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Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 3.3

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: Local extrema



Global and local extrema D20-502(a)

Recall: a maximum value of f on some set S is the number f(c) such that,
f(x) < f(c) for all z in S,

where the number ¢ must also be in S.
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Global and local extrema D20-502(b)

Recall: a maximum value of f on some set S is the number f(c) such that,
f(x) < f(c) for all z in S,

where the number ¢ must also be in S.
Such a value might be called a global maximum, as it's the maximum value globally on S.

However, there are intuitively also locations that are local maxima.
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Local extrema D20-503(a)

A local minimum or maximum can be defined as follows.
Definition
Suppose f is a function with domain S, and that ¢ is some point in S.

@f c) is a local maximum value of f if there is some interval (a,b) containing ¢ such that
x) < f(c) for every x in (a,b).

£
@f(c) is a local minimum value of f if there is some interval (a,b) containing ¢ such that
f(x) = f(c) for every x in (a,b).
(

— f(c) is a local extreme value if it's either a local minimum or local maximum.

NB: global extrema are also local extrema.

.(:1.7\2( T R

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: Local extrema



Local extrema candidates D20-S04(a)

Like the global extremum case, candidates for = values where a local extremum may occur are
largely determined by the derivative. The candidates are critical points:

— Points ¢ corresponding to the endpoints of the domain
— Stationary points: points ¢ such that f'(c¢) = 0.
— Singular points: points ¢ such that f/(c) is not defined.
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Local extrema candidates D20-S04(b)
Like the global extremum case, candidates for = values where a local extremum may occur are
largely determined by the derivative. The candidates are critical points:

— Points ¢ corresponding to the endpoints of the domain

— Stationary points: points ¢ such that f'(c¢) = 0.
— Singular points: points ¢ such that f’(c) is not defined.

For the local extremum case, we shouldn’'t compute the maximum and minimum values of f over
its critical points. (Because local extreme values need not be global extreme values.)

Instead, for a maximum we only need that f is decreasing to the right of = ¢, and increasing to
the left of x = c. -
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The first derivative test D20-S05(a)

The test for local extremum can be determined by investigating the sign of the derivative around
the critical point.

Theorem (“First derivative test”)
Suppose f is a function on an interval (a,b) containing a critical point c.

@Iff’(az) > 0 for x in (a,c), and f'(z) <0 for x in (c,b), then f(c) is a local maximum for f.
@ff’(:c) <0 forx in (a,c), and f'(x) > 0 for x in (¢, b), then f(c) is a local minimum for f.
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The first derivative test D20-S05(b)

The test for local extremum can be determined by investigating the sign of the derivative around
the critical point.

Theorem (“First derivative test”)

Suppose f is a function on an interval (a,b) containing a critical point c.
— If f'(z) >0 for x in (a,c), and f'(x) <O for x in (c,b), then f(c) is a local maximum for f.
— If f'(z) <0 for x in (a,c), and f'(x) > 0 for x in (c,b), then f(c) is a local minimum for f.

If f'(x) has the same sign on either side of x = ¢, then f(c) is not a local extremum.

Note that ¢ may be a singular point (f’(c) doesn't exist), but the above theorem is still true so
long as the derivative is well-defined in the interval (a, b) without the point c.
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First derivative test examples D20-506(a)

Example

Find the local extreme values of the function f(z) = 2 + 22 — 3 on (—o0, ™).
(Ans: x = —1 corresponds to a local minimum value of f(—1) = —4)
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First derivative test examples D20-506(b)

Example

Find the local extreme values of the function f(z) = 23 — 32 on (—00, ).
(Ans: x = —1 corresopnds to a local maximum value of f(—1) =2, x = 1 is a local minimum

value of f(1) = —2.)
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First derivative test examples D20-506(c)

Example

Find the local extreme values of the function f(x) = 22 on (—0, ).
(Ans: x = 0 corresopnds to a local minimum value of f(0) =0.)
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The second derivative test D20-507(a)

There is an alternative, sometimes easier, approach for identifying whether or not stationary points
are local extrema.

Theorem (“Second derivative test")

Suppose f is a twice differentiable function on (a,b), and that c is a stationary point for f on this
interval. ’

g/ff"(c) > 0, then f(c) is a local minimum value. f'ie)<o

If f"(c) <0, then f(c) is a local maximum value.

)=y ®

N4 /\ fil)=3¢*  x=0
fiv)=6x  Flo=p

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: Local extrema



The second derivative test D20-507(b)

There is an alternative, sometimes easier, approach for identifying whether or not stationary points
are local extrema.

Theorem (“Second derivative test”)
Suppose f is a twice differentiable function on (a,b), and that c is a stationary point for f on this
interval.

— If f"(c) > 0, then f(c) is a local minimum value.

— If f"(c) <0, then f(c) is a local maximum value.

The above is only true for stationary points.
It is not apply for singular points (or endpoints of closed intervals).
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First derivative test examples D20-508(a)

Example

Find the local extreme values of the function f(x) = 22 + 22 — 3 on (—o0, %0) using the second

derivative test.
(Ans: x = —1 corresponds to a local minimum value of f(—1) = —4)
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First derivative test examples D20-508(b)

Example

Find the local extreme values of the function f(z) = 23> — 32 on (—o0, 20) using the second

derivative test.
(Ans: x = —1 corresopnds to a local maximum value of f(—1) =2, x = 1 is a local minimum

value of f(1) = —2.)
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Global extrema on open intervals D20-509(a)

In section 3.1, we discussed a procedure for computing global extrema on closed intervals. We have
some tools to investigate this on half-/open intervals now.

Example (Example 3.3.6)

Find the maximum and minimum values (if they exist) of f(z) = 2* — 42 on (—o0, ™).
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