Announcements:

- Labs
 + Two lowest lab grades dropped
 + Grading for Labs takes ~ I week
 Office Hours
 + Mon 9:30-10:30, WEB 4666
 + Thu 1:30-2:30, LCB 116
- Hw # 1 due Friday
 + "Proctice" uploading to gradescope if it's a new system for you!

Math 1210: Calculus I Trigonometry Review

Department of Mathematics, University of Utah

Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 0.7

Trigonometry

Trigonometry is the mathematical study of angles and their relations to lengths of triangles.

Trigonometry is a basic tool for analyzing simple geometry, and we'll make substantial use of it in this course.

We start with the fundamental definition of the "sine" and "cosine" functions.

Instructor: A. Narayan (University of Utah – Department of Mathematics)

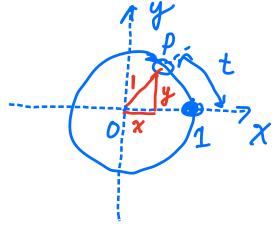
Trigonometry

Trigonometry is the mathematical study of angles and their relations to lengths of triangles.

Trigonometry is a basic tool for analyzing simple geometry, and we'll make substantial use of it in this course.

We start with the fundamental definition of the "sine" and "cosine" functions.

- We consider the unit circle in the plane.
- We know the circumference of this circle is 2π . ("21]r")
- Let t satisfy $0 \leq t \leq 2\pi$.
- We consider a point P on the unit circle that is a distance of t counterclockwise along the circle starting from the point (1,0).
- We'll also consider the (right) triangle whose vertices are the origin, P, and the projection of P onto the horizontal (x) axis.



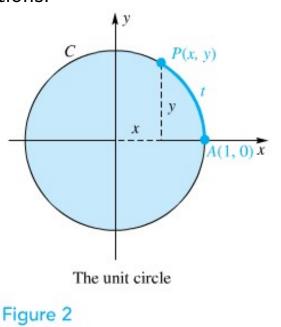
Trigonometry

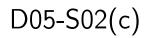
Trigonometry is the mathematical study of angles and their relations to lengths of triangles.

Trigonometry is a basic tool for analyzing simple geometry, and we'll make substantial use of it in this course.

We start with the fundamental definition of the "sine" and "cosine" functions.

- We consider the unit circle in the plane.
- We know the circumference of this circle is 2π .
- Let t satisfy $0 \leq t \leq 2\pi$.
- We consider a point P on the unit circle that is a distance of t counterclockwise along the circle starting from the point (1,0).
- We'll also consider the (right) triangle whose vertices are the origin, P, and the projection of P onto the horizontal (x) axis.
- For a fixed t, we let (x, y) be the coordinates of P.





The sine and cosine functions D05-S03(a) Definition

Under the previous setup, $\cos t = x$, and $\sin t = y$.

The definition applies to any real number t, even negative t (clockwise movement along circle).

P(x, y)

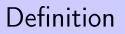
4(1,0)x

x

The unit circle

Figure 2

The sine and cosine functions

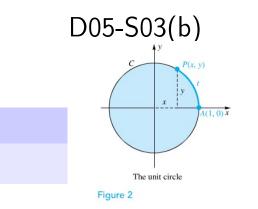


Under the previous setup, $\cos t = x$, and $\sin t = y$.

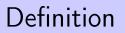
The definition applies to any real number t, even negative t (clockwise movement along circle).

From this geometric definition, there are some immediate consequences we can observe:

- These functions are *periodic*: $\sin t = \sin(t + 2\pi)$ and $\cos t = \cos(t + 2\pi)$ for any t. (This is because the unit circle has circumference 2π so $P(t) = P(t + 2\pi)$.



The sine and cosine functions



Under the previous setup, $\cos t = x$, and $\sin t = y$.

The definition applies to any real number t, even negative t (clockwise movement along circle).

From this geometric definition, there are some immediate consequences we can observe:

- These functions are *periodic*: $\sin t = \sin(t + 2\pi)$ and $\cos t = \cos(t + 2\pi)$ for any t. (This is because the unit circle has circumference 2π so $P(t) = P(t + 2\pi)$.
- When comparing P(t) versus P(-t), only y changes by a negative sign. Hence: $\cos(-t) = \cos(t)$ and $\sin(-t) = -\sin(t)$, i.e., \cos is an even function, and \sin is an odd function.

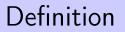
D05-S03(c)

The unit circle

Figure 2

1(1,0)

The sine and cosine functions



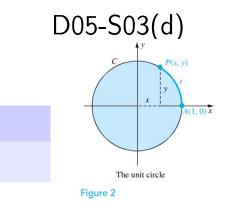
Under the previous setup, $\cos t = x$, and $\sin t = y$.

The definition applies to any real number t, even negative t (clockwise movement along circle).

From this geometric definition, there are some immediate consequences we can observe:

- These functions are *periodic*: $\sin t = \sin(t + 2\pi)$ and $\cos t = \cos(t + 2\pi)$ for any t. (This is because the unit circle has circumference 2π so $P(t) = P(t + 2\pi)$.
- When comparing P(t) versus P(-t), only y changes by a negative sign. Hence: $\cos(-t) = \cos(t)$ and $\sin(-t) = -\sin(t)$, i.e., \cos is an even function, and \sin is an odd function.
- Because $\sin t$ and $\cos t$ are the lengths of the two smaller sides of a hypotenuese-1 triangle,

$$\sin^2 t + \cos^2 t = 1$$
 for any value of t
(sint)'+ (cost)'= 1

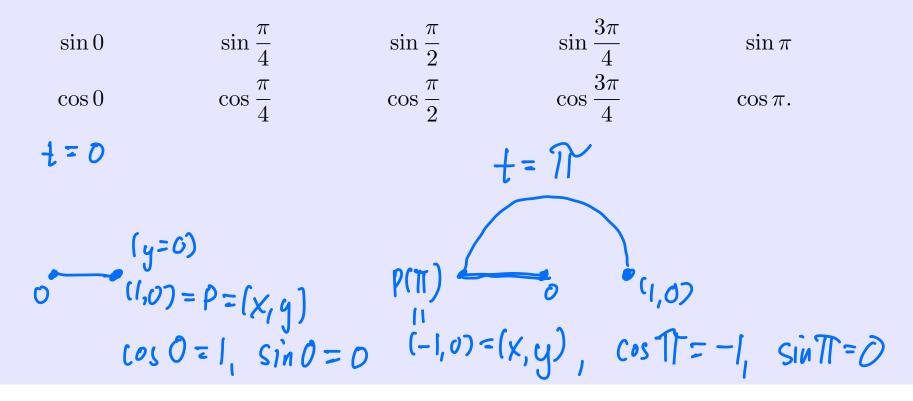


Some values for sine, cosine

D05-S04(a)

Example

Using the geometric interpretation for sine, cosine, compute values for,



$$\begin{array}{l} t = \pi /_{2} & (A \text{ quarter around circle}) \\ (0, 1) = p & \cos \pi /_{2} = 0 \\ & & \\ &$$

$$f = \frac{\pi}{4}$$

$$f(\frac{\pi}{4})$$

$$f(\frac{\pi}{4})$$

$$\chi = y \quad (e.g., because)$$

$$non-90^{\circ} \text{ angles}$$

$$are \quad equal).$$

$$\chi^{2} + y^{2} = 1$$

$$\chi^{2} = \frac{1}{2}$$

$$\chi^{2} = \frac{1}{2}$$

$$\chi^{2} = \frac{1}{2}$$

$$\chi^{2} = \frac{1}{2}$$

From figure: x>0 $\Rightarrow \chi = + \int_{2}^{1} = y$ $\cos \frac{\pi}{4} = \sin \frac{\pi}{4} = \int \frac{1}{2}$ $=\frac{\sqrt{2}}{2}$

 $Sih\left(\frac{3\pi}{4}\right), Cos\left(\frac{3\pi}{4}\right)$ Gs exercise.

More values for sine, cosine

D05-S05(a)

t	sin t	cos t
0	0	1
$\pi/6$	1/2	$\sqrt{3}/2$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$
$\pi/3$	$\sqrt{3}/2$	1/2
$\pi/2$	1	0
$2\pi/3$	$\sqrt{3/2}$	-1/2
$3\pi/4$	$\sqrt{2}/2$	$-\sqrt{2}/2$
$5\pi/6$	1/2	$-\sqrt{3}/2$
π	0	-1

The values of sine, cosine in the table are worth memorizing.

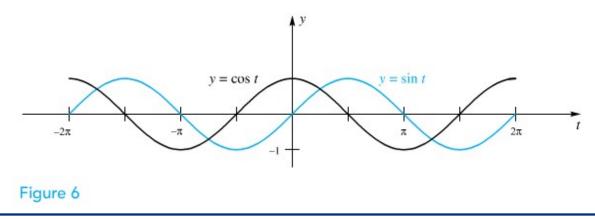
More values for sine, cosine

D05-S05(b)

t	sin t	cos t
0	0	1
$\pi/6$	1/2	$\sqrt{3}/2$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$
$\pi/3$	$\sqrt{3/2}$	1/2
$\pi/2$	1	0
$2\pi/3$	$\sqrt{3/2}$	-1/2
$3\pi/4$	$\sqrt{2}/2$	$-\sqrt{2}/2$
$5\pi/6$	1/2	$-\sqrt{3}/2$
π	0	-1

The values of sine, cosine in the table are worth memorizing.

These values allow us to graph these functions:

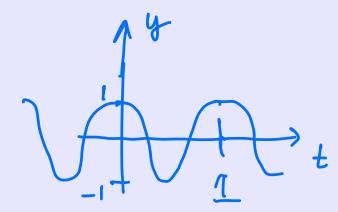


Plotting simple trig functions

D05-S06(a)

Example

Sketch the graph of $y = \cos(2\pi t)$.



D05-S06(b)

Example

Sketch the graph of $y = \sin\left(2t + \frac{\pi}{2}\right)$.

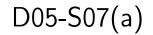
$$2 + \frac{11}{2}$$
 takes values in [Q, 271] when
 $+$ lies in [-77/4, 377/4]
 $\frac{1}{77/4}$ $\frac{17}{77/4}$ $\frac{17}{77/4}$

"Derived" trig functions

We can use \sin and \cos to define other trig functions:

$$\tan t = \frac{\sin t}{\cos t}, \qquad \qquad \cot t = \frac{\cos t}{\sin t}, \qquad \qquad \sec t = \frac{1}{\cos t}, \qquad \qquad \csc t = \frac{1}{\sin t}.$$

These four functions are not defined when their denominators vanish.



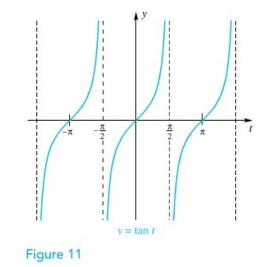
"Derived" trig functions

We can use \sin and \cos to define other trig functions:

$$\tan t = \frac{\sin t}{\cos t}, \qquad \qquad \cot t = \frac{\cos t}{\sin t}, \qquad \qquad \sec t = \frac{1}{\cos t}, \qquad \qquad \csc t = \frac{1}{\sin t}.$$

These four functions are not defined when their denominators vanish.

Plotting these functions is a little more involved, but can still be done.



D05-S07(b)

Derived identities

D05-S08(a)

Example

Show that $1 + \tan^2 t = \sec^2 t$ for all t where the involved functions are defined.

$$Sin^{2}t + \cos^{2}t = 1$$

$$divide by \cos^{2}t$$

$$\frac{Sin^{2}t}{\cos^{2}t} + 1 = \frac{1}{\cos^{2}t} - \frac{1}{2} + 1 = \sin^{2}t + 1 = 5et^{2}t$$

Example

Compute
$$\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$$
.
Recall: $\sin(1/x)$ has infinitely many oscillations near $x = Q$.
Note: for any $t: -1 \le \sin t \le 1$ (cf. graphical defin)
 $\implies -x^2 \le x^2 \sin(1/x) \le +x^2$
 $\int_{0}^{1} \frac{y}{2} x^2$
 $\int_{0}^{1} \frac{y}{2} x^2$
 $\int_{0}^{1} \frac{y}{2} x^2$

Then by the squeeze theorem: $\lim_{X \to 0} x^2 \sin(1/x) = 0$

"Last time": $\lim_{x \to 0} sin(\frac{1}{x})$

Recall some identities

Odd-even identities

Cofunction identities

$\sin(-x) = -\sin x$	$\sin\!\left(\frac{\pi}{2} - x\right) = \cos x$
$\cos(-x)=\cos x$	$\cos\!\left(\frac{\pi}{2} - x\right) = \sin x$
$\tan(-x) = -\tan x$	$\tan\left(\frac{\pi}{2}-x\right) = \cot x$

Pythagorean identities

 $\sin^2 x + \cos^2 x = 1$ $1 + \tan^2 x = \sec^2 x$ $1 + \cot^2 x = \csc^2 x$

Double-angle identities

 $\sin 2x = 2 \sin x \cos x$

$$\cos 2x = \cos^2 x - \sin^2 x$$
$$= 2\cos^2 x - 1$$
$$= 1 - 2\sin^2 x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$

Addition identities

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$
$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

Half-angle identities

$$\sin\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 - \cos x}{2}}$$
$$\cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 + \cos x}{2}}$$

(University of Utah – Department of Mathematics) Instructor: A. Narayan

Math 1210: Trigonometry Review

References I

Varberg, D.E., E.J. Purcell, and S.E. Rigdon (2007). *Calculus*. 9th. Pearson Prentice Hall. ISBN: 978-0-13-142924-6.