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Example 1: Randomized trace estimators

Let Ac R"*" be symmetric. Our goal is to estimate the trace of A,
tr(A) = 2, Aij = D, M(A).
Jeln] Jjeln]

The idea for accomplishing this fairly transparent: the trace is a sum of a symmetric set of entries
of a matrix.

So consider a centered random vector x € R", i.e., Ex = 0. Then,

Ex' Ax = Z AijE(xix;) = Z (cov(x) © A); ;-
ijeln] ije[n]

Therefore, the mean of x” Ax is the sum of A-elementwise-weighted covariance of x.
To recover the trace, we need a special type of random vector.

A random vector x is isotropic if Exx" = 1I.
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The (Hutchinson) randomized trace estimator
Here's the (“Hutchinson”) randomized trace estimation procedure:

Input: N, an isotropic distribution for x, and A
0. Initialize Zg =0, j = 0.
1. Generate an isotropic random vector x.
2. Compute Zg <« Zy + ﬁxTAx.
3. Setj —j+ 1.
4. If j < N, return to step 1. Otherwise, return Zj.

NB: We need not have A, but instead just access to operator queries x — Ax.

Let Z be the random variable x” Ax. If Zj, j = 1 areiid copies of Z, the Hutchinson trace
estimator produces,

1 1
Zo = NjeZ[I:V] Zj, EZy=FEZ= IZJ;(EXXT QA), = ,ZJ;(IG A)ij =tr(A), VarZo = \VarZ.
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Isotropic distribution examples
There are two common choices for isotropic distributions:

= x ~N(0,I,). Then VarZ = 2| A|2.

= x has iid Rademacher entries: x; ~ Unif({—1,1}). Then VarZ =43, . A 2.
To see the Rademacher result: Suppose x has iid Rademacher entries. Then:

i 2
VarZ = & (Z(x,-xj)A,-J> —EZ?

ij

=E Z XiXjxkXeAi jAkL | — (ZAJJ)Z
| ikt J

- Zx;‘A,%, + Z XBCA; Ak + Z XPFAL; + Zx,?xJ?A,%j — 2 A%, — Z AiiAij
) i

i#k i#j i#j i#j
=2 A7
J

i#j
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Using moments

These actually provide significant intuition about when trace estimators succeed. Consider the
intrinsic dimension of an spd matrix A:

_ tr(A) 2jefn) X (A)

idim(A) A

€ [1,n]

Al maxge

The intrinsic dimension is one way to define a “continuous” version of rank/dimension of a matrix.

Chaining together the previous results and using |A||% < || A2tr(A), we conclude for either
distribution above and Chebyshev's inequality:

2

Pr(|Zo — tr(A)| > etr(A)) < NeZidim(A)’

l.e., this method works well for matrices with large intinsic dimension.
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Concentration

Of course, we know we can do better than Chebyshev's inequality!

Given A:

1Z-EZ| < )] |Aijl wpl.
i%j

So Z — EZ is a bounded random variable.

Applying Hoeffding's inequality for bounded random variables: Taking N samples, we have

Pr(|Zo — tr(A)] = etr(A)) < 2exp [ — Ne®
0 ~€ SR\ TVarz )

le., if N = rlog NVj—gZ, then this succeeds with probability = 1 — N=", which is much better than
Chebyshev's inequality!
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Why are trace estimators useful?

If | have easy access to entries of A, it's easy to exactly compute tr(A).

These estimators are useful when the entries of A are not easily available, but instead when
x — Ax is available.
For example:
= When the entries of A are simply not available.
= When computing tr [(ZI - A)_l]
= When computing trf(A), often using truncated Taylor approximations of  (i.e., polynomials
in A.
However, in any of these situations x — Ax could be used to recover entries of A by choosing x

appropriately.

Therefore, a randomized trace estimator would only be useful if we can choose N much smaller
than the dimension of A.
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Gaussian sampling

We hope an exponential concentration argument, similar to the Rademacher case, works for
Gaussian isotropic vectors.

However, note that if x ~ N'(0,I,), then

Z = XTAX = ZA,',,'X,-2 + ZA"'J-X’?J'
i i#j

The important observation is that, at least part of this quantity, X,-2, is not a normal random
variable. Indeed:

Pr(x? = t) = Pr(|x;| = Vt) ~ e 7",

i.e., this random variable is not sub-Gaussian.
(It's exactly a Gamma/exponential random variable.)

To handle these types of random variables, we require some extra study of concentration.
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Back to MGF’s

When studying concentration in the simplest setting, we have the setup:

1 1 i
Zy="5,=> 3 X X;9x  EX=0
n n

i€[n]
And we want to know tail probabilities of Z,,.
Recall, for any s > 0:

Pr(Z, = t) = Pr(S, = nt) < e "' [M%(s)]

While we've introduced this for s > 0, taking s < 0 bounds Pr(Z, < t), so that considering all
s € R bounds both tails.

In particular, this implies:

Pr(Z, > t) < inf e "'M%(s)
seR
= exp <n <inf —st + log Mx(s)>>
s

= exp (—nSl;p [st — log Mx(s)]> :
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CGF’s and rate functions

With a little rearrangement, we've shown the following:
1
—logPr(Z, > t) < —I(t), I(t) = sup(st — log Mx(s)).
n s

In the language of large deviations, I(t) is the rate function, which characterizes tail probabilities.
Equivalently, define the function K,

Kx(s) := log Mx(s) = log Ee*X,
which is the cumulant generating function (CGF) of X.

Then I(t) is related to Kx(s) by:

In(t) = sup (st — Kx(s))
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The Legendre-Fenchel transform
logPr(Z,>t) < —I(t), I(t) = sup (st — Kx(s))
The operation connecting I to K itself has a name:
Let f : R — R. The function f* defined as,
f*(t) :==sup (st — f(s)),
is called the Legendre-Fenchel transform/dual or convex conjugate of f.

So with all this new language:

The rate function (corresponding to the tail probability we seek to compute) is the convex
conjugate of the CGF of X: I(t) = K(t).

Or:
The tail probability is the exponential of the negative convex conjugate of the CGF of X:
Pr(Z, > t) < exp(—nI(t))
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Legendre-Fenchel visualization
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Legendre-Fenchel transform

(t) = sup (st —f(s)), I(t) = Kx(t), Pr(Z, = t) < exp(—nI(t))

The body of knowledge on Legendre-Fenchel transforms is large. Here are some punch lines that
are somewhat relevant for us:

= Convex conjugates of convex functions are convex.

= CGF’s are convex functions = Rate functions are convex.

= The Legendre-Fenchel transform is an involution on convex functions: f** = f.

= We know the convex conjugate for the MGF of many named (“classical”) distributions.
= X ~N(0,0%) = Kx(s) = 30°5*> = Kj(t) = 555t%.

= So: If X is N'(0,02), then:

1
I(t) = —=logPr(Z, = t) = nKx(t) = —
n
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Exponential distributions
We can apply this general technique to a new, relevant situation: If X ~ N(0,1), then X2 has
tail probabilities behaving like fy2(x) ~ exp(—|x|).

So, suppose Y has density fy(y) = %exp(—\y|). Let’'s compute the tail probability for an iid sum:
1 ii
=- > " v, ¥y,
n.
As before, we have:
I(t) = Ky (1), Pr(Z, > t) < exp(—nI(t)).

We directly compute that My (s) = 52, |s| < 1.
Of particular note here: My (s) is defmed only on a subset of R. It does not exist for |s| > 1

We therefore have Ky (s) = — log(1 — s2), which is smooth (and convex), and using
Ki(t) = ts* — Ky (s*), s*(t) = (K') 7 (1),
we identify

Ky (t) = Iog< >+\/1+7t2+log< (W—l))
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Exponential tail probabilities
We can now identify tail probability behavior:

1 iid 1
Zo=2 2V Y <, fr(y) = 5 exp(=lyl)
i€[n]

Ky (t) = log <i> + \/1+7t2+ log (tlz (\/Hiﬂ* 1)) )

Through Taylor series (v/1 + x2 ~ 1 + x2/2 for small x), one can show:
1
t«l = Ky(t)~—-1+ 5t2

t>»1 = Ky(t) ~t.

nt?
<l = PH(Zyz 1)~ e (-
t»1 = Pr(Z,>=1t)~exp(—nt).
And one can show that these bounds can be stitched together to cover all t > 0.
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Sub-exponential distributions
In order to state the generalization of this result, we consider the appropriate class of
exponential-like distributions.

Definition 1 (Sub-exponential distributions). A random variable X has sub-exponential
distribution if there is a constant C > 0 such that:

Pr(|X| = t) < 2exp(—Ct).

As expected, there is an equivalent definition that is more useful for tail probabilties:

Theorem (Equivalent definitions of sub-exponential distributions). The definition above for a
sub-exponential distribution X is equivalent to: there exists a ¢ > 0 such that
1
2

Kx(s) < c?s?, sl <=

), we had Kx(s) < s2 for |s| < 1.)

(Recall for fx ~ exp(—|x
Sub-Gaussian distributions are sub-exponential distributions.

In particular: Sub-Gaussian distributions have Kx(s) ~ s2 for all s € R. Sub-exponential
distributions require this only in a neighborhood of the origin.
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Bernstein’s inequality

Sub-exponential distributions allows us to codify our previous observation that such random
variables have tail probabilities behaving like et when t is small, but e~ when t is large.

Theorem (Bernstein's inequality). Let Xj, i € [n] be independent and centered sub-exponential
random variables. Then there is a ¢ > 0 such that:

! t2 ot
Pr nigg]xi >t | <2exp(—cnhx(t)), hx(t) _min{KTK}’

where K is the maximum sub-exponential norm of the X;, defined as:

K = maxinf {t > 0| Eexp (|X|/t) < 2}.

i€[n]

Bernstein's inequality says that for sub-exponential random variables:
= Deviations close to the mean (“small deviations”) have a Gaussian, CLT-type probability

= Deviations far from the mean (“large deviations”) have an exponential-type probability.
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Another Bernstein inequality

There are a few versions of Bernstein's inequality. Here's one that applies to bounded random
variables:

Theorem (Bernstein's inequality, I1). Let X;, i € [n] be independent, centered, and bounded
random variables, with |X;| < K for all i € [n]. Then:

t2/2
Pr ZX,->t <2exp< > )
i€[n] Zie[n] IEXi + Kt/2

This form explicitly shows for bounded random variables the tail probabilities are ~ exp(—t) for
large t and ~ exp(—t?) for small t.

Without belaboring the point: now that we know that “Gaussian®” random variables have

exponential concentration, we could use this to get a exponential success probability on the
isotropic Gaussian randomized trace estimator.

RandNLA with scalar concentration Math 7870, Spring 2026 — UofU



Example 2: The Johnson-Lindenstrauss Lemma

A very nice, “straightforward” corollary of all this is a celebrated result in dimension reduction:

Lemma (Johnson-Lindenstrauss, Gaussian version). Let X € R"*™ be a deterministic matrix,
X = [x1, x2, -+ Xm] -

Let A € R¥*" have iid standard normal entries. Define:
1

Y= "AX =y, Yo - e Rk*m
Vk Y1 ¥2 Yml
Then:
(r + 2) logm  w/ probability 21— m="
e - (I—e)lxi = xjl2 <ly; —yjlo< (1 +e)|x;

for all i, j € [m].

l.e., with dimension complexity logarithmic in the number of samples, arbitrary point clouds can
be near-isometrically projected.
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Johnson-Lindenstrauss proof sketch, |

We have all the necessary ingredients to prove this directly:

First, let ze R", |z|2 = 1, be deterministic and arbitrary. We'll first show that y := ﬁAz has
norm similar to z.

We have that y is a centered, normally distributed random vector, with,

Cov ()');,j = Lyiy;
1

:E Z EA,',qAJ"ngZg
q.¢e[n]
1 5 1
= 8ij > 2= 29

Therefore, |y|3 = 2jelK] yj2 is a sum of k N(0,1/k)-squared iid random variables, each of which
is sub-exponential.
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Johnson-Lindenstrauss proof sketch, Il

Let W; = y?, so that E|y?|> = IE > ey Wi = 1, with W; iid subexponential, having
subexponential norm ~ 1/vk.

We are interested in small deviations from the mean. For small € > 0, we have our concentration
estimate:

Pr 2 W — 1| > € | < exp(—ke?)

i€[k]
l.e., the following occurs with probability at least 1 — ceke?.
1-e<|yl5<1+e),

with |z|3 = 1.
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Johnson-Lindenstrauss proof sketch, Il
We've shown that with probability 1 — ceke.

1 2
WAZ

1213

(1—¢) < < (1+e),

2
Now choose z = x; — x; for all i, j € [m] with i # j. Then:

2
vk

Ixi = xjl2

L X,'—XJ'
(1—e¢) < VEAX = X) <(1+e),

2

holds, by the union bound, for all i # j with probability at least 1 — cmPe ke,

Pick k = (r + 2)'°&™ to ensure this happens with probability at least,

€2

r

1—cm?exp(—(r+2)logm)=1—cm™".

NB: The whole thing rested on us being able to bound tail probabilities of sub-exponential
random variables.
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$\bs {A} \in \R ^{n \times n}$


$\bs {A}$


\begin {align*}\mathrm {tr}(\bs {A}) = \sum _{j \in [n]} A_{j,j} = \sum _{j \in [n]} \lambda _j(\bs {A}).\end {align*}


$\bs {x} \in \R ^n$


$\E \bs {x} = \bs {0}$


\begin {align*}\E \bs {x}^T \bs {A} \bs {x} = \sum _{i,j \in [n]} A_{i,j} \E (x_i x_j) = \sum _{i,j \in [n]} \left ( \mathrm {cov}(\bs {x}) \odot \bs {A}\right )_{i,j}.\end {align*}


$\bs {x}^T \bs {A} \bs {x}$


$\bs {A}$


$\bs {x}$


$\bs {x}$


$\E \bs {x} \bs {x}^T = \bs {I}$


$N$


$\bs {x}$


$\bs {A}$


$Z_0 = 0$


$j = 0$


$\bs {x}$


$Z_0 \gets Z_0 + \frac {1}{N} \bs {x}^T \bs {A} \bs {x}$


$j \gets j + 1$


$j < N$


$Z_0$


$\bs {A}$


$\bs {x} \mapsto \bs {A} \bs {x}$


$Z$


$\bs {x}^T \bs {A} \bs {x}$


$Z_j$


$j \geq 1$


$Z$


\begin {align*}Z_0 &= \frac {1}{N} \sum _{j \in [N]} Z_j, & \E Z_0 &= \E Z = \sum _{i,j} (\E \bs {x} \bs {x}^T \odot \bs {A})_{i,j} = \sum _{i,j} (\bs {I} \odot \bs {A})_{i,j} = \mathrm {tr}(\bs {A}), & \mathrm {Var} Z_0 = \frac {1}{N} \mathrm {Var} Z.\end {align*}


$\bs {x} \sim \mathcal {N}(\bs {0}, \bs {I}_n)$


$\mathrm {Var} Z = 2 \|\bs {A}\|_F^2$


$\bs {x}$


$x_j \sim \mathrm {Unif}(\{-1, 1\})$


$\mathrm {Var} Z = 4 \sum _{i < j} |A_{i,j}|^2$


$\bs {x}$


\begin {align*}\mathrm {Var} Z &= \E \left [ \left (\sum _{i,j} (x_i x_j) A_{i,j}\right )^2 \right ] - \E Z^2 \\ &= \E \left [ \sum _{i,j,k,\ell } x_i x_j x_k x_{\ell } A_{i,j} A_{k,\ell } \right ] - (\sum _j A_{j,j})^2 \\ &= \E \left [ \sum _{i} x_i^4 A_{i,i}^2 + \sum _{i \neq k} x_i^2 x_j^2 A_{i,i} A_{k,k} + \sum _{i \neq j} x_i^2 x_j^2 A_{i,j}^2 + \sum _{i \neq j} x_i^2 x_j^2 A_{i,j}^2 \right ] - \sum _{i} A_{i,i}^2 - \sum _{i \neq j} A_{i,i} A_{j,j} \\ &= 2 \sum _{i \neq j} A_{i,j}^2.\end {align*}


$\bs {A}$


\begin {align*}\mathrm {idim}(\bs {A}) = \frac {\mathrm {tr}(\bs {A})}{\|\bs {A}\|_2} = \frac {\sum _{j \in [n]} \lambda _j(\bs {A})}{\max _{j \in [n]} \lambda _j(\bs {A})} \in [1, n]\end {align*}


$\|\bs {A}\|_F^2 \leq \|\bs {A}\|_2 \mathrm {tr}(\bs {A})$


\begin {align*}\mathrm {Pr}\left (\left | Z_0 - \mathrm {tr}(\bs {A})\right | > \epsilon \mathrm {tr}(\bs {A}) \right ) \leq \frac {2}{N \epsilon ^2 \mathrm {idim}(\bs {A})}.\end {align*}


$\bs {A}$


\begin {align*}|Z - \E Z| \leq \sum _{i \neq j} |A_{i,j}| \hskip 10pt \textrm {wp1}.\end {align*}


$Z - \E Z$


$N$


\begin {align*}\mathrm {Pr}\left ( \left | Z_0 - \mathrm {tr}(\bs {A}) \right | \gtrsim \epsilon \mathrm {tr}(\bs {A}) \right ) \leq 2 \exp \left ( -\frac {N \epsilon ^2}{\mathrm {Var} Z}\right ),\end {align*}


$N \gtrsim r \log N \frac {\mathrm {Var} Z}{\epsilon ^2}$


$\gtrsim 1 - N^{-r}$


$\bs {A}$


$\mathrm {tr}(\bs {A})$


$\bs {A}$


$\bs {x} \mapsto \bs {A} \bs {x}$


$\bs {A}$


$\mathrm {tr}\left [\left (z \bs {I} - \bs {A}\right )^{-1} \right ]$


$\mathrm {tr} f(\bs {A})$


$f$


$\bs {A}$


$\bs {x} \mapsto \bs {A} \bs {x}$


$\bs {A}$


$\bs {x}$


$N$


$\bs {A}$


$\bs {x} \sim \mathcal {N}(\bs {0}, \bs {I}_n)$


\begin {align*}Z = \bs {x}^T \bs {A} \bs {x} = \sum _i A_{i,i} x_i^2 + \sum _{i\neq j} A_{i,j} x_{i,j}^2,\end {align*}


$x_i^2$


\begin {align*}\mathrm {Pr}(x_i^2 \geq t) = \mathrm {Pr}(|x_i| \geq \sqrt {t}) \sim e^{-t},\end {align*}


\begin {align*}Z_n = \frac {1}{n} S_n \coloneqq \frac {1}{n} \sum _{i \in [n]} X_i \hskip 15pt X_i \stackrel {\textrm {iid}}{\sim } X, \hskip 15pt \E X = 0\end {align*}


$Z_n$


$s > 0$


\begin {align*}\mathrm {Pr}(Z_n \geq t) = \mathrm {Pr}(S_n \geq n t) \leq e^{-n s t} \left [ M^n_X(s)\right ]\end {align*}


$s > 0$


$s < 0$


$\mathrm {Pr}(Z_n \leq t)$


$s \in \R $


\begin {align*}\mathrm {Pr}(Z_n \geq t) &\leq \inf _{s \in \R } e^{-n s t} M^n_X(s) \\ &= \exp \left ( n \left (\displaystyle \inf _{s } -s t + \log M_X(s) \right ) \right )\\ &= \exp \left ( -n \displaystyle \sup _{s} \left [ s t - \log M_X(s) \right ]\right ).\end {align*}


\begin {align*}\frac {1}{n} \log \mathrm {Pr}(Z_n \geq t) &\leq -I(t), & I(t) = \sup _{s} (s t - \log M_X (s)).\end {align*}


$I(t)$


$K_X$


\begin {align*}K_X(s) \coloneqq \log M_X(s) = \log \E e^{s X},\end {align*}


$X$


$I(t)$


$K_X(s)$


\begin {align*}I_n(t) = \sup _{s} \left (s t - K_X(s)\right )\end {align*}


\begin {align*}\log \mathrm {Pr}\left (Z_n \geq t\right ) &\leq -I(t), & I(t) = \sup _{s} \left (s t - K_X(s)\right )\end {align*}


$I$


$K$


$f: \R \rightarrow \R $


$f^\ast $


\begin {align*}f^\ast (t) &\coloneqq \sup _{s} \left (s t - f(s)\right ),\end {align*}


$f$


$X$


$I(t) = K_X^\ast (t)$


$X$


$\mathrm {Pr}(Z_n \geq t) \leq \exp (-n I(t))$


\begin {align*}f^\ast (t) &\coloneqq \sup _{s} \left (s t - f(s)\right ), & I(t) &= K_{X}^\ast (t), & \mathrm {Pr}(Z_n \geq t) \leq \exp (-n I(t))\end {align*}


$\Longrightarrow $


$f^{\ast \ast } = f$


$X \sim \mathcal {N}(0,\sigma ^2)$


$\Longrightarrow $


$K_X(s) = \frac {1}{2} \sigma ^2 s^2$


$\Longrightarrow $


$K_X^\ast (t) = \frac {1}{2 \sigma ^2} t^2$


$X$


$\mathcal {N}(0, \sigma ^2)$


\begin {align*}I(t) = -\frac {1}{n} \log \mathrm {Pr}(Z_n \geq t) \geq n K_X^\ast (t) = \frac {n t^2}{2\sigma ^2} \hskip 10pt \Longrightarrow \hskip 10pt \mathrm {Pr}(Z_n \geq t) \leq \exp \left (-\frac {n t^2}{2 \sigma ^2}\right ).\end {align*}


$X \sim \mathcal {N}(0,1)$


$X^2$


$f_{X^2}(x) \sim \exp (-|x|)$


$Y$


$f_Y(y) = \frac {1}{2} \exp (-|y|)$


\begin {align*}Z_n &= \frac {1}{n} \sum _{i \in [n]} Y_i, & Y_i &\stackrel {\mathrm {iid}}{\sim } Y.\end {align*}


\begin {align*}I(t) &\coloneqq K_Y^\ast (t), & \mathrm {Pr}(Z_n \geq t) &\leq \exp (-n I(t)).\end {align*}


$M_Y(s) = \frac {1}{1-s^2}$


$|s| < 1$


$M_Y(s)$


$\R $


$|s| \geq 1$


$K_Y(s) = -\log (1-s^2)$


\begin {align*}K^\ast _Y(t) &= t s^\ast - K_Y(s^\ast ), & s^\ast (t) &= \left (K'\right )^{-1}(t),\end {align*}


\begin {align*}K_Y^\ast (t) = \log \left (\frac {2}{e}\right ) + \sqrt {1 + t^2} + \log \left ( \frac {1}{t^2} \left ( \sqrt {1 + t^2} - 1 \right )\right ).\end {align*}


\begin {align*}Z_n &= \frac {1}{n} \sum _{i \in [n]} Y_i, & Y_i &\stackrel {\mathrm {iid}}{\sim } Y, & f_Y(y) &= \frac {1}{2} \exp (-|y|)\end {align*}


\begin {align*}K_Y^\ast (t) = \log \left (\frac {2}{e}\right ) + \sqrt {1 + t^2} + \log \left ( \frac {1}{t^2} \left ( \sqrt {1 + t^2} - 1 \right )\right ).\end {align*}


$\sqrt {1 + x^2} \sim 1 + x^2/2$


$x$


\begin {align*}t \ll 1 \hskip 10pt &\Longrightarrow \hskip 10pt K_Y^\ast (t) \sim -1 + \frac {1}{2} t^2 \\ t \gg 1 \hskip 10pt &\Longrightarrow \hskip 10pt K_Y^\ast (t) \sim t.\end {align*}


\begin {align*}t \ll 1 \hskip 10pt &\Longrightarrow \hskip 10pt \mathrm {Pr}(Z_n \geq t) \sim \exp \left (-\frac {n t^2}{2}\right ) \\ t \gg 1 \hskip 10pt &\Longrightarrow \hskip 10pt \mathrm {Pr}(Z_n \geq t) \sim \exp \left (-n t\right ).\end {align*}


$t > 0$


$X$


$C > 0$


\begin {align*}\mathrm {Pr}(|X| \geq t) \leq 2 \exp (-C t).\end {align*}


$X$


$c > 0$


\begin {align*}K_X(s) &\leq c^2 s^2, & |s| \leq \frac {1}{c}\end {align*}


$f_X \sim \exp (-|x|)$


$K_X(s) \leq s^2$


$|s| < 1$


$K_X(s) \sim s^2$


$s \in \R $


$e^{-t^2}$


$t$


$e^{-t}$


$t$


$X_i$


$i \in [n]$


$c > 0$


\begin {align*}\mathrm {Pr} \left (\left | \frac {1}{n} \sum _{i \in [n]} X_i \right | \geq t \right ) &\leq 2 \exp \left (-c n h_X(t) \right ), & h_X(t) &= \min \left \{ \frac {t^2}{K^2}, \frac {t}{K} \right \},\end {align*}


$K$


$X_i$


\begin {align*}K = \max _{i \in [n]} \inf \left \{ t > 0 \;\big |\; \E \exp \left (|X|/t\right ) \leq 2 \right \}.\end {align*}


$X_i$


$i \in [n]$


$|X_i| \leq K$


$i \in [n]$


\begin {align*}\mathrm {Pr} \left (\left | \sum _{i \in [n]} X_i \right | \geq t \right ) &\leq 2 \exp \left (-\frac {t^2/2}{\sum _{i \in [n]} \E X_i^2 + K t/2} \right ).\end {align*}


$\sim \exp (-t)$


$t$


$\sim \exp (-t^2)$


$t$


$^2$


$\bs {X} \in \R ^{n \times m}$


\begin {align*}\bs {X} &= \left [ \bs {x}_1, \,\bs {x}_2, \;\cdots \; \bs {x}_m \right ].\end {align*}


$\bs {A} \in \R ^{k \times n}$


\begin {align*}\bs {Y} = \frac {1}{\sqrt {k}} \bs {A} \bs {X} = \left [ \bs {y}_1, \; \bs {y}_2, \; \cdots \; \bs {y}_m \right ] \in \R ^{k \times m}\end {align*}


\begin {align*}k \gtrsim \frac {(r+2)\, \log m}{\epsilon ^2} \hskip 10pt \stackrel {\textrm {w/ probability $\gtrsim 1 - m^{-r}$}}{\Longrightarrow } \hskip 10pt (1 - \epsilon ) \| \bs {x}_i - \bs {x}_j \|_2 \leq \|\bs {y}_i - \bs {y}_j \|_2 \leq (1 + \epsilon ) \|\bs {x}_i - \bs {x}_j\|_2,\end {align*}


$i,j \in [m]$


$\bs {z} \in \R ^n$


$\|\bs {z}\|_2 = 1$


$\bs {y} \coloneqq \frac {1}{\sqrt {k}} \bs {A} \bs {z}$


$\bs {z}$


$\bs {y}$


\begin {align*}\mathrm {Cov}\left ( \bs {y}\right )_{i,j} &= \E y_i y_j \\ &=\frac {1}{k} \sum _{q,\ell \in [n]} \E A_{i,q} A_{j,\ell } z_q z_\ell \\ &= \frac {1}{k} \delta _{i,j} \sum _{q \in [n]} z_q^2 = \frac {1}{k} \delta _{i,j}.\end {align*}


$\|\bs {y}\|_2^2 = \sum _{j \in [k]} y^2_j$


$k$


$\mathcal {N}(0,1/k)$


$W_i = y_i^2$


$\E \|\bs {y}_i^2\|_2 = \E \sum _{i \in [k]} W_i = 1$


$W_i$


$\sim 1/\sqrt {k}$


$\epsilon > 0$


\begin {align*}\mathrm {Pr}\left ( \left | \sum _{i \in [k]} W_i - 1 \right | \geq \epsilon \right ) \lesssim \exp (-k \epsilon ^2)\end {align*}


$1 - c e^{-k \epsilon ^2}$


\begin {align*}(1 - \epsilon ) \leq \| \bs {y}\|_2^2 \leq (1 + \epsilon ),\end {align*}


$\|\bs {z}\|_2^2 = 1$


$1 - c e^{-k \epsilon ^2}$


\begin {align*}(1 - \epsilon ) \leq \left \|\frac {\frac {1}{\sqrt {k}} \bs {A} \bs {z}}{\|\bs {z}\|_2^2} \right \|_2^2 \leq (1 + \epsilon ),\end {align*}


$\bs {z} = \bs {x}_i - \bs {x}_j$


$i,j \in [m]$


$i \neq j$


\begin {align*}(1 - \epsilon ) \leq \left \|\frac {\frac {1}{\sqrt {k}} \bs {A} (\bs {x}_i - \bs {x}_j)}{\|\bs {x}_i - \bs {x}_j\|_2^2} \right \|_2^2 \leq (1 + \epsilon ),\end {align*}


$i \neq j$


$1 - c m^2 e^{-k \epsilon ^2}$


$k \gtrsim (r+2) \frac {\log m}{\epsilon ^2}$


\begin {align*}1 - c m^2 \exp \left (-(r+2) \log m\right ) = 1 - c m^{-r}.\end {align*}



