Math 1210: Calculus I Introduction to limits

Department of Mathematics, University of Utah

Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 1.1

Limits

Calculus is the study of *limits*.

Formally for us: what happens to values of a function f(x) as x gets close to some value, $x \to c$?

Limits

D02-S02(b)

Calculus is the study of *limits*.

Formally for us: what happens to values of a function f(x) as x gets close to some value, $x \to c$?

For many functions, the "answer" to this question is relatively boring:

Instructor: A. Narayan (University of Utah - Department of Mathematics)

Aside: Wh	lat; j you d	idn? Know	how to
We sense	can tabulate For the limit	Values +	s yet a
X	$f(x) = Z \times 4 3$		
Z 1.5	6		
1.25	6.6		
14 L	र्ड • ट		
1.01	5.02		
1.001	5.002	V	
0.949 0.94 0.9 0.75 0.5	4.998 4.98 4.8 4.5 4 3	₽	

Limits

Calculus is the study of *limits*.

Formally for us: what happens to values of a function f(x) as x gets close to some value, $x \to c$?

The task of computing limits seems somewhat contrived, but is *extremely* useful in various practical scientific scenarios.

Why limits?

Here are a couple of examples about why limits are useful.

Example

Suppose a car's position along a straight road as a function of time is described by the function f(t), where t is time.

Question: How fast ever you moving at
$$t=2$$
?
First Attempt:
(my) speed = detruce.
(my) speed = detruce to 100 mi
1 z 3 t The average speed in this interact is 100 mi
 $\frac{1}{12}$ $\frac{1}{2}$ $\frac{1}{2}$

Why limits?

Here are a couple of examples about why limits are useful.

Example

We know the circumference of a circle of radius r (it's $2\pi r$).

If we didn't know this formula, we could compute the circumference of a circle by inscribing a polygon, computing the exact perimeter of this polygon, and using limits.

Limit concepts and notation

D02-S04(a)

We'll use the notation,

 $\lim_{x \to c} f(x),$

to denote "the limit of f as x approaches c".

For now, c should be some (finite) real number. Betwee we saw that are $X \rightarrow 1$, the limit of f(x) = 2x+3J = 5. We conife this: $\lim_{x \rightarrow 1} (2x+3) = 5$.

Limit concepts and notation

D02-S04(b)

We'll use the notation,

 $\lim_{x \to c} f(x),$

to denote "the limit of f as x approaches c".

For now, c should be some (finite) real number.

If the value of this limit is some number L (another finite real number), that means that whenever x is close but not equal to c, then the value of f(x) must be close to L.

The value f(c) <u>need not</u> be equal to L, and f(c) need not even be defined!

The limit $\lim_{x\to c} f(x)$ cannot have more than one value. Either it has a unique value, or it "does not exist".

Instructor: A. Narayan (University of Utah - Department of Mathematics)

A nontrivial example

Example

Compute
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
.
(Ans: 2)
First, note that $(\frac{x^2 - 1}{x - 1}) = (\frac{x + 1}{x - 1})(x - 1)$
 $\lim_{x \to 1} x \neq 1$, then we can divide the
numerator i , denominator by $(x - 1)$ so that
 $F(x) = \begin{cases} x + 1 & j & x \neq 1 \\ x + 1 & j & x \neq 1 \\ andefined & j & x = 1 \end{cases}$ We can see from the
graph that even x is close to 1 ,
 $F(x) = \begin{cases} x + 1 & j & x \neq 1 \\ andefined & j & x = 1 \end{cases}$ Thus, $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$ even then
 $x = 1$

Instructor: A. Narayan (University of Utah - Department of Mathematics)

D02-S06(a)

Limits need not exist

D02-S07(a)

A harder example

D02-S08(a)

Infinitely many oscillations

D02-S09(a)

Jump discontinuities

D02-S10(a)

One-sided limits

D02-S11(a)

The last example motivates an opportunity to consider "one-sided" limits.

We'll define $\lim_{x\to c^+} f(x)$ as the limit of f(x) as x approaches c from the right. I.e., this limit is L if f(x) is close to L whenever x is close to and greater than x.

One-sided limits

D02-S11(b)

The last example motivates an opportunity to consider "one-sided" limits.

We'll define $\lim_{x\to c^+} f(x)$ as the limit of f(x) as x approaches c from the right. I.e., this limit is L if f(x) is close to L whenever x is close to and greater than x.

Instructor: A. Narayan (University of Utah - Department of Mathematics)

One-sided limits

D02-S11(c)

The last example motivates an opportunity to consider "one-sided" limits.

We'll define $\lim_{x\to c^+} f(x)$ as the limit of f(x) as x approaches c from the right. I.e., this limit is L if f(x) is close to L whenever x is close to and greater than x.

Similarly, $\lim_{x\to c^+} f(x)$ is the limit of f(x) as x approaches c from the left. This limit is L if f(x) is close to L whenever x is close to and less than x.

One-sided limits need not exist, and even when they do, it may be the case that,

 $\lim_{x \to c^+} f(x) \neq \lim_{x \to c^-} f(x)$

Jump discontinuities, redux

Example

•	
Compute $\lim_{x \to 0^{\pm}} \frac{x}{ x }$	
(Ans: $+1, -1$, respectively)	
From before, $w/f(x) = \frac{x}{1xl}$,	
we have flust	lim cu - 1
1 0	X30+ T(x) = 1
~ <u>~~</u> ×	0
($\lim_{x \to 0} f(x) = -1$
ł	<i>`</i> %-≫D

1 hot equal

In the case that both one-sided limits are equal, a sensible conclusion holds.

Theorem
The limit
$$\lim_{x\to c} f(x) = L$$
 if and only if
 $\lim_{x\to c^+} f(x) = \lim_{x\to c^-} f(x) = L$

Why? hoosty, i) f approaches the same value from the right
and heft, the f approaches that value in ency shrinking
window around $X = L$

D02-S13(a)

.

In the case that both one-sided limits are equal, a sensible conclusion holds.

Theorem

The limit $\lim_{x\to c} f(x) = L$ if and only if

$$\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{-}} f(x) = L$$

Why? When one-sided limits are equal to L, then f(x) is close to L whenever x is close to c.

A summary

D02-S14(a)

$$\lim_{x \to c} f(x) = L$$

- The numbers c and L should be finite real numbers. If L is not a real number, then the limit doesn't exist. is justice in infinite
- In general the value f(c) is *irrelevant* in determining the actual limit value L. (But it can be very suggestive!)
- Limits don't exist at vertical asymptotes or jump discontinuities.
- We can consider one-sided limits $\lim_{x \to c^+} f(x)$, or $\lim_{x \to c^-} f(x)$.

Additional exercises

D02-S15(a)

Instructor: A. Narayan (University of Utah – Department of Mathematics)

References I

D02-S16(a)

Varberg, D.E., E.J. Purcell, and S.E. Rigdon (2007). *Calculus*. 9th. Pearson Prentice Hall. ISBN: 978-0-13-142924-6.