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Limits D03-S02(a)

We have discussed the concept of a limit,

lim
xÑc

fpxq “ L,

where L may not exist in some cases.

Such a limit exists when the value of fpxq is very close to L whenever x is very close to c (but not

equal to c).

This concept of a limit as we’ve described it is not quite rigorous: it is conceptually

understandable, but not logically precise.

Today: We’ll describe the precise underpinnings of limits.
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A path to precision D03-S03(a)
We want

lim
xÑc

fpxq “ L,

to mean that “when x is close to c, then fpxq should be close to L”.

It’s more convenient to flip this statement around a bit, and instead ask that,

We can make fpxq arbitrarily close to L by restricting x to be close to c

Consider the statement lim
xÑ2

3x2 “ 12.
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A path to precision D03-S03(b)
We want

lim
xÑc

fpxq “ L,

to mean that “when x is close to c, then fpxq should be close to L”.

It’s more convenient to flip this statement around a bit, and instead ask that,

We can make fpxq arbitrarily close to L by restricting x to be close to c

Consider the statement lim
xÑ2

3x2 “ 12.
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Another view of the same example D03-S04(a)
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Toward a definition D03-S05(a)
Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make fpxq arbitrarily close to L by restricting x to be close to c

“fpxq arbitrarily close to L” For any proximity parameter ✏ ° 0
“x close to c” there is another proximity parameter � ° 0

“by restricting x to be close to c” whenever 0 † |x ´ c| † �
“we can make fpxq arbitrarily close to L” then |fpxq ´ L| † ✏

This yields a definition.

Definition
The statement lim

xÑc
fpxq “ L means that for any given ✏ ° 0, we can find a � ° 0 so that if

0 † |x ´ c| † �, then |fpxq ´ L| † ✏.

NB: The lower inequality in 0 † |x ´ c| † � is important! Without it, we allow x “ c, which is not

the intent of a limit.
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Toward a definition D03-S05(b)
Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make fpxq arbitrarily close to L by restricting x to be close to c

“fpxq arbitrarily close to L” For any proximity parameter ✏ ° 0
“x close to c” there is another proximity parameter � ° 0

“by restricting x to be close to c” whenever 0 † |x ´ c| † �
“we can make fpxq arbitrarily close to L” then |fpxq ´ L| † ✏

This yields a definition.

Definition
The statement lim

xÑc
fpxq “ L means that for any given ✏ ° 0, we can find a � ° 0 so that if

0 † |x ´ c| † �, then |fpxq ´ L| † ✏.

NB: The lower inequality in 0 † |x ´ c| † � is important! Without it, we allow x “ c, which is not

the intent of a limit.
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Toward a definition D03-S05(c)
Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make fpxq arbitrarily close to L by restricting x to be close to c

“fpxq arbitrarily close to L” For any proximity parameter ✏ ° 0
“x close to c” there is another proximity parameter � ° 0

“by restricting x to be close to c” whenever 0 † |x ´ c| † �
“we can make fpxq arbitrarily close to L” then |fpxq ´ L| † ✏

This yields a definition.

Definition
The statement lim

xÑc
fpxq “ L means that for any given ✏ ° 0, we can find a � ° 0 so that if

0 † |x ´ c| † �, then |fpxq ´ L| † ✏.

NB: The lower inequality in 0 † |x ´ c| † � is important! Without it, we allow x “ c, which is not

the intent of a limit.
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Toward a definition D03-S05(d)
Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make fpxq arbitrarily close to L by restricting x to be close to c

“fpxq arbitrarily close to L” For any proximity parameter ✏ ° 0
“x close to c” there is another proximity parameter � ° 0

“by restricting x to be close to c” whenever 0 † |x ´ c| † �
“we can make fpxq arbitrarily close to L” then |fpxq ´ L| † ✏

This yields a definition.

Definition
The statement lim

xÑc
fpxq “ L means that for any given ✏ ° 0, we can find a � ° 0 so that if

0 † |x ´ c| † �, then |fpxq ´ L| † ✏.

NB: The lower inequality in 0 † |x ´ c| † � is important! Without it, we allow x “ c, which is not

the intent of a limit.
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Toward a definition D03-S05(e)
Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make fpxq arbitrarily close to L by restricting x to be close to c

“fpxq arbitrarily close to L” For any proximity parameter ✏ ° 0
“x close to c” there is another proximity parameter � ° 0

“by restricting x to be close to c” whenever 0 † |x ´ c| † �
“we can make fpxq arbitrarily close to L” then |fpxq ´ L| † ✏

This yields a definition.

Definition
The statement lim

xÑc
fpxq “ L means that for any given ✏ ° 0, we can find a � ° 0 so that if

0 † |x ´ c| † �, then |fpxq ´ L| † ✏.

NB: The lower inequality in 0 † |x ´ c| † � is important! Without it, we allow x “ c, which is not

the intent of a limit.
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Usage of the definition D03-S06(a)

lim
xÑc

fpxq “ L means that

for any given ✏ ° 0, we can find a � ° 0 so that if 0 † |x ´ c| † �, then |fpxq ´ L| † ✏

Some observations:

– This definition is like a game against an adversary: the adversary picks ✏ ° 0, and you must

provide a � ° 0 that works.

– To (rigorously) show that a limit is true, one must

1. assume an arbitrary ✏ ° 0 is given
2. algebraically manipulate fpxq to find a � satisfying the desired inequalities
3. � will depend on the choice of ✏.
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An example D03-S07(a)

Example (Definition of a limit)
Prove that lim

xÑ2
3x2 “ 12.

(Answer is a paragraph narrative, with one choice �p✏q “ mint1, ✏{9u.)
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The definition in practice D03-S08(a)

The previous exercise should convince you that, even for simple functions, proving

lim
xÑc

fpxq “ L,

which amounts to showing that

For any given ✏ ° 0, we can find a � ° 0 so that if 0 † |x ´ c| † �, then |fpxq ´ L| † ✏,

is a technical and possibly unpleasant task.

Additionally: such proofs require us to know the value of L beforehand!

There are more practically useful results that allow us to (rather easily) manipulate expressions to

easily compute limits.
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