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Limits D02-502(a)

Calculus is the study of limits.

Formally for us: what happens to values of a function f(z) as x gets close to some value, © — ¢?
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Limits D02-S02(b)
Calculus is the study of limits.
Formally for us: what happens to values of a function f(z) as x gets close to some value, z — ¢?
For many functions, the “answer” to this question is relatlvelng
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Limits D02-502(c)

Calculus is the study of limits.

Formally for us: what happens to values of a function f(z) as x gets close to some value, z — ¢?

The task of computing limits seems somewhat contrived, but is extremely useful in various

practical scientific scenarios.
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Why limits? D02-S03(a)

Here are a couple of examples about why limits are useful.

Example
Suppose a car's position along a straight road as a function of time is described by the function
f(t), where ¢ is time. .
Limits are useful for computing velocity. S:L 3) = (&0 meams g 2{“ I
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Why limits? D02-S03(b)
Here are a couple of examples about why limits are useful.
Example

We know the circumference of a circle of radius r (it's 277r).
If we didn't know this formula, we could compute the circumference of a circle by inscribing a
polygon, computing the exact perimeter of this polygon, and using limits.
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Limit concepts and notation D02-S04(a)

We'll use the notation,

lim f(z),

r—cC

to denote “the limit of f as x approaches ¢".

For now, ¢ should be some (finite) real number. ;'Wlt/'}/ ‘?U() = 243
g we  Su d’i‘flﬁ a5 X > i/ ’WV/ Q Lb

4 5.
Ll conite thiy ){Zewl» (gz“ 3) - 5.

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: Introduction to limits



Limit concepts and notation D02-S04(b)

We'll use the notation,

lim f(z),

r—cC
to denote “the limit of f as x approaches ¢".
For now, ¢ should be some (finite) real number.

If the value of this limit is some number L (another finite real number), that means that whenever
x is close but not equal to ¢, then the value of f(z) must be close to L.

The value f(c) need not be equal to L, and f(c) need not even be defined!

The limit lim f(z) cannot have more than one value. Either it has a unique value, or it “does not

r—cC

exist”".
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A nontrivial example D02-S06(a)

Example
Compute ilinl 1;__11_
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Limits need not exist D02-S07(a)

Example
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A harder example D02-S08(a)

Example

Compute lin% s
(Ans: 1)
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Infinitely many oscillations D02-S09(a)

Example

1
Compute lim sin — (Ans: does not exist)
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Jump discontinuities D02-S10(a)

Example
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One-sided limits D02-S11(a)

The last example motivates an opportunity to consider “one-sided” limits.

We'll define lim,,_,.+ f(z) as the limit of f(x) as = approaches c from the right.
l.e., this limit is L if f(z) is close to L whenever x is close to and greater than x.
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One-sided limits D02-S11(b)

The last example motivates an opportunity to consider “one-sided” limits.

We'll define lim,_,.+ f(z) as the limit of f(x) as « approaches ¢ from the right.
l.e., this limit is L if f(z) is close to L whenever x is close to and greater than x.
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One-sided limits D02-S11(c)

The last example motivates an opportunity to consider “one-sided” limits.

We'll define lim,_,.+ f(z) as the limit of f(x) as « approaches ¢ from the right.
l.e., this limit is L if f(z) is close to L whenever x is close to and greater than x.

Similarly, lim,_,.+ f() is the limit of f(x) as x approaches ¢ from the left.
This limit is L if f(z) is close to L whenever x is close to and less than x.

One-sided limits need not exist, and even when they do, it may be the case that,

lim f(z) # lim f(z)

r—cC r—c—
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Jump discontinuities, redux D02-S12(a)

Example
Compute lim L
z—0% |z]
(Ans: +1,—1, respectively)
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Equality of one-sided limits D02-S13(a)

In the case that both one-sided limits are equal, a sensible conclusion holds.
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Equality of one-sided limits D02-S13(b)

In the case that both one-sided limits are equal, a sensible conclusion holds.

Theorem
The limit lim,_,. f(x) = L if and only if

lim f(z) = lim f(z)=1L

r—ct T—c™

Why? When one-sided limits are equal to L, then f(z) is close to L whenever z is close to c.
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A summary D02-S14(a)

lim f(x) =L

xr—c

The numbers ¢ and L should be finite real numbers. If L is not a real number, then the limit

doesn't exist. (¢, I i bl

In general the value f(c) is irrelevant in determining the actual limit value L. (But it can be
very suggestive!)

— Limits don't exist at vertical asymptotes or jump discontinuities.
— We can consider one-sided limits lim+ f(z), or lim f(z).
r—cC Tr—Cc
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Additional exercises D02-S15(a)
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29, For the function f graphed in Figure 11, find the indicated

limit or function value, or state that it does not exist, c, w}
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