1x2q “
ÿ

jPrns

cj,2vj

Now consider yj “ Akxj for k " 1:

y1 “ c1,1λ
k
1v1 ` c2,1λ

k
2v2 ` ¨ ¨ ¨ , y2 “ c1,2λ

k
1v1 ` c2,2λ

k
2v2 ` ¨ ¨ ¨

If we assume |λ1| ą |λ2| ą |λj | for j ě 3, then

py1 y2q
QR
« pq1 q2qR

where q1 « v1, and q2 approximately parallel to pI ´ P 1qv2, with P 1 the orthogonal projector onto v1.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Simultaneous power iteration, I D08-S10(a)

Hence, a QR decomposition of simultaneous power iteration yields a Q matrix that is approximately the Q
matrix in a QR decomposition of the eigenvector matrix. I.e., by performing thin QR decompositions:

Ak
px1 x2q “ QpkqRpkq, pv1 v2q “ QR,

then Qpkq
« Q for large k, where each matrix has 2 columns.

Generalizing this a bit: assume |λ1| ą |λ2| ą ¨ ¨ ¨ ą |λn|. Then for a generic full-rank n ˆ n matrix X:

AkX “ QpkqRpkq V “ QR,

yields Qpkq
« Q. For, e.g., normal matrices, Q is unitary, so that Qpkq is actually a matrix of

eigenvectors. (!)

So, for normal matrices, this is yet another algorithm: compute the QR decomposition of AkX, which
approximates eigenvectors, then use the Rayleigh quotient to approximate eigenvectors.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Simultaneous power iteration, I D08-S10(b)

Hence, a QR decomposition of simultaneous power iteration yields a Q matrix that is approximately the Q
matrix in a QR decomposition of the eigenvector matrix. I.e., by performing thin QR decompositions:

Ak
px1 x2q “ QpkqRpkq, pv1 v2q “ QR,

then Qpkq
« Q for large k, where each matrix has 2 columns.

Generalizing this a bit: assume |λ1| ą |λ2| ą ¨ ¨ ¨ ą |λn|. Then for a generic full-rank n ˆ n matrix X:

AkX “ QpkqRpkq V “ QR,

yields Qpkq
« Q. For, e.g., normal matrices, Q is unitary, so that Qpkq is actually a matrix of

eigenvectors. (!)

So, for normal matrices, this is yet another algorithm: compute the QR decomposition of AkX, which
approximates eigenvectors, then use the Rayleigh quotient to approximate eigenvectors.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Simultaneous power iteration, I D08-S10(c)

Hence, a QR decomposition of simultaneous power iteration yields a Q matrix that is approximately the Q
matrix in a QR decomposition of the eigenvector matrix. I.e., by performing thin QR decompositions:

Ak
px1 x2q “ QpkqRpkq, pv1 v2q “ QR,

then Qpkq
« Q for large k, where each matrix has 2 columns.

Generalizing this a bit: assume |λ1| ą |λ2| ą ¨ ¨ ¨ ą |λn|. Then for a generic full-rank n ˆ n matrix X:

AkX “ QpkqRpkq V “ QR,

yields Qpkq
« Q. For, e.g., normal matrices, Q is unitary, so that Qpkq is actually a matrix of

eigenvectors. (!)

So, for normal matrices, this is yet another algorithm: compute the QR decomposition of AkX, which
approximates eigenvectors, then use the Rayleigh quotient to approximate eigenvectors.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Power iteration recap D08-S11(a)

Whether we do “standard” or simultaneous power iteration:

– For normal matrices, both are directly implementable algorithms to compute the full spectrum

– These methods work in principle for eigenvalues with well-separated magnitudes.

– They generally fail when there are eigenvalues with the same magnitude.

One could choose X “ I for simultaneous power iteration, so that the matrix under consideration is just
Ak.

For both iterations, we are essentially computing Ak (or its action on some vector). This matrix can be
terribly ill-conditioned if k " 1.

Therefore, while these procedures conceptually work, they probably aren’t well-conditioned.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Power iteration recap D08-S11(b)

Whether we do “standard” or simultaneous power iteration:

– For normal matrices, both are directly implementable algorithms to compute the full spectrum

– These methods work in principle for eigenvalues with well-separated magnitudes.

– They generally fail when there are eigenvalues with the same magnitude.

One could choose X “ I for simultaneous power iteration, so that the matrix under consideration is just
Ak.

For both iterations, we are essentially computing Ak (or its action on some vector). This matrix can be
terribly ill-conditioned if k " 1.

Therefore, while these procedures conceptually work, they probably aren’t well-conditioned.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Some key realizations D08-S12(a)

We have seen that the Q factor in a QR decomposition of Ak (i.e., AkI) is an object of interest.

A compilation of some observations:

– If Ak
“ QpkqRpkq, then Qpkq

« Q, where V “ QR.

– We can compute Qpkq as the product of other unitary matrices: define A1 “ A.
§ Compute Aj “ QjRj
§ Define Aj`1 “ RjQj
§ Repeat

Then: Qpkq
“ Q1Q2 . . .Qk « Q.

– The matrix Q identifies a similarity transform that triangularizes A.

– Aj`1 “ RjQj “ Q˚
j QjRjQj “ Q˚

j AjQj

I.e., Aj`1 “
`

Q˚
j ¨ ¨ ¨Q˚

1

˘

A
`

Q1 ¨ ¨ ¨Qj

˘

.

I.e.: Ak “should” be close to Q˚AQ for large k.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Some key realizations D08-S12(b)

We have seen that the Q factor in a QR decomposition of Ak (i.e., AkI) is an object of interest.

A compilation of some observations:

– If Ak
“ QpkqRpkq, then Qpkq

« Q, where V “ QR.

– We can compute Qpkq as the product of other unitary matrices: define A1 “ A.
§ Compute Aj “ QjRj
§ Define Aj`1 “ RjQj
§ Repeat

Then: Qpkq
“ Q1Q2 . . .Qk « Q.

– The matrix Q identifies a similarity transform that triangularizes A.

– Aj`1 “ RjQj “ Q˚
j QjRjQj “ Q˚

j AjQj

I.e., Aj`1 “
`

Q˚
j ¨ ¨ ¨Q˚

1

˘

A
`

Q1 ¨ ¨ ¨Qj

˘

.

I.e.: Ak “should” be close to Q˚AQ for large k.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Some key realizations D08-S12(c)

We have seen that the Q factor in a QR decomposition of Ak (i.e., AkI) is an object of interest.

A compilation of some observations:

– If Ak
“ QpkqRpkq, then Qpkq

« Q, where V “ QR.

– We can compute Qpkq as the product of other unitary matrices: define A1 “ A.
§ Compute Aj “ QjRj
§ Define Aj`1 “ RjQj
§ Repeat

Then: Qpkq
“ Q1Q2 . . .Qk « Q.

– The matrix Q identifies a similarity transform that triangularizes A.

– Aj`1 “ RjQj “ Q˚
j QjRjQj “ Q˚

j AjQj

I.e., Aj`1 “
`

Q˚
j ¨ ¨ ¨Q˚

1

˘

A
`

Q1 ¨ ¨ ¨Qj

˘

.

I.e.: Ak “should” be close to Q˚AQ for large k.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Some key realizations D08-S12(d)

We have seen that the Q factor in a QR decomposition of Ak (i.e., AkI) is an object of interest.

A compilation of some observations:

– If Ak
“ QpkqRpkq, then Qpkq

« Q, where V “ QR.

– We can compute Qpkq as the product of other unitary matrices: define A1 “ A.
§ Compute Aj “ QjRj
§ Define Aj`1 “ RjQj
§ Repeat

Then: Qpkq
“ Q1Q2 . . .Qk « Q.

– The matrix Q identifies a similarity transform that triangularizes A.

– Aj`1 “ RjQj “ Q˚
j QjRjQj “ Q˚

j AjQj

I.e., Aj`1 “
`

Q˚
j ¨ ¨ ¨Q˚

1

˘

A
`

Q1 ¨ ¨ ¨Qj

˘

.

I.e.: Ak “should” be close to Q˚AQ for large k.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Some key realizations D08-S12(e)

We have seen that the Q factor in a QR decomposition of Ak (i.e., AkI) is an object of interest.

A compilation of some observations:

– If Ak
“ QpkqRpkq, then Qpkq

« Q, where V “ QR.

– We can compute Qpkq as the product of other unitary matrices: define A1 “ A.
§ Compute Aj “ QjRj
§ Define Aj`1 “ RjQj
§ Repeat

Then: Qpkq
“ Q1Q2 . . .Qk « Q.

– The matrix Q identifies a similarity transform that triangularizes A.

– Aj`1 “ RjQj “ Q˚
j QjRjQj “ Q˚

j AjQj

I.e., Aj`1 “
`

Q˚
j ¨ ¨ ¨Q˚

1

˘

A
`

Q1 ¨ ¨ ¨Qj

˘

.

I.e.: Ak “should” be close to Q˚AQ for large k.

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



The QR algorithm D08-S13(a)

We have motivated the proof of the following:

Theorem
Let A P C

nˆn have eigenvalues that satisfy |λj | ą |λj`1| for j P rn ´ 1s. With A1 “ A, define the
sequence of matrices,

Aj
QR
“ QjRj , Aj`1 “ RjQj , j ě 1

Then Aj converges to the (upper triangular) Schur form of A, and hence its diagonal entries contain λpAq.

The mechanical, iterative procedure defined above is the QR Algorithm. (Not the QR decomposition.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



The QR algorithm D08-S13(b)

We have motivated the proof of the following:

Theorem
Let A P C

nˆn have eigenvalues that satisfy |λj | ą |λj`1| for j P rn ´ 1s. With A1 “ A, define the
sequence of matrices,

Aj
QR
“ QjRj , Aj`1 “ RjQj , j ě 1

Then Aj converges to the (upper triangular) Schur form of A, and hence its diagonal entries contain λpAq.

The mechanical, iterative procedure defined above is the QR Algorithm. (Not the QR decomposition.)

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Stability D08-S14(a)

The QR algorithm is celebrated because it is numerically stable: each iteration of the QR algorithm
performs:

A “ QR ùñ A Ð RQ “ Q˚AQ.

I.e., it is just a sequence of unitary similarity transforms on A, so we expect numerical stability.

Recall that the “orthogonal triangularization” strategy of QR decompositions computes R in A “ QR
through a sequence of left-applications of unitary transformations (Givens rotations or Householder
reflectors).

To implement the QR algorithm, one simply re-uses these transforms on the right of A.

NB: We have not solved all our problems! The QR algorithm is implicitly just power iteration in disguise,
and power iteration isn’t really that great....

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Stability D08-S14(b)

The QR algorithm is celebrated because it is numerically stable: each iteration of the QR algorithm
performs:

A “ QR ùñ A Ð RQ “ Q˚AQ.

I.e., it is just a sequence of unitary similarity transforms on A, so we expect numerical stability.

Recall that the “orthogonal triangularization” strategy of QR decompositions computes R in A “ QR
through a sequence of left-applications of unitary transformations (Givens rotations or Householder
reflectors).

To implement the QR algorithm, one simply re-uses these transforms on the right of A.

NB: We have not solved all our problems! The QR algorithm is implicitly just power iteration in disguise,
and power iteration isn’t really that great....

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm



Stability D08-S14(c)

The QR algorithm is celebrated because it is numerically stable: each iteration of the QR algorithm
performs:

A “ QR ùñ A Ð RQ “ Q˚AQ.

I.e., it is just a sequence of unitary similarity transforms on A, so we expect numerical stability.

Recall that the “orthogonal triangularization” strategy of QR decompositions computes R in A “ QR
through a sequence of left-applications of unitary transformations (Givens rotations or Householder
reflectors).

To implement the QR algorithm, one simply re-uses these transforms on the right of A.

NB: We have not solved all our problems! The QR algorithm is implicitly just power iteration in disguise,
and power iteration isn’t really that great....

Instructor: A. Narayan (UofU – Mathematics/SCI) Math 6610: Power iteration and the QR algorithm
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