Math 1210: Calculus I Derivatives of trigonometric functions

Department of Mathematics, University of Utah

Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 2.4

The derivative

Given f(x), then the derivative of f is another function f'(x), defined as,

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \frac{\mathrm{d}f}{\mathrm{d}x} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}.$$

We've used the definition to derive the following rules:

- Linearity: $(c_1 f(x) + c_2 g(x))' = c_1 f'(x) + c_2 g'(x)$
- Power Rule: $\frac{d}{dx}x^n = nx^{n-1}$ for any integer n. $(\frac{d}{dx}x^0 = 0)$
- Product rule: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)

- Quotient rule:
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

We'll now use these rules to compute derivatives of trigonometric functions.

Sine and cosine

D12-S03(a)

Theorem

The derivative of the sine and cosine functions are as follows:

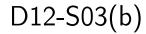
$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x, \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x.$$

(We showed the derivative of $\sin x$ previously. The $\cos x$ derivative computation is similar.)

Recall:
$$\frac{d}{dx} \sin x = \lim_{h \to 0} \frac{\sin(xh) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cosh x \sinh - \sinh x}{h}$$

$$= \lim_{h \to 0} \cos x \frac{\sinh h}{h} + \lim_{h \to 0} \frac{\sinh x (\cosh - 1)}{h} = \cos x.$$

Sine and cosine



Theorem

The derivative of the sine and cosine functions are as follows:

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x, \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x.$$

(We showed the derivative of $\sin x$ previously. The $\cos x$ derivative computation is similar.)

Example

Compute the equation of the tangent line to the graph of $y = \sin x$ at the point $x = \frac{\pi}{4}$. (Ans: $y = \frac{\sqrt{2}}{2}x + \frac{(4-\pi)\sqrt{2}}{8}$.) point on line: $\chi = \frac{\pi}{4}$ if $y = \sin x = \sinh(\frac{\pi}{4})$ $= \sqrt{2}/2$ $= \sqrt{2}/2$ $= \sqrt{2}/2$ $= \sqrt{2}/2$ $= \sqrt{2}/2$ $= \sqrt{2}/2$ $= \sqrt{2}/2$ $= \sqrt{2}/2$

eqn of line:
$$y - y_0 = m(x - x_0)$$

 $(x_0, y_0) = [\frac{\pi}{y_0}, \frac{\sqrt{2}}{2})$
 $m^2 = \frac{\sqrt{2}}{2}$
 $y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}(x - \frac{\pi}{4})$
 $y = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}[1 - \frac{\pi}{4}]$

Examples

D12-S04(a)

Example

Compute
$$\frac{d}{dx}(x^{2}\sin x)$$

Ans: $2x\sin x + x^{2}\cos x$) product rule
 $\frac{d}{dx}(x^{2}\sin x) = \left[\frac{d}{dx}(x^{2})\right]\sin x + x^{2}\frac{d}{dx}(\sin x)$
 $= 2x\sin x + x^{2}\cos x$
Another way: $\frac{d}{dx}(x^{2}\sin x) = \frac{d}{dx}[x \cdot x\sin x]$
 $= \left[\frac{d}{dx}(x)\right]\cdot x\sin x + x \cdot \frac{d}{dx}(x\sin x)$

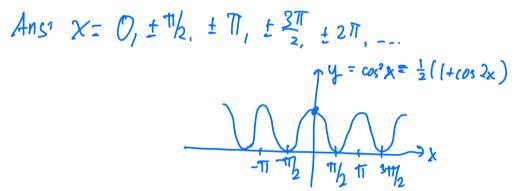
 $= \int x \sin x + x \left[\frac{d}{dx} (x) \cdot \sin x + x \cdot \frac{d}{dx} (\sin x) \right]$ $= \chi \cdot \sin x + x \left[\int x \sin x + x \cos x \right]$ $= 2 x \sin x + x^{2} \cos x$ Another $(a \sin h x) \sin x \cdot x^{2} \sin x = \frac{\sin x}{x^{2}} = \frac{\sin x}{x^{-2}}$

Examples

D12-S04(b)

Example

Compute all points x where the tangent line to $y = \cos^2 x$ is horizontal. (Ans: $x = 0, \pm \frac{\pi}{2}, \pm \pi, \pm \frac{3\pi}{2}, \ldots$) where does the bangent line have clope 0? [derivative equals 0] Find x such that fxy=0 y(x) = (cosx)(cosx)



Examples

D12-S04(c)

Example

Compute
$$\frac{d}{dx} \tan x$$
.
(Ans: $\sec^2 x$.)
 $\frac{d}{dx} \tan x = \frac{d}{dx} \left(\frac{\sin x}{\cos x} \right) = \frac{\frac{d}{dx} (\sin x) - \cos x - \frac{d}{dx} (\cos x) \cdot \sin x}{\cos^2 x}$
 $= (\frac{\cos x}{\cos^2 x} - \frac{\cos x}{\cos^2 x}) = \frac{1}{\cos^2 x}$

Co/secant and Co/tangent

The procedure from the previous example can be used to compute derivatives for other trigonometric functions we've encountered:

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x}\tan x = \sec^2 x,$$
$$\frac{\mathrm{d}}{\mathrm{d}x}\sec x = \sec x \tan x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cot x = -\csc^2 x$$
$$\frac{\mathrm{d}}{\mathrm{d}x}\csc x = -\csc x \cot x$$

References I

D12-S06(a)

Varberg, D.E., E.J. Purcell, and S.E. Rigdon (2007). *Calculus*. 9th. Pearson Prentice Hall. ISBN: 978-0-13-142924-6.