Math 1210: Calculus I

Department of Mathematics, University of Utah

Spring 2025

Instructor: Akil Narayan

Instructor: A. Narayan (University of Utah - Department of Mathematics)

Math 1210: Course overview

Calculus I

D01-S02(a)

This course instructs on the conceptual and methodological foundations of calculus.

Calculus is the mathematical study of *change*.

Successful completion of this course implies the ability to:

- use and understand definitions of a *limit*
- compute derivatives of functions
- compute critical and inflection points
- compute integrals and antiderivatives
- exercise these tools in applications: optimization, area and volume computation, rate analysis
- (Cf. "learning objectives" on p3 of syllabus)

Today: We discuss the syllabus + logistics of this course.

This is a *coordinated* course:

- This course has multiple sections (this is section 023)
- You are registered for both a lecture section (this one, 023), and also a lab section (024 028)
- There are (many) other lecture sections: if you switch to a different lecture section, you must also change your lab section.
- To ensure uniformity: course material, textbook, labs, and general expectations are the same across sections.
- Some individualism: precise grading policies, homework assignments, and exams are specific to each section, with similarities across sections.

Your assessments in this course that contribute to your final grade are:

- Weekly homework assignments
- Weekly lab sections (+ submitted lab reports)
- 3 Midterm exams
- 1 Final exam

Attendance at lecture meetings (MTWF) is *not* a factor in your grade. (Attendance at lab sections (Th) is a factor in your grade.)

Attendance is strongly recommended for success in this course.

Homework is worth 25% of your cumulative grade.

Homework assignments will be posted and due weekly (Fridays).

Assignments must be submitted through Gradescope on Canvas.

Each homework is equally weighted, and your lowest score over the semester will be dropped.

Grading of homework assignments is based partially on *completeness* (did you make a serious attempt to solve all problems?) and *accuracy* (did you correctly solve a particular subset of problems?).

The first homework assignments

The first two homework assignments are due on Friday. They are essentially freebies, but require time.

This first assignment is a non-binding placement exam.

- "Homework 0a" is posted on Canvas now, due Friday. It is a Canvas quiz that ensures you have read instructions for the placement exam.
- Part of Homework 0a will have you complete the placement exam.
- "Homework 0b" evaluates you having completed the placement exam. This will be posted about a month to Canvas as a completed assignment. (This delay is required to ascertain completeness of the placement exams.)

Both Homework 0a and Homework 0b count as full-fledged homework assignments.

Your score/performance on the placement exam does not impact the grading of these assignments.

Labs are worth 15% of your cumulative grade.

Thursdays are lab days: you will meet in smaller-group lab sections.

In each lab section you'll be further divided into small groups.

Each group will complete and submit a group lab report that will be graded.

If you do not attend a lab meeting, you cannot submit a lab report (and hence will receive zero credit for that week).

Lab sections are run by learning assistants (LA's).

Midterm exams are collectively worth 39% of your cumulative grade.

There are three midterm exams this semester; each is worth 13%.

Midterm exams are held here, during class time (50 minutes).

All midterm exams are closed-book, closed-notes, and no calculators are allowed.

- Midterm exam 1: Friday, January 31
- Midterm exam 2: Friday, February 28
- Midterm exam 3: Friday, April 4

The final exam is worth 21% of your cumulative grade.

The final exam is closed-book, closed-notes, and no calculators are allowed.

Final exam: Tuesday, April 29, 10:30am - 12:30pm (2 hours) Location: Here, CTIHB 109 You should be familiar with the following to feel comfortable in this class:

- polynomial functions, rational functions, trigonometic functions
- graphing basic functions
- miscellaneous algebraic skills: solving for roots of linear + quadratic polynomial equations, factoring, algebraic simplifications

The Homework 0a + 0b placement exam ("ALEKS") should give you a good idea if you are prepared for this course!

The textbook: REQUIRED

Varberg Purcell Rigdon

The textbook for this course is,

Calculus with Differential Equations, by Varberg, Purcell, and Rigdon (9th edition)

See

https://www.math.utah.edu/resources/bookinfo.php, navigate down to "Math 1210".

Here's generally how each week will work in this class:

- Sunday: no class (I will post lecture slides for the coming week)
- Monday: lecture (End of material for the coming Friday's homework assignment.)
- Tuesday: lecture
- Wednesday: lecture
- Thursday: lab section (Lab report assignment)
- Friday: lecture (Homework assignment due. Next week's homework assignment is posted.)

I will try to post marked slides from class in a timely manner after each class meeting.

- Complete the homework assignments on time (if possible, use weekends to get a good start on them)
- Attend lab sections and participate in completing lab reports
- Attend lectures

We move along at a fairly brisk clip in this course: falling behind will disadvantage you quickly.

The material in this course is progressive: things are much easier in the first few weeks than they are in the last few weeks.

The tentative plan

D01-	-S14	(a)
------	------	-----

Day	DATE	Text Section(s)	Topic	Day	DATE	TEXT SECTION(2)	Topic
Monday Tuesday Wednesday Friday	January 6, 2025 January 7, 2025 January 8, 2025 January 10, 2025	1.1 1.2 1.3	Hello Mathematical basics and introduction to limits More formal discussion of limits Limit theorems and results	Monday Tuesday Wednesday Friday	March 3, 2025 March 4, 2025 March 5, 2025 March 7, 2025	3.5 3.5 3.6 3.7	Graphing functions with calculus Graphing functions with calculus The Mean Value Theorem for derivatives Solving equations numerically
Monday Tuesday Wednesday Friday	January 13, 2025 January 14, 2025 January 15, 2025 January 17, 2025	0.7 1.4 1.4 1.5	Review: trigonometric functions Limits involving trigonometric functions Limits involving trigonometric functions Limits at infinity; infinite limits	Monday Tuesday Wednesday Friday	March 10, 2025 March 11 2025 March 12, 2025 March 14, 2025		<u>No class</u> : Spring break <u>No class</u> : Spring break <u>No class</u> : Spring break <u>No class</u> : Spring break
Monday Tuesday Wednesday Friday	January 20, 2025 January 21, 2025 January 22, 2025 January 14, 2025	1.6 2.1 2.2	<u>No class</u> : MLK Jr. Day Continuity of functions Motivations of the derivative Fundamentals of the derivative	Monday Tuesday Wednesday Friday	March 17, 2025 March 18, 2025 March 19, 2025 March 21, 2025	3.8 3.9 4.1 4.1	Antiderivatives Introduction to differential equations Introduction to area Introduction to area
Monday Tuesday Wednesday Friday	January 27, 2025 January 28, 2025 January 29, 2025 January 31, 2025	2.3 2.3 —	Computing basic derivatives Computing basic derivatives Review <u>Midterm Exam 1</u>	Monday Tuesday Wednesday Friday	March 24, 2025 March 25, 2025 March 26, 2025 March 28, 2025	4.2 4.3 4.3 4.4	The definite integral The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus
Monday Tuesday Wednesday Friday	February 3, 2025 February 4, 2025 February 5, 2025 February 7, 2025	2.4 2.5 2.5 2.6	Derivatives of trigonometric functions The chain rule The chain rule Higher order derivatives	Monday Tuesday Wednesday Friday	March 31, 2025 April 1, 2025 April 2, 2025 April 4, 2025	4.5 4.6 	The Mean Value Theorem for Integrals Numerical integration Review <u>Midterm Exam 3</u>
Monday Tuesday Wednesday Friday	February 10, 2025 February 11, 2025 February 12, 2025 February 14, 2025	2.7 2.8 2.8 2.9	Implicit differentiation Related rates Related reates Differentials and approximations	Monday Tuesday Wednesday Friday	April 7, 2025 April 8, 2025 April 9, 2025 April 11, 2025	5.1 5.1 5.2 5.2	Area of a plane region Area of a plane region Volumes: slabs disks, washers Volumes: slabs,disks, washers
Monday Tuesday Wednesday Friday	February 17, 2025 February 18, 2025 February 19, 2025 February 21, 2025	3.1 3.2 3.3	<u>No class</u> : Presidents' Day Extrema: Maxima and minima Monotonicity and concavity Local extrema and extrema on open intervals	Monday Tuesday Wednesday Friday	April 14, 2025 April 15, 2025 April 16, 2025 April 18, 2025	5.3 5.3 5.4 5.4	Volumes of revolution: shells Volumes of revolution: shells Length of a plane curve Length of a plane curve
Monday Tuesday Wednesday	February 24, 2025 February 25, 2025 February 26, 2025	3.4 3.4 —	Applications Applications Review	Monday Tuesday	April 21, 2025 April 22, 2025	5.5	Work and fluid force Review
rnday	rebruary 28, 2025		witherin Exam 2	Tuesday	April 29, 2025		r mai Exam: 10:50am-12:30pm

For this course, Math 1210, the first week is typically quite important.

You will be able to gauge how prepared you are for this course, and use this information to make decisions about whether to take this course for a grade.

For this course, Math 1210, the first week is typically quite important.

You will be able to gauge how prepared you are for this course, and use this information to make decisions about whether to take this course for a grade.

Unfortunately, I will <u>not</u> be here the rest of this week. (I'll be on professional travel.)

Class <u>will</u> be held as normal, with substitute instructors delivering lectures.

I <u>will</u> be reachable via email/Canvas, and can answer any questions you have.

What good is calculus?

D01-S16(a)

Calculus itself is just a set of tools.

These tools allow us to quantitatively model change in objects or environments.

Hence, these tools are one of the foundational pillars for numerous scientific advances:

- aerospace engineering
- epidemiological modeling
- coronary blood flow modeling
- artificial intelligence and machine learning
- optimization (economics, finance, operations management, design)
- lasers, fiber optics, and electromagnetism
- combustion
- (numerical) weather prediction
- climate modeling

What good is calculus?

D01-S16(b)

The "fathers" of calculus are Isaac Newton and Gottfried Wilhelm Leibniz.

A somewhat reductive summary is that calculus is all about taking *derivatives* and *integrals*.

What good is calculus?

D01-S16(c)

Calculus is about *differentiation* and *integration*.

In terms of mechanics, one is essentially a rote science, the other is a subtle art.

XKCD #2117: https://xkcd.com/2117/

Instructor: A. Narayan (University of Utah - Department of Mathematics)

References I

Varberg, D.E., E.J. Purcell, and S.E. Rigdon (2007). *Calculus*. 9th. MyMathLab Series. Pearson Prentice Hall. ISBN: 978-0-13-142924-6.