Math 1210: Calculus |
MV T: Derivatives

Department of Mathematics, University of Utah

Spring 2025

Accompanying text: Varberg, Purcell, and Rigdon 2007, Section 3.6

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: The Mean Value Theorem for derivatives



The Mean Value Theorem, motivated

D23-S02(a)

The geometric motivation for the statement of the Mean Value Theorem is pictured below.
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The Mean Value Theorem, motivated D23-502(b)

The geometric motivation for the statement of the Mean Value Theorem is pictured below.
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l.e.: If the graph of f is “nice” on an interval [a,b], then:

The slope of the secant line connecting (a, f(a)) to (b, f(b)) must correspond to the slope of the
tangent line to f at some point ¢ in (a,b).
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The Mean Value Theorem D23-503(a)

We can make the statement precise, including describing the necessary assumption.

Theorem (Mean Value Theorem for Derivatives)

Assume f is a continuous function on the interval |a,b], and is differentiable on (a,b). Then there
exists at least one point c in (a,b) such that,

f'(c) = f(bl)) : C]:(a) or, equivalently f(b) — f(a) = f'(¢)(b— a)
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It doesn’t matter if b < a,'the statement still holds for some ¢ in (b,a).
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MVT proof D23-504(a)

f(b) — f(a)
b—a

for some ¢ in (a,b)
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The proof of the MVT is not too bad:
: e _ f(B)=f(a)
— The equation of the secant line is g(z) — f(a) = —5—-—
— The function s(x) = f(x) — g(z) is a continuous function on [a,b], and s(a) = s(b) = 0.
— s is a continuous function on [a, b]: it achieves its minimum and maximum

— We are looking for a location ¢ in (a, b) where s'(c) = 0.
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MVT proof D23-504(b)

f(b) — f(a)
b—a

f'e) =

for some c in (a,b)

The proof of the MVT is not too bad:
. . . b)—f(a
— The equation of the secant line is g(x) — f(a) = %(az —a).
— The function s(x) = f(x) — g(z) is a continuous function on [a,b], and s(a) = s(b) = 0.
— s is a continuous function on [a, b]: it achieves its minimum and maximum
— We are looking for a location ¢ in (a, b) where s'(c) = 0.

— If both extrema occur at endpoints, since s(a) = s(b) = 0, then s(x) = 0 for all x, so
s’(c) = 0 everywhere in the interval.
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MVT proof D23-504(c)

f(b) — f(a)

flo) = 29—

for some c in (a,b)

The proof of the MVT is not too bad:

— The equation of the secant line is g(x) — f(a) = W

(x —a).

— The function s(x) = f(x) — g(z) is a continuous function on [a,b], and s(a) = s(b) = 0.
— s is a continuous function on [a, b]: it achieves its minimum and maximum

— We are looking for a location ¢ in (a, b) where s'(c) = 0.

— If both extrema occur at endpoints, since s(a) = s(b) = 0, then s(x) = 0 for all z, so
s’(c) = 0 everywhere in the interval.

— If not, then one extremum at some location x = ¢ occurs inside the interval, which must be a
critical point. s is differentiable, so the only option is a stationary point: s'(c) = 0.

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: The Mean Value Theorem for derivatives



Examples D23-505(a)

Example (Example 3.6.1)
Find the number ¢ guaranteed by the Mean Value Theorem for f(z) = 24/z on [1, 4]
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Examples D23-505(b)

Example (Example 3.6.2)

Let f(z) = 2°> —2* — 2+ 1 on [—1,2]. Find all numbers c satisfying the conclusion/te{the Mean
Value Theorem. ﬂ#
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Examples D23-505(c)

Example (Example 3.6.3)

Let f(x) = 22/3 on [—8,27]. Show that the conclusion to the Mean Value Theorem fails and
explain why.
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More uses of the MVT: The Monotonicity Theorem D23-506(a)

Recall: we know that if f is differentiable on an interval over which f’(xz > (), then f is increasing
on that interval.

The Mean Value Theorem explicitly shows us why:

— Let a, b with a < b be any two points on the interval.
— By the MVT: f(b) — f(a) = f'(c¢)(b — a) for some c in (a,b).
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More uses of the MVT: The Monotonicity Theorem D23-506(b)

Recall: we know that if f is differentiable on an interval over which f’(x) > 0, then f is increasing
on that interval.

The Mean Value Theorem explicitly shows us why:
— Let a, b with a < b be any two points on the interval.
— By the MVT: f(b) — f(a) = f'(c¢)(b — a) for some c in (a,b).
— Since b—a > 0 and f'(¢) > 0, then f'(¢)(b —a) > 0, and hence f(b) > f(a).
— l.e., for any a,b with a < b, then f(a) < f(b), so f is increasing.

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: The Mean Value Theorem for derivatives



More uses of the MVT: Derivatives constrain functions, |~ D23-507(a)

Note something straightforward: suppose f is a differentiable function, let ¢ be a constant, and

define
o(x) = F(z) +c. P o
A simple computation shows: ¢'(z) = f'(z). el .~ /\/ 'p{J{J

|.e., if functions differ simply by an additive constant, their derivatives are equal.

A harder question: If functions have equal derivative, do they differ simply by a constant?

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: The Mean Value Theorem for derivatives



More uses of the MVT: Derivatives constrain functions, |~ D23-507(b)

Note something straightforward: suppose f is a differentiable function, let ¢ be a constant, and
define

9(x) = f(z) +c.
A simple computation shows: ¢'(z) = f'(z).
l.e., if functions differ simply by an additive constant, their derivatives are equal.

A harder question: If functions have equal derivative, do they differ simply by a constant?
The MVT furnishes a proof of this:

— Suppose f/'(x) = ¢’(x) on some interval I.

— Define h(x) = f(z) — g(x), so that h'(x) = f'(z) — ¢'(x) = 0.

— Choose and fix any z¢ in I, and define ¢ = h(zy).

Instructor: A. Narayan (University of Utah — Department of Mathematics) Math 1210: The Mean Value Theorem for derivatives



More uses of the MVT: Derivatives constrain functions, |~ D23-507(c)

Note something straightforward: suppose f is a differentiable function, let ¢ be a constant, and
define

9(x) = f(z) +c.
A simple computation shows: ¢'(z) = f'(z).
l.e., if functions differ simply by an additive constant, their derivatives are equal.

A harder question: If functions have equal derivative, do they differ simply by a constant?
The MVT furnishes a proof of this:
— Suppose f/'(x) = ¢’(x) on some interval I.
— Define h(x) = f(z) — g(x), so that A/ (z) = f'(x) — ¢'(x) = 0.
— Choose and fix any zq in I, and define ¢ = h(zg). Wfe)
r arbitrary x in I, then the MVT states: }{(x) —H(x,) = ﬂ’(c)(x — x1) for some c inside
t.einz?zal‘_éa: ,x1) or (x1,x). h(x)—~ "(X,) = ’4)(X'X)

) = 0, this means H{x) = H(r1) = ¢, and this is true for evéry  in the interval.

e, f(z) =g(z) + h k
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More uses of the MVT: Derivatives constrain functions, |l D23-508(a)

Theorem
Suppose f'(x) = ¢'(x) for all z in (a,b). Then there is a constant ¢ such that

for all x in (a,b).
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