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Rules for computing derivatives
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Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 2.3
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The derivative D11-S02(a)

Given f(z), then the derivative of f is another function f’(x), defined as,
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(We won't ‘Pgﬂlt‘ us€ the notation in the first expression.)
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The derivative D11-S02(b)

Given f(z), then the derivative of f is another function f’(x), defined as,
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(We won't really use the notation in the first expression.)

The definition is conceptually nice, but is unwieldy in practice.

Through the definition, we can identify rules that allow us to differentiate more easily.
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Some examples

D11-S03(a)
Example

Show that if g(x) = cf(x) for a(ny) constant ¢, then ¢'(z) = cf'(x).
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Some examples D11-S03(b)

Example
Show that if h(z) = f(z) + g(x), then h'(x) = f'(z) + ¢'(z).
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Differentiation is “linear” D11-S04(a)

The two previous examples can be summarized as follows:
Theorem (Linearity of differentiation)
Let f(x) and g(x) be differentiable functions, and let c; and co be arbitrary constants. Then
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Differentiation is “linear” D11-S04(b)

The two previous examples can be summarized as follows:

Theorem (Linearity of differentiation)

Let f(x) and g(x) be differentiable functions, and let c; and co be arbitrary constants. Then
d d d
dr (c1f(z) + cag(z)) = &1 @f(iﬂ) + 02@9(53)-

Informally, one can “distribute’” the derivative operation under constants and sums.

Note: by setting ¢c; = +1 and ¢o = —1, one can distribute the derivative under subtraction as well.

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: Rules for computing derivatives



More Examples D11-505(a)

Example

For a(ny) fixed constant ¢, compute the derivative of the constant function f(z) = c.
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More Examples D11-S05(b)

Example

Compute the derivative of the identity function f(x) = x.

(Ans: f'(z) =1)
Flon)-CR)
(x) /(lm : g‘ [l l/\ e fim %\':ﬁ_

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: Rules for computing derivatives



More Examples D11-505(c)

Example

For a(ny) fixed positive integer n, compute the derivative of f(z) = x™.
(Ans: f'(z) = nz™1)
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The Power Rule D11-S06(a)

We have proven the following result:

Theorem (Power Rule)

If f(x) = x™ for any fixed non-negative integer n, then f'(z) = na" !
(For n = 0, we have f'(z) =0.)
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The Power Rule D11-S06(b)

We have proven the following result:

Theorem (Power Rule)

If f(x) = x™ for any fixed non-negative integer n, then f'(z) = na" !
(For n = 0, we have f'(z) =0.)

Putting the Power Rule together with linearity of the derivative implies that polynomials can be
term-by-term differentiated:
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End of Midterm Exam 1 Material
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The product rule D11-508(a)

It's tempting to hope that the rules for differentiation of sums also work for products.

Example

Let f(x) = g(z) = z. Show that Cfix (f(@)g(z)) # (L f(2)) (Lg(z)).
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The product rule D11-S08(b)

It's tempting to hope that the rules for differentiation of sums also work for products.

The actual way to deal with products and derivatives is slightly more complicated than for sums.

Theorem (Product Rule)
If f(z) and g(x) are differentiable functions, then

C (f@)gl@)) = 9@) < [(@) + f(z)g(@) = f'@)g(e) + fla)d (@)

Proof: direct from the definition of the derivative
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The quotient rule

Differentiation for quotients is even more symbolically complicated.

Theorem (Quotient Rule)
If f(x) and g(x) are differentiable functions and g(x) # 0, then

d f(z) _ f(x)g(x) — f(z)g'(x)

dz g(z) 9%(x)

D11-S09(a)
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Examples D11-510(a)

Example

Compute the derivative of f(x) = (22 + 3)(z3 + 4).
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Examples D11-510(b)

Example
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Compute the derivative of f(x) =

—ZE2 €T
(Ans: f'(z) = (x2183)§3)
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Examples D11-510(c)

Example

Let n be any integer (even negative). Show that the derivative of f(x) = 2" is f'(z) = nz" !

(The point: the Power Rule holds for any integer n, not just positive ones.)
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Rules and rules and rules D11-S11(a)

() + eag(a)) = 1 f (2) + a9/ (2)

d flz) _ f(2)g(z) - f(z)g'(z)

da g(z) 9%(x)

Lots of rules....

It is definitely worth memorizing these rules.
Fluency and comfort with these is essential moving forward.
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