Math 1210: Calculus I Rigorous definition of limits

Department of Mathematics, University of Utah

Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 1.2

Limits

D03-S02(a)

We have discussed the concept of a *limit*,

 $\lim_{x \to c} f(x) = L,$ where L may not exist in some cases. E.g., we saw $\lim_{x \to 0} \frac{X}{|X|}$ D.N.E. Such a limit exists when the value of f(x) is very close to L whenever x is very close to c (but not E.g., We saw $\lim_{x \to 1} \frac{x^2-1}{x-1} = Z$, but $f(x) = \frac{x^2-1}{x-1}$ is not defined at equal to c). This concept of a limit as we've described it is not quite rigorous: it is conceptually understandable, but not logically precise. So for we're used graphical argaments. These are Vertronchy aschul for the Culculus you'll be doing. Today: We'll describe the precise underpinnings of limits. Ly you won't be tested on this, but the right defin of the limit took ZOD years to solidify and is Instructor: A. Naravan University of Utah - Department of Mathematics) Math 1210: Rigorous defintion of limits

A path to precision

D03-S03(a)

We want

$$\lim_{x \to c} f(x) = L,$$

to mean that "when x is close to c, then f(x) should be close to L".

It's more convenient to flip this statement around a bit, and instead ask that,

A path to precision

We want

$$\lim_{x \to c} f(x) = L,$$

to mean that "when x is close to c, then f(x) should be close to L".

It's more convenient to flip this statement around a bit, and instead ask that,

Instructor: A. Narayan (University of Utah - Department of Mathematics)

Math 1210: Rigorous defintion of limits

D03-S03(b)

Another view of the same example

D03-S04(a)

Instructor: A. Narayan (University of Utah - Department of Mathematics)

Math 1210: Rigorous defintion of limits

Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to c

"f(x) arbitrarily close to L"

For any proximity parameter $\epsilon > 0$ no matter has small

Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to c

"f(x) arbitrarily close to L" "x close to c" "x close to c" There is another proximity parameter $\delta > 0$ There is another proximity parameter $\delta = 0$ There is a nother parameter $\delta = 0$ There is a nother parameter $\delta = 0$ There is a

Hence, we can codify our desired precise definition of the limit by quantifying the statement.

We can make f(x) arbitrarily close to L by restricting x to be close to c

"f(x) arbitrarily close to L" "x close to c" "by restricting x to be close to c"

For any proximity parameter $\epsilon > 0$ there is another proximity parameter $\delta > 0$ whenever $0 < |x - c| < \delta$ X close to c but not equal to c. Remember: limits don't depend on the veloce of F at c just near'e

Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to c

"f(x) arbitrarily close to L" "x close to c" "by restricting x to be close to c" "we can make f(x) arbitrarily close to L" For any proximity parameter $\epsilon > 0$ there is another proximity parameter $\delta > 0$ whenever $0 < |x - c| < \delta$ then $|f(x) - L| < \epsilon$

Lo don't winny if
$$f(x) = L$$
.
That's five!
Then wid have
 $0 < E$
which is cruety what
we assume to be true
of E .

Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to c

 $\begin{array}{ll} "f(x) \text{ arbitrarily close to } L" & \text{For any proximity parameter } \epsilon > 0 \\ "x \text{ close to } c" & \text{there is another proximity parameter } \delta > 0 \\ "by restricting x \text{ to be close to } c" & \text{whenever } 0 < |x - c| < \delta \\ "we can make f(x) \text{ arbitrarily close to } L" & \text{then } |f(x) - L| < \epsilon \\ \end{array}$ This yields a definition. Putting if all tryther ...
Definition
The statement $\lim_{x \to c} f(x) = L$ means that for any given $\epsilon > 0$, we can find a $\delta > 0$ so that if $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$.

NB: The lower inequality in $0 < |x - c| < \delta$ is important! Without it, we allow x = c, which is not the intent of a limit.

Usage of the definition

 $\lim_{x \to c} f(x) = L \text{ means that}$

for any given $\epsilon > 0$, we can find a $\delta > 0$ so that if $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$

Some observations:

- This definition is like a game against an adversary: the adversary picks $\epsilon > 0$, and you must provide a $\delta > 0$ that works. We did this in the previous example with $\mathcal{E} = 0.05$. What if they's To (rigorously) show that a limit is true, one must 1. assume an arbitrary $\epsilon > 0$ is given
- To (rigorously) show that a limit is true, one must

 - 2. algebraically manipulate f(x) to find a δ satisfying the desired inequalities
 - 3. δ will depend on the choice of ϵ .

An example

D03-S07(a)

Good: Prove
$$\lim_{X \to 2} 3x^2 = |Z|$$
.
Neel the definition of the limit:
 $\lim_{X \to 0} |F(x)| = L \Leftrightarrow for all \in So, there is a S so such that
 $x > c$ if $o < |x < l < S$, then $|f(x) - L| < \varepsilon$.
Above, $c = z$, $L = |Z|$, and $f(x) = 3x^2$.
Preliming count $|f(x) - L| = |3x^2 - |z| < \varepsilon$ for $|x - z| < s$.
Preliming count $|f(x) - L| = |3x^2 - |z| < \varepsilon$ for $|x - z| < s$.
 $|x + 2||x - 2| < \varepsilon$
 $|x + 2||x - 2| < \varepsilon$
 $|x + 2||x - 2| < \frac{\sigma}{3}$
 $|x -$$

The definition in practice

The previous exercise should convince you that, even for simple functions, proving

$$\lim_{x \to c} f(x) = L,$$

which amounts to showing that

For any given $\epsilon > 0$, we can find a $\delta > 0$ so that if $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$,

is a technical and possibly unpleasant task.

Additionally: such proofs require us to know the value of *L* beforehand!

There are more practically useful results that allow us to (rather easily) manipulate expressions to easily compute limits.

Instructor: A. Narayan (University of Utah - Department of Mathematics)

Math 1210: Rigorous defintion of limits

References I

D03-S09(a)

Varberg, D.E., E.J. Purcell, and S.E. Rigdon (2007). *Calculus*. 9th. Pearson Prentice Hall. ISBN: 978-0-13-142924-6.