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Limits D03-502(a)

We have discussed the concept of a limit,
lim f(z) = L,
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Such a limit exists when the value of f(x) is very close to L whenever z is Jery close to ¢ (but not
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A path to precision D03-S03(a)
We want

lim f(z) = L,
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to mean that “when z is close to ¢, then f(x) should be close to L".

It's more convenient to flip this statement around a bit, and instead ask that,

We can make f(x) arbitrarily close to L by restricting x to be close to ¢
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A path to precision D03-S03(b)
We want

lim f(z) = L,

Tr—cC

to mean that “when z is close to ¢, then f(x) should be close to L".

It's more convenient to flip this statement around a bit, and instead ask that,

We can make f(x) arbitrarily close to L by restricting = to be close to ¢ mit: ‘PL*\'%‘:-)
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Another view of the same example D03-S04(a)
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Toward a definition D03-S05(a)
Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to ¢

“f(x) arbitrarily close to L" For any proximity parameter € > 0
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Toward a definition D03-S05(b)
Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to ¢

“f(x) arbitrarily close to L" For any proximity parameter € > 0
“x close to c" there is another proximity parameter § > 0
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Toward a definition D03-S05(c)
Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to ¢

“f(x) arbitrarily close to L" For any proximity parameter € > 0
“x close to c" there is another proximity parameter § > 0
“by restricting = to be close to ¢” whenever 0 < |z —¢| < ¢
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Toward a definition D03-S05(d)
Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to ¢

“f(x) arbitrarily close to L" For any proximity parameter € > 0
“x close to c" there is another proximity parameter § > 0
“by restricting = to be close to ¢” whenever 0 < |z —¢| < ¢
“we can make f(x) arbitrarily close to L” then |f(z) — L| <€
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Toward a definition D03-S05(e)
Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to ¢

“f(x) arbitrarily close to L" For any proximity parameter € > 0
“x close to ¢" there is another proximity parameter § > 0
“by restricting = to be close to ¢” whenever 0 < |z —¢| < ¢
“we can make f(x) arbitrarily close to L" then |f(z) — L| < e
This yields a definition. ?“H,\[WA “,\f a,u ’\—y&d&u‘ e
Definition

The statement lim f(z) = L means that for any given ¢ > 0, we can find a § > 0 so that if
0<|z—c|<d,then |f(z)—L| <e.

NB: The lower inequality in 0 < |z — ¢| < ¢ is important! Without it, we allow & = ¢, which is not
the intent of a limit.
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Usage of the definition D03-5S06(a)

lim f(x) = L means that

for any given € > 0, we can find a § > 0 so that if 0 < |z — ¢| <4, then |f(z) — L| <e¢

Some observations:
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2. algebraically manipulate f(z) to find a § satisfying the desired inequalities
3. 6 will depend on the choice of e.

— To (rigorously) show that a limit is true, one must
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An example D03-507(a)

Example (Definition of a limit)
Prove that lim 3% = 12.
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The definition in practice D03-S08(a)

The previous exercise should convince you that, even for simple functions, proving

lim f(x) = L,

which amounts to showing that

For any given € > 0, we can find a § > 0 so that if 0 < | — ¢| < §, then |f(z) — L| <,
is a technical and possibly unpleasant task.
Additionally: such proofs require us t6 know the value of L beforehand!

There are more practically useful results that allow us to (rather easily) manipulate expressions to
easily compute limits.
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