Math 1210: Calculus |
Warmup to derivatives

Department of Mathematics, University of Utah

Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 2.1

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: Warmup to derivatives



Two focal problems D09-502(a)

Limits will help us articulate two focal problems that will motivate perhaps the most important
topic in this course: the derivative.
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We'll ease into this by motivating the concept with two related problems:
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— Computing the tangent line to a curve/graph

— Computing instantaneous velocity of an object ’

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: Warmup to derivatives



The tangent line D09-S03(a)

This first problem considers computing the line that is tangent to a curve at a particular point.
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The tangent line D09-S03(b)

This first problem considers computing the line that is tangent to a curve at a particular point.

Let's start by assuming the curve is the graph of a function y = f(x).
Evidently, there are two things we need in order to compute this line:

— The point P. We'll let this be the point with x coordinate equal to a constant c.
Hence, P is the point (¢, f(c)).

— The slope of this line. (The slope of the tangent line at the point P.) m= 7
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Computing the slope: secant to tangent lines D09-S04(a)

We need two points to compute a slope. The point P = (¢, f(c)) is one point.
What about the second point?
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Computing the slope: secant to tangent lines D09-S04(b)

We need two points to compute a slope. The point P = (¢, f(c)) is one point.
What about the second point?

The tangent line approximates the curve y = f(x).

Equivalently, an approximation to the tangent line is the curve y = f(z) itself. By using any other
point on the graph of y = f(x), we can compute a secant line through P.
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The role of limits D09-505(a)
The slope of the secant line through P = (¢, f(¢)) and Q = (¢ + h, f(c+ h)) is,
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The role of limits D09-S05(b)
The slope of the secant line through P = (¢, f(¢)) and Q = (¢ + h, f(c+ h)) is,

o flexh) =) fleth) = f(©)
see c+h—c h '

Of course, the slope of this secant line is a better approximation to the tangent line slope when h
is small.

We cannot take h = 0, but we know how to take the /imit as h goes to O.
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The role of limits D09-S05(c)
The slope of the secant line through P = (¢, f(c)) and Q = (¢ + h, f(c+ h)) is,

o flexh) = f©) _ fleth) = ()
see c+h—c h '

Of course, the slope of this secant line is a better approximation to the tangent line slope when h
is small.

We cannot take h = 0, but we know how to take the /imit as h goes to O.

Definition (Slope of the tangent line)

Let P = (¢, f(c)) be a point on the graph of y = f(x). The slope of the tangent line to the graph
at P is,

Mign = 1M Mgee = lim f(c + h) _ f(c))
h—0 h—0 h
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The tangent line D09-506(a)

With a point on the tangent line P = (¢, f(c)), and its slope mya,, we can immediately identify the
tangent line itself.

Definition (Tangent line to a graph)

Let P = (¢, f(c)) be a point on the graph of y = f(x). The tangent line to the graph at P is the
set of points (z,y) satisfying,

y — f(c) = Mian(T — )
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Examples D09-507(a)

Example

Find the slope of the tangent line to the curve y = z* at the point (2,4). Compute the equation of

the corresponding tangent line.
(Ans: Slope 4, equation y = 4z — 4.) /I
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Examples D09-S07(b)

Example

Find the equation of the tangent line to the curve y = 1/z at the point (2, 1).
(Ans: Slope —%, equation y = —% + 1.)

(Exerciy on Yo own )
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Examples D09-507(c)

Example

Compute the slopes of the tangent lines to the curve y = 222 — 2 at the points with = coordinates
—1,%,2, and 3.
(Ans: Slopes —4,2, 8, and 12, respectively)

(Exortize on G oun )
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The second problem: instantaneous velocity D09-S08(a)

Average velocity is an intuitive concept:

If | drive a car 70 kilometers over the course of 3 hours, my average velocity is ? kph (kilometers
per hour).

But there are several different ways | can achieve this 3-hour outcome.
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The second problem: instantaneous velocity D09-S08(b)

Average velocity is an intuitive concept:

If | drive a car 70 kilometers over the course of 3 hours, my average velocity is ? kph (kilometers
per hour).

But there are several different ways | can achieve this 3-hour outcome.

And my instantaneous velocity, say at one hour into the trip, can be essentially anything.
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Instantaneous velocity D09-S09(a)

Instantaneous velocity is essentially the same computation we've just done with tangent lines:

Suppose y = f(t) describes my position (y) as a function of time (¢).
The average velocity over the time interval [¢,c + h] is given by,

distance traveled  f(c+h)— f(c)  f(c+h)— f(c)

elapsed time c+h—c h
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Instantaneous velocity D09-S09(b)

Instantaneous velocity is essentially the same computation we've just done with tangent lines:

Suppose y = f(t) describes my position (y) as a function of time (¢).
The average velocity over the time interval [¢,c + h] is given by,

distance traveled  f(c+h)— f(c)  f(c+h)— f(c)

elapsed time c+h—c h

It is perhaps now not surprising to define instantaneous velocity at ¢t = ¢ as the limit of this
expression as h vanishes.

Definition

Let y = f(t) describe the position of an object as a function of time ¢. The instantaneous velocity

of the object at time t = c is, ——
& fern— 10
h

v = lim
h—0
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Another example D09-510(a)

Example

A particle moves in a line, traveling a total distance s(t) as a function of time t given by

s(t) = v/3t# 2 fort > 0. Compute the instantaneous velocity of the particle as a function of time.
(Ans: veIocit
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