# Math 1210: Calculus I Rigorous definition of limits

Department of Mathematics, University of Utah

Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 1.2

#### Limits

D03-S02(a)

We have discussed the concept of a *limit*,

$$\lim_{x \to c} f(x) = L,$$

where L may not exist in some cases.

Such a limit exists when the value of f(x) is very close to L whenever x is very close to c (but not equal to c).

This concept of a limit as we've described it is not quite rigorous: it is conceptually understandable, but not logically precise.

Today: We'll describe the precise underpinnings of limits.

#### A path to precision

D03-S03(a)

We want

$$\lim_{x \to c} f(x) = L,$$

to mean that "when x is close to c, then f(x) should be close to L".

It's more convenient to flip this statement around a bit, and instead ask that,

We can make f(x) arbitrarily close to L by restricting x to be close to c

#### A path to precision

D03-S03(b)

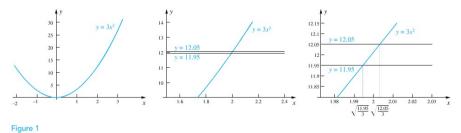
We want

$$\lim_{x \to c} f(x) = L,$$

to mean that "when x is close to c, then f(x) should be close to L".

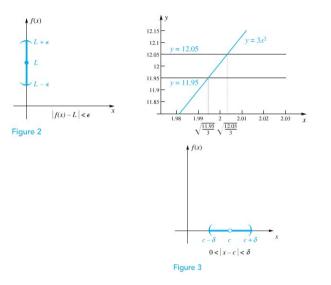
It's more convenient to flip this statement around a bit, and instead ask that,

We can make f(x) arbitrarily close to L by restricting x to be close to cConsider the statement  $\lim_{x\to 2} 3x^2 = 12$ .



#### Another view of the same example

D03-S04(a)



Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to c

"f(x) arbitrarily close to L"

For any proximity parameter  $\epsilon>0$ 

Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to c

"f(x) arbitrarily close to L" "x close to c" For any proximity parameter  $\epsilon>0$  there is another proximity parameter  $\delta>0$ 

Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to c

"f(x) arbitrarily close to L" "x close to c" "by restricting x to be close to c" For any proximity parameter  $\epsilon>0$  there is another proximity parameter  $\delta>0$  whenever  $0<|x-c|<\delta$ 

Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to c

"f(x) arbitrarily close to L" "x close to c" "by restricting x to be close to c" "we can make f(x) arbitrarily close to L" For any proximity parameter  $\epsilon>0$  there is another proximity parameter  $\delta>0$  whenever  $0<|x-c|<\delta$  then  $|f(x)-L|<\epsilon$ 



Hence, we can codify our desired precise definition of the limit by quantifying the statement,

We can make f(x) arbitrarily close to L by restricting x to be close to c

"f(x) arbitrarily close to L" "x close to c" "by restricting x to be close to c" "we can make f(x) arbitrarily close to L" For any proximity parameter  $\epsilon > 0$  there is another proximity parameter  $\delta > 0$  whenever  $0 < |x - c| < \delta$  then  $|f(x) - L| < \epsilon$ 

This yields a definition.

#### Definition

The statement  $\lim_{x\to c} f(x) = L$  means that for any given  $\epsilon > 0$ , we can find a  $\delta > 0$  so that if  $0 < |x-c| < \delta$ , then  $|f(x) - L| < \epsilon$ .

NB: The lower inequality in  $0 < |x - c| < \delta$  is important! Without it, we allow x = c, which is not the intent of a limit.

## Usage of the definition



 $\lim_{x \to c} f(x) = L \text{ means that}$ 

for any given  $\epsilon > 0$ , we can find a  $\delta > 0$  so that if  $0 < |x - c| < \delta$ , then  $|f(x) - L| < \epsilon$ 

Some observations:

- This definition is like a game against an adversary: the adversary picks  $\epsilon > 0$ , and you must provide a  $\delta > 0$  that works.
- To (rigorously) show that a limit is true, one must
  - 1. assume an arbitrary  $\epsilon > 0$  is given
  - 2. algebraically manipulate f(x) to find a  $\delta$  satisfying the desired inequalities
  - 3.  $\delta$  will depend on the choice of  $\epsilon$ .

An example

D03-S07(a)

#### Example (Definition of a limit)

Prove that  $\lim_{x\to 2} 3x^2 = 12$ . (Answer is a paragraph narrative, with one choice  $\delta(\epsilon) = \min\{1, \epsilon/9\}$ .)

## The definition in practice

The previous exercise should convince you that, even for simple functions, proving

$$\lim_{x \to c} f(x) = L,$$

which amounts to showing that

For any given  $\epsilon > 0$ , we can find a  $\delta > 0$  so that if  $0 < |x - c| < \delta$ , then  $|f(x) - L| < \epsilon$ ,

is a technical and possibly unpleasant task.

Additionally: such proofs require us to know the value of L beforehand!

There are more practically useful results that allow us to (rather easily) manipulate expressions to easily compute limits.



## References I

D03-S09(a)

Varberg, D.E., E.J. Purcell, and S.E. Rigdon (2007). *Calculus*. 9th. Pearson Prentice Hall. ISBN: 978-0-13-142924-6.