Math 1210: Calculus I Monotonicity and concavity

Department of Mathematics, University of Utah

Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 3.2

Monotonic functions

Derivatives can also be used to study monotonicity of functions.

Definition

Let f be a function defined on an interval I. Then:

- f is increasing on I if for every x_1, x_2 in I satisfying $x_1 < x_2$, then $f(x_1) < f(x_2)$.
- f is decreasing on I if for every x_1, x_2 in I satisfying $x_1 < x_2$, then $f(x_1) > f(x_2)$.
- f is strictly monotonic on I if it's either increasing or decreasing on I.

Monotonicity and derivatives

D19-S03(a)

Since $f^\prime(x)$ is the slope of the tangent line, and the tangent line approximates the graph of f around x:

If f'(x) is positive, then f(x) should be increasing.

Monotonicity and derivatives

D19-S03(b)

Since f'(x) is the slope of the tangent line, and the tangent line approximates the graph of f around x:

If f'(x) is positive, then f(x) should be increasing.

Theorem (Monotonicity theorem)

Assume f is continuous and differentiable on an interval I.

- If f'(x) > 0 for all x in the interior of I, then f is increasing on I.
- If f'(x) < 0 for all x in the interior of I, then f is decreasing on I.

Monotonicity examples

D19-S04(a)

Example

If $f(x) = x^3 - 12x^2 + 45x + 3$, determine where f is increasing and where it's decreasing. (Ans: Increasing on $(-\infty, 3]$ and $[5, \infty)$, and decreasing on [3, 5].)

Monotonicity examples

D19-S04(b)

Example (Example 3.2.2)

Determine where $g(x) = \frac{x}{1+x^2}$ is increasing and where it is decreasing. (Ans: Increasing on [-1, 1), and decreasing on $(-\infty, -1]$ and $[1, \infty)$.) Concavity

D19-S05(a)

Understanding when f(x) is increasing or decreasing is intuitive graphically.

Less transparent, but still important, is understanding when f'(x) is increasing or decreasing.

Definition

Suppose f is differentiable on an open interval I.

- The function f and its graph is **concave up** on I if f'(x) is increasing on I.
- The function f and its graph is **concave down** on I if f'(x) is decreasing on I.

Concavity

D19-S05(b)

Understanding when f(x) is increasing or decreasing is intuitive graphically.

Less transparent, but still important, is understanding when f'(x) is increasing or decreasing.

Definition

Suppose f is differentiable on an open interval I.

- The function f and its graph is **concave up** on I if f'(x) is increasing on I.
- The function f and its graph is **concave down** on I if f'(x) is decreasing on I.

After some graphical experience, one gains some intuition about graphs of concave up or down functions:

- Functions that are concave up look like upward-facing bowls
- Functions that are down up look like downward-facing bowls

Concavity and the second derivative

```
D19-S06(a)
```

With monotonicity (say incrasing value of f), we determined that this could be determined through the sign of the first derivative.

Similarly, for concavity (say increasing value of f'), we can determine this through the sign of the second derivative.

Theorem

Suppose f is a function that has two derivatives ("twice differentiable") on an open interval I.

- If f''(x) > 0 for all x in I, then f is concave up on I.
- If f''(x) < 0 for all x in I, then f is concave down on I.

Examples

Example (Example 3.2.3)

Let $f(x) = \frac{1}{3}x^3 - x^2 - 3x + 4$. Determine where f is increasing, decreasing, concave up, and concave down.

(Ans: Increasing on $(-\infty, -1]$ and $[3, \infty)$, decreasing on [-1, 3], concave up on $(1, \infty)$, concave down on $(-\infty, 1)$.)

Examples

D19-S07(b)

Example (Example 3.2.3)

Let $g(x) = \frac{x}{1+x^2}$. Determine where g is concave up and and concave down. Use this information, and the information from a previous example, to sketch g. (Ans: Concave up on $(-\sqrt{3}, 0)$ and $(\sqrt{3}, \infty)$, concave down on $(-\infty, -\sqrt{3})$ and $(0, \sqrt{3})$.)

Inflection points

D19-S08(a)

Points where concavity changes sign are graphically interesting: the graph changes from curving up/down to curving down/up.

Such points, say x = c, where f''(x) changes sign are call **inflection points**. (I.e., this means f''(x) has one sign when x < c, and another sign when x > c.)

Inflection points

D19-S08(b)

Points where concavity changes sign are graphically interesting: the graph changes from curving up/down to curving down/up.

Such points, say x = c, where f''(x) changes sign are call **inflection points**. (I.e., this means f''(x) has one sign when x < c, and another sign when x > c.)

Like minima and maxima, we need to identify candidates for inflection points before determining which points are inflections points.

Candidates for inflection points are:

- Points c where f''(c) = 0
- Points c where f''(c) is not defined.

Example: inflection points

Example

Determine all inflection points for $f(x) = x^{1/3}$.

Example

Suppose that f(x) is a quadratic polynomial. Show that f has no inflection points.

References I

D19-S10(a)

Varberg, D.E., E.J. Purcell, and S.E. Rigdon (2007). *Calculus*. 9th. Pearson Prentice Hall. ISBN: 978-0-13-142924-6.