Math 1210: Calculus I Limits at infinity and infinite limits

Department of Mathematics, University of Utah

Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 1.5

Instructor: A. Narayan (University of Utah - Department of Mathematics)

Math 1210: Infinite limits

D07-S02(a)

The meaning of " ∞ " depends on the context.

For this course, we mainly use ∞ to mean a conceptual quantity that is larger than any real number.

Conceptual is the operative word: ∞ is <u>not</u> a number!

D07-S02(b)

The meaning of " ∞ " depends on the context.

For this course, we mainly use ∞ to mean a conceptual quantity that is larger than any real number.

Conceptual is the operative word: ∞ is <u>not</u> a number!

As a concept, a quantity like " $-\infty$ " makes sense: it is a conceptual quantity smaller than any real number.

Things like " $3 \cdot \infty$ " are conceptually equivalent to " ∞ ". (But avoid writing things like $3\infty = \infty$.)

Things like $\infty \cdot (-\infty)$ conceptually mean a very very large positive number multiplied by a very very small negative number. This *conceptually* should be a very very smal negative number, i.e., $-\infty$. (Again, avoid writing " $\infty \cdot (-\infty) = -\infty$ ".)

D07-S02(c)

The meaning of " ∞ " depends on the context.

For this course, we mainly use ∞ to mean a conceptual quantity that is larger than any real number.

Conceptual is the operative word: ∞ is <u>not</u> a number!

There are many quantities involving ∞ that <u>do not</u> make sense, and you <u>should not</u> attempt to interpret them without experience:

 $\begin{array}{c} - & 0 \cdot \infty \\ - & \frac{0}{\infty} \\ - & \frac{\infty}{\infty} \end{array}$

D07-S02(d)

The meaning of " ∞ " depends on the context.

For this course, we mainly use ∞ to mean a conceptual quantity that is larger than any real number.

Conceptual is the operative word: ∞ is <u>not</u> a number!

There are many quantities involving ∞ that <u>do not</u> make sense, and you <u>should not</u> attempt to interpret them without experience:

 $\begin{array}{c} - & 0 \cdot \infty \\ - & \frac{0}{\infty} \\ - & \frac{\infty}{\infty} \\ - & \infty - \infty \end{array}$

Overall, ∞ is a concept and you can + should treat it as such: any place you see an " ∞ ", think "what would happen if I put an extremely large positive number here?"

If the answer is ambiguous, then <u>do not</u> attempt to go further and instead try another approach.

Part I: Limits "at" infinity

D07-S03(a)

When discussing limits, $\lim_{x \to c} f(x)$, we have always assumed c is a (finite) real number.

Limits "at infinity" generalize this by using $c = +\infty$ or $c = -\infty$.

Conceptually, for $c = +\infty$, this just means that instead of asking what happens when x approaches c, we instead ask what happens when x becomes an extremely large positive number.

Part I: Limits "at" infinity

D07-S03(b)

When discussing limits, $\lim_{x \to c} f(x)$, we have always assumed c is a (finite) real number.

Limits "at infinity" generalize this by using $c = +\infty$ or $c = -\infty$.

Conceptually, for $c = +\infty$, this just means that instead of asking what happens when x approaches c, we instead ask what happens when x becomes an extremely large positive number.

Example

Provide an argument for what value
$$\lim_{x\to\infty}\frac{1}{x}$$
 should have.

Part I: Limits "at" infinity

D07-S03(c)

When discussing limits, $\lim_{x\to c} f(x)$, we have always assumed c is a (finite) real number.

Limits "at infinity" generalize this by using $c = +\infty$ or $c = -\infty$.

Conceptually, for $c = +\infty$, this just means that instead of asking what happens when x approaches c, we instead ask what happens when x becomes an extremely large positive number.

Example

Provide an argument for what value $\lim_{x\to\infty} \frac{x}{1+x^2}$ should have.

A formal definition

Like before, a strict logical definition for limits are infinity can be cumbersome, but their utility lies in understanding precisely what is meant by such limits.

Definition

Suppose f(x) is defined for x sufficiently large (i.e., for all x larger than some real number x_0). Then $\lim_{x\to\infty} f(x) = L$ means: for any $\epsilon > 0$, there is some large number M such that if x > M, then $|f(x) - L| < \epsilon$.

A formal definition

Like before, a strict logical definition for limits are infinity can be cumbersome, but their utility lies in understanding precisely what is meant by such limits.

Definition

Suppose f(x) is defined for x sufficiently large (i.e., for all x larger than some real number x_0). Then $\lim_{x\to\infty} f(x) = L$ means: for any $\epsilon > 0$, there is some large number M such that if x > M, then $|f(x) - L| < \epsilon$.

Example

Provide a definition for the statement $\lim_{x \to -\infty} f(x) = L$.

A fundamental limit at ∞

Example

Let k be a positive integer. Show that $\lim_{x\to\infty} \frac{1}{x^k} = 0$. (NB: by a similar argument, $\lim_{x\to-\infty} \frac{1}{x^k} = 0$ is true.)

Examples

D07-S06(a)

Example Compute $\lim_{x\to\infty} \frac{x}{x^2+1}$. (Ans: 0)

Examples

D07-S06(b)

Example

Compute $\lim_{x \to -\infty} \frac{x^3 + 3x + 4}{1 - 3x^3}.$ (Ans: $-\frac{1}{3}$)

Part II: "Infinite" limits

To motivate infinite limits, consider the following example:

Example

Provide an argument for why $\lim_{x\to 0^+} \frac{1}{x} = \infty$ is a conceptually sensible statement. (Also for $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.)

Infinite limits

D07-S08(a)

Again, we cannot use our standard definition of limits to understand infinite limits. (Values cannot "approach ∞ " in the traditional sense.)

Definition

For a fixed real number c, the statement $\lim_{x\to c} f(x) = \infty$ means: For every M > 0, there is a $\delta > 0$ such that if $0 < |x - c| < \delta$, then f(x) > M.

Similarly, $\lim_{x \to c^+} f(x) = \infty$ means: For every M > 0, there is a $\delta > 0$ such that if $0 < x - c < \delta$, then f(x) > M.

Infinite limits

D07-S08(b)

Again, we cannot use our standard definition of limits to understand infinite limits. (Values cannot "approach ∞ " in the traditional sense.)

Definition

For a fixed real number c, the statement $\lim_{x\to c} f(x) = \infty$ means: For every M > 0, there is a $\delta > 0$ such that if $0 < |x - c| < \delta$, then f(x) > M.

Similarly, $\lim_{x \to c^+} f(x) = \infty$ means: For every M > 0, there is a $\delta > 0$ such that if $0 < x - c < \delta$, then f(x) > M.

There are also similar definitions for limits equaling $-\infty$, and/or for $x \to c^-$.

Infinite limits

D07-S08(c)

Again, we cannot use our standard definition of limits to understand infinite limits. (Values cannot "approach ∞ " in the traditional sense.)

Definition

For a fixed real number c, the statement $\lim_{x\to c} f(x) = \infty$ means: For every M > 0, there is a $\delta > 0$ such that if $0 < |x - c| < \delta$, then f(x) > M.

Similarly, $\lim_{x \to c^+} f(x) = \infty$ means: For every M > 0, there is a $\delta > 0$ such that if $0 < x - c < \delta$, then f(x) > M.

There are also similar definitions for limits equaling $-\infty$, and/or for $x \rightarrow c^-$.

NB: Previously, if f(x) took on unbounded values, we said that the limit did not exist. We are still saying that, but we are being more precise about *how* the limit fails to exist.

I.e., $\lim_{x \to c} f(x) = \infty$ means that the limit does not exist, and does not exist in a particular way.

Example

Compute
$$\lim_{x \to 1^-} \frac{1}{(x-1)^2}$$
 and $\lim_{x \to 1^+} \frac{1}{(x-1)^2}$.
(Ans: Both limits are ∞ .)

Example

Compute
$$\lim_{x\to 2^+} \frac{x+1}{x^2-5x+6}$$
.
(Ans: $-\infty$)

Asymptotes

D07-S11(a)

Our notion of limits at infinity and infinite limits allows us to make precise definitions for concepts you've seen before: horizontal and vertical asymptotes to graphs.

Definition (Horizontal asymptote)

We say that the graph of y = f(x) as a horizontal asymptote at y = b if

 $\lim_{x \to \infty} f(x) = b \quad \text{OR} \quad \lim_{x \to -\infty} f(x) = b.$

Asymptotes

D07-S11(b)

Our notion of limits at infinity and infinite limits allows us to make precise definitions for concepts you've seen before: horizontal and vertical asymptotes to graphs.

Definition (Horizontal asymptote)

We say that the graph of y = f(x) as a horizontal asymptote at y = b if

$$\lim_{x \to \infty} f(x) = b \quad \text{OR} \quad \lim_{x \to -\infty} f(x) = b.$$

Definition (Vertical asymptote)

We say that the graph of y = f(x) as a vertical asymptote at x = c if

$$\lim_{x \to c^+} f(x) = \infty \quad \text{OR} \quad \left| \lim_{x \to c^-} f(x) \right| = \infty.$$

Instructor: A. Narayan (University of Utah - Department of Mathematics)

Example

Identify any vertical and horizontal asymptotes for $y = \frac{3x}{x-1}$. (Ans: Horizontal asymptote at y = 3, vertical asymptote at x = 1.)

References I

Varberg, D.E., E.J. Purcell, and S.E. Rigdon (2007). *Calculus*. 9th. MyMathLab Series. Pearson Prentice Hall. ISBN: 978-0-13-142924-6.