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Example 1: Randomized trace estimators

Let A P Rnˆn be symmetric. Our goal is to estimate the trace of A,

trpAq “
ÿ

jPrns

Aj;j “
ÿ

jPrns

–jpAq:

The idea for accomplishing this fairly transparent: the trace is a sum of a symmetric set of entries
of a matrix.

So consider a centered random vector x P Rn, i.e., Ex “ 0. Then,

ExTAx “
ÿ

i ;jPrns

Ai ;jEpxixjq “
ÿ

i ;jPrns

pcovpxq d Aqi ;j :

Therefore, the mean of xTAx is the sum of A-elementwise-weighted covariance of x .

To recover the trace, we need a special type of random vector.

A random vector x is isotropic if ExxT “ I.
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The (Hutchinson) randomized trace estimator
Here’s the (“Hutchinson”) randomized trace estimation procedure:

Input: N, an isotropic distribution for x , and A

0. Initialize Z0 “ 0, j “ 0.
1. Generate an isotropic random vector x .
2. Compute Z0 Ð Z0 ` 1

N x
TAx .

3. Set j Ð j ` 1.
4. If j ă N, return to step 1. Otherwise, return Z0.

NB: We need not have A, but instead just access to operator queries x ÞÑ Ax .

Let Z be the random variable xTAx . If Zj , j ě 1 are iid copies of Z, the Hutchinson trace
estimator produces,

Z0 “
1

N

ÿ

jPrNs

Zj ; EZ0 “ EZ “
ÿ

i ;j

pExxT d Aqi ;j “
ÿ

i ;j

pI d Aqi ;j “ trpAq; VarZ0 “
1

N
VarZ:
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Isotropic distribution examples
There are two common choices for isotropic distributions:

• x „ N p0; Inq. Then VarZ “ 2}A}2F .

• x has iid Rademacher entries: xj „ Unifpt´1; 1uq. Then VarZ “ 4
ř

iăj |Ai ;j |
2.

To see the Rademacher result: Suppose x has iid Rademacher entries. Then:

VarZ “ E

»

–

˜

ÿ

i ;j

pxixjqAi ;j

¸2
fi

fl ´ EZ2

“ E

»

–

ÿ

i ;j;k;‘

xixjxkx‘Ai ;jAk;‘

fi

fl ´ p
ÿ

j

Aj;jq
2

“ E

«

ÿ

i

x4i A
2
i ;i `

ÿ

i‰k

x2i x
2
j Ai ;iAk;k `

ÿ

i‰j

x2i x
2
j A

2
i ;j `

ÿ

i‰j

x2i x
2
j A

2
i ;j

ff

´
ÿ

i

A2
i ;i ´

ÿ

i‰j

Ai ;iAj;j

“ 2
ÿ

i‰j

A2
i ;j :
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Using moments

These actually provide significant intuition about when trace estimators succeed. Consider the
intrinsic dimension of an spd matrix A:

idimpAq “
trpAq

}A}2
“

ř

jPrns –jpAq

maxjPrns –jpAq
P r1; ns

The intrinsic dimension is one way to define a “continuous” version of rank/dimension of a matrix.

Chaining together the previous results and using }A}2F ď }A}2trpAq, we conclude for either
distribution above and Chebyshev’s inequality:

Pr p|Z0 ´ trpAq| ą ›trpAqq ď
2

N›2idimpAq
:

I.e., this method works well for matrices with large intinsic dimension.
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Concentration

Of course, we know we can do better than Chebyshev’s inequality!

Given A:

|Z ´ EZ| ď
ÿ

i‰j

|Ai ;j | wp1:

So Z ´ EZ is a bounded random variable.

Applying Hoeffding’s inequality for bounded random variables: Taking N samples, we have

Pr p|Z0 ´ trpAq| Á ›trpAqq ď 2 exp
ˆ

´
N›2

VarZ

˙

;

I.e., if N Á r logN VarZ
›2

, then this succeeds with probability Á 1 ´N´r , which is much better than
Chebyshev’s inequality!
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Why are trace estimators useful?

If I have easy access to entries of A, it’s easy to exactly compute trpAq.

These estimators are useful when the entries of A are not easily available, but instead when
x ÞÑ Ax is available.

For example:
• When the entries of A are simply not available.
• When computing tr

”

pzI ´ Aq
´1
ı

• When computing trf pAq, often using truncated Taylor approximations of f (i.e., polynomials
in A.

However, in any of these situations x ÞÑ Ax could be used to recover entries of A by choosing x
appropriately.

Therefore, a randomized trace estimator would only be useful if we can choose N much smaller
than the dimension of A.

RandNLA with scalar concentration Math 7870, Spring 2026 – UofU 7



Gaussian sampling

We hope an exponential concentration argument, similar to the Rademacher case, works for
Gaussian isotropic vectors.

However, note that if x „ N p0; Inq, then

Z “ xTAx “
ÿ

i

Ai ;ix
2
i `

ÿ

i‰j

Ai ;jx
2
i ;j ;

The important observation is that, at least part of this quantity, x2i , is not a normal random
variable. Indeed:

Prpx2i ě tq “ Prp|xi | ě
?
tq „ e´t ;

i.e., this random variable is not sub-Gaussian.
(It’s exactly a Gamma/exponential random variable.)

To handle these types of random variables, we require some extra study of concentration.
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Back to MGF’s
When studying concentration in the simplest setting, we have the setup:

Zn “
1

n
Sn :“

1

n

ÿ

iPrns

Xi Xi
iid
„ X; EX “ 0

And we want to know tail probabilities of Zn.
Recall, for any s ą 0:

PrpZn ě tq “ PrpSn ě ntq ď e´nst rMn
Xpsqs

While we’ve introduced this for s ą 0, taking s ă 0 bounds PrpZn ď tq, so that considering all
s P R bounds both tails.

In particular, this implies:
PrpZn ě tq ď inf

sPR
e´nstMn

Xpsq

“ exp
´

n
´

inf
s

´st ` logMXpsq
¯¯

“ exp
ˆ

´n sup
s

rst ´ logMXpsqs

˙

:
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CGF’s and rate functions

With a little rearrangement, we’ve shown the following:

1

n
log PrpZn ě tq ď ´Iptq; Iptq “ sup

s
pst ´ logMXpsqq:

In the language of large deviations, Iptq is the rate function, which characterizes tail probabilities.

Equivalently, define the function KX ,

KXpsq :“ logMXpsq “ logEesX ;

which is the cumulant generating function (CGF) of X.

Then Iptq is related to KXpsq by:

Inptq “ sup
s

pst ´KXpsqq
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The Legendre-Fenchel transform

log Pr pZn ě tq ď ´Iptq; Iptq “ sup
s

pst ´KXpsqq

The operation connecting I to K itself has a name:

Let f : R Ñ R. The function f ˚ defined as,

f ˚ptq :“ sup
s

pst ´ f psqq ;

is called the Legendre-Fenchel transform/dual or convex conjugate of f .

So with all this new language:
The rate function (corresponding to the tail probability we seek to compute) is the convex

conjugate of the CGF of X: Iptq “ K˚
Xptq.

Or:
The tail probability is the exponential of the negative convex conjugate of the CGF of X:

PrpZn ě tq ď expp´nIptqq
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Legendre-Fenchel visualization
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Legendre-Fenchel Transform:

f∗(t) = sups[st− f(s)]

For f(s) = s2:

f∗(t) = t2

4

The tangent at slope t
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Plotting st− f(s) for different values t. f∗(t) = sups[st− f(s)]

t = 0.5: sup = 0.0625
t = 1: sup = 0.25
t = 2: sup = 1

t = 3: sup = 2.25
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Legendre-Fenchel transform

f ˚ptq :“ sup
s

pst ´ f psqq ; Iptq “ K˚
Xptq; PrpZn ě tq ď expp´nIptqq

The body of knowledge on Legendre-Fenchel transforms is large. Here are some punch lines that
are somewhat relevant for us:

• Convex conjugates of convex functions are convex.
• CGF’s are convex functions ùñ Rate functions are convex.
• The Legendre-Fenchel transform is an involution on convex functions: f ˚˚ “ f .
• We know the convex conjugate for the MGF of many named (“classical”) distributions.
• X „ N p0; ff2q ùñ KXpsq “ 1

2ff
2s2 ùñ K˚

Xptq “ 1
2ff2
t2.

• So: If X is N p0; ff2q, then:

Iptq “ ´
1

n
log PrpZn ě tq ě nK˚

Xptq “
nt2

2ff2
ùñ PrpZn ě tq ď exp

ˆ

´
nt2

2ff2

˙

:
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Exponential distributions
We can apply this general technique to a new, relevant situation: If X „ N p0; 1q, then X2 has
tail probabilities behaving like fX2pxq „ expp´|x |q.

So, suppose Y has density fY pyq “ 1
2 expp´|y |q. Let’s compute the tail probability for an iid sum:

Zn “
1

n

ÿ

iPrns

Yi ; Yi
iid
„ Y:

As before, we have:
Iptq :“ K˚

Y ptq; PrpZn ě tq ď expp´nIptqq:

We directly compute that MY psq “ 1
1´s2

, |s| ă 1.
Of particular note here: MY psq is defined only on a subset of R. It does not exist for |s| ě 1.

We therefore have KY psq “ ´ logp1 ´ s2q, which is smooth (and convex), and using
K˚
Y ptq “ ts˚ ´KY ps˚q; s˚ptq “

`

K1
˘´1

ptq;

we identify

K˚
Y ptq “ log

ˆ

2

e

˙

`
a

1 ` t2 ` log
ˆ

1

t2

´

a

1 ` t2 ´ 1
¯

˙

:
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Exponential tail probabilities
We can now identify tail probability behavior:

Zn “
1

n

ÿ

iPrns

Yi ; Yi
iid
„ Y; fY pyq “

1

2
expp´|y |q

K˚
Y ptq “ log

ˆ

2

e

˙

`
a

1 ` t2 ` log
ˆ

1

t2

´

a

1 ` t2 ´ 1
¯

˙

:

Through Taylor series (
?
1 ` x2 „ 1 ` x2{2 for small x), one can show:

t ! 1 ùñ K˚
Y ptq „ ´1 `

1

2
t2

t " 1 ùñ K˚
Y ptq „ t:

I.e.:

t ! 1 ùñ PrpZn ě tq „ exp
ˆ

´
nt2

2

˙

t " 1 ùñ PrpZn ě tq „ exp p´ntq :

And one can show that these bounds can be stitched together to cover all t ą 0.
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Sub-exponential distributions
In order to state the generalization of this result, we consider the appropriate class of
exponential-like distributions.
Definition 1 (Sub-exponential distributions). A random variable X has sub-exponential
distribution if there is a constant C ą 0 such that:

Prp|X| ě tq ď 2 expp´Ctq:

As expected, there is an equivalent definition that is more useful for tail probabilties:
Theorem (Equivalent definitions of sub-exponential distributions). The definition above for a
sub-exponential distribution X is equivalent to: there exists a c ą 0 such that

KXpsq ď c2s2; |s| ď
1

c

(Recall for fX „ expp´|x |q, we had KXpsq ď s2 for |s| ă 1.)

Sub-Gaussian distributions are sub-exponential distributions.

In particular: Sub-Gaussian distributions have KXpsq „ s2 for all s P R. Sub-exponential
distributions require this only in a neighborhood of the origin.
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Bernstein’s inequality
Sub-exponential distributions allows us to codify our previous observation that such random
variables have tail probabilities behaving like e´t2 when t is small, but e´t when t is large.

Theorem (Bernstein’s inequality). Let Xi , i P rns be independent and centered sub-exponential
random variables. Then there is a c ą 0 such that:

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

iPrns

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

˛

‚ď 2 exp p´cnhXptqq ; hXptq “ min

"

t2

K2
;
t

K

*

;

where K is the maximum sub-exponential norm of the Xi , defined as:

K “ max
iPrns

inf
␣

t ą 0
ˇ

ˇ E exp p|X|{tq ď 2
(

:

Bernstein’s inequality says that for sub-exponential random variables:
• Deviations close to the mean (“small deviations”) have a Gaussian, CLT-type probability
• Deviations far from the mean (“large deviations”) have an exponential-type probability.
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Another Bernstein inequality

There are a few versions of Bernstein’s inequality. Here’s one that applies to bounded random
variables:

Theorem (Bernstein’s inequality, II). Let Xi , i P rns be independent, centered, and bounded
random variables, with |Xi | ď K for all i P rns. Then:

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPrns

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

˛

‚ď 2 exp

˜

´
t2{2

ř

iPrnsEX
2
i `Kt{2

¸

:

This form explicitly shows for bounded random variables the tail probabilities are „ expp´tq for
large t and „ expp´t2q for small t.

Without belaboring the point: now that we know that “Gaussian2” random variables have
exponential concentration, we could use this to get a exponential success probability on the
isotropic Gaussian randomized trace estimator.
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Example 2: The Johnson-Lindenstrauss Lemma
A very nice, “straightforward” corollary of all this is a celebrated result in dimension reduction:

Lemma (Johnson-Lindenstrauss, Gaussian version). Let X P Rnˆm be a deterministic matrix,

X “ rx1; x2; ¨ ¨ ¨ xms :

Let A P Rkˆn have iid standard normal entries. Define:

Y “
1

?
k
AX “ ry1; y2; ¨ ¨ ¨ yms P Rkˆm

Then:

k Á
pr ` 2q logm

›2
w/ probability Á 1 ´m´r

ùñ p1 ´ ›q}x i ´ x j}2 ď }y i ´ y j}2 ď p1 ` ›q}x i ´ x j}2;

for all i ; j P rms.

I.e., with dimension complexity logarithmic in the number of samples, arbitrary point clouds can
be near-isometrically projected.
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Johnson-Lindenstrauss proof sketch, I

We have all the necessary ingredients to prove this directly:

First, let z P Rn, }z}2 “ 1, be deterministic and arbitrary. We’ll first show that y :“ 1?
k
Az has

norm similar to z .

We have that y is a centered, normally distributed random vector, with,

Cov pyqi ;j “ Eyiyj

“
1

k

ÿ

q;‘Prns

EAi ;qAj;‘zqz‘

“
1

k
‹i ;j

ÿ

qPrns

z2q “
1

k
‹i ;j :

Therefore, }y}22 “
ř

jPrks y
2
j is a sum of k N p0; 1{kq-squared iid random variables, each of which

is sub-exponential.
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Johnson-Lindenstrauss proof sketch, II

Let Wi “ y2i , so that E}y2
i }2 “ E

ř

iPrksWi “ 1, with Wi iid subexponential, having
subexponential norm „ 1{

?
k .

We are interested in small deviations from the mean. For small › ą 0, we have our concentration
estimate:

Pr

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPrks

Wi ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě ›

˛

‚À expp´k›2q

I.e., the following occurs with probability at least 1 ´ ce´k›2 :

p1 ´ ›q ď }y}22 ď p1 ` ›q;

with }z}22 “ 1.
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Johnson-Lindenstrauss proof sketch, III
We’ve shown that with probability 1 ´ ce´k›2 :

p1 ´ ›q ď

›

›

›

›

›

1?
k
Az

}z}22

›

›

›

›

›

2

2

ď p1 ` ›q;

Now choose z “ x i ´ x j for all i ; j P rms with i ‰ j . Then:

p1 ´ ›q ď

›

›

›

›

›

1?
k
Apx i ´ x jq

}x i ´ x j}
2
2

›

›

›

›

›

2

2

ď p1 ` ›q;

holds, by the union bound, for all i ‰ j with probability at least 1 ´ cm2e´k›2 .

Pick k Á pr ` 2q
logm
›2

to ensure this happens with probability at least,

1 ´ cm2 exp p´pr ` 2q logmq “ 1 ´ cm´r :

NB: The whole thing rested on us being able to bound tail probabilities of sub-exponential
random variables.
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$\bs {A} \in \R ^{n \times n}$


$\bs {A}$


\begin {align*}\mathrm {tr}(\bs {A}) = \sum _{j \in [n]} A_{j,j} = \sum _{j \in [n]} \lambda _j(\bs {A}).\end {align*}


$\bs {x} \in \R ^n$


$\E \bs {x} = \bs {0}$


\begin {align*}\E \bs {x}^T \bs {A} \bs {x} = \sum _{i,j \in [n]} A_{i,j} \E (x_i x_j) = \sum _{i,j \in [n]} \left ( \mathrm {cov}(\bs {x}) \odot \bs {A}\right )_{i,j}.\end {align*}


$\bs {x}^T \bs {A} \bs {x}$


$\bs {A}$


$\bs {x}$


$\bs {x}$


$\E \bs {x} \bs {x}^T = \bs {I}$


$N$


$\bs {x}$


$\bs {A}$


$Z_0 = 0$


$j = 0$


$\bs {x}$


$Z_0 \gets Z_0 + \frac {1}{N} \bs {x}^T \bs {A} \bs {x}$


$j \gets j + 1$


$j < N$


$Z_0$


$\bs {A}$


$\bs {x} \mapsto \bs {A} \bs {x}$


$Z$


$\bs {x}^T \bs {A} \bs {x}$


$Z_j$


$j \geq 1$


$Z$


\begin {align*}Z_0 &= \frac {1}{N} \sum _{j \in [N]} Z_j, & \E Z_0 &= \E Z = \sum _{i,j} (\E \bs {x} \bs {x}^T \odot \bs {A})_{i,j} = \sum _{i,j} (\bs {I} \odot \bs {A})_{i,j} = \mathrm {tr}(\bs {A}), & \mathrm {Var} Z_0 = \frac {1}{N} \mathrm {Var} Z.\end {align*}


$\bs {x} \sim \mathcal {N}(\bs {0}, \bs {I}_n)$


$\mathrm {Var} Z = 2 \|\bs {A}\|_F^2$


$\bs {x}$


$x_j \sim \mathrm {Unif}(\{-1, 1\})$


$\mathrm {Var} Z = 4 \sum _{i < j} |A_{i,j}|^2$


$\bs {x}$


\begin {align*}\mathrm {Var} Z &= \E \left [ \left (\sum _{i,j} (x_i x_j) A_{i,j}\right )^2 \right ] - \E Z^2 \\ &= \E \left [ \sum _{i,j,k,\ell } x_i x_j x_k x_{\ell } A_{i,j} A_{k,\ell } \right ] - (\sum _j A_{j,j})^2 \\ &= \E \left [ \sum _{i} x_i^4 A_{i,i}^2 + \sum _{i \neq k} x_i^2 x_j^2 A_{i,i} A_{k,k} + \sum _{i \neq j} x_i^2 x_j^2 A_{i,j}^2 + \sum _{i \neq j} x_i^2 x_j^2 A_{i,j}^2 \right ] - \sum _{i} A_{i,i}^2 - \sum _{i \neq j} A_{i,i} A_{j,j} \\ &= 2 \sum _{i \neq j} A_{i,j}^2.\end {align*}


$\bs {A}$


\begin {align*}\mathrm {idim}(\bs {A}) = \frac {\mathrm {tr}(\bs {A})}{\|\bs {A}\|_2} = \frac {\sum _{j \in [n]} \lambda _j(\bs {A})}{\max _{j \in [n]} \lambda _j(\bs {A})} \in [1, n]\end {align*}


$\|\bs {A}\|_F^2 \leq \|\bs {A}\|_2 \mathrm {tr}(\bs {A})$


\begin {align*}\mathrm {Pr}\left (\left | Z_0 - \mathrm {tr}(\bs {A})\right | > \epsilon \mathrm {tr}(\bs {A}) \right ) \leq \frac {2}{N \epsilon ^2 \mathrm {idim}(\bs {A})}.\end {align*}


$\bs {A}$


\begin {align*}|Z - \E Z| \leq \sum _{i \neq j} |A_{i,j}| \hskip 10pt \textrm {wp1}.\end {align*}


$Z - \E Z$


$N$


\begin {align*}\mathrm {Pr}\left ( \left | Z_0 - \mathrm {tr}(\bs {A}) \right | \gtrsim \epsilon \mathrm {tr}(\bs {A}) \right ) \leq 2 \exp \left ( -\frac {N \epsilon ^2}{\mathrm {Var} Z}\right ),\end {align*}


$N \gtrsim r \log N \frac {\mathrm {Var} Z}{\epsilon ^2}$


$\gtrsim 1 - N^{-r}$


$\bs {A}$


$\mathrm {tr}(\bs {A})$


$\bs {A}$


$\bs {x} \mapsto \bs {A} \bs {x}$


$\bs {A}$


$\mathrm {tr}\left [\left (z \bs {I} - \bs {A}\right )^{-1} \right ]$


$\mathrm {tr} f(\bs {A})$


$f$


$\bs {A}$


$\bs {x} \mapsto \bs {A} \bs {x}$


$\bs {A}$


$\bs {x}$


$N$


$\bs {A}$


$\bs {x} \sim \mathcal {N}(\bs {0}, \bs {I}_n)$


\begin {align*}Z = \bs {x}^T \bs {A} \bs {x} = \sum _i A_{i,i} x_i^2 + \sum _{i\neq j} A_{i,j} x_{i,j}^2,\end {align*}


$x_i^2$


\begin {align*}\mathrm {Pr}(x_i^2 \geq t) = \mathrm {Pr}(|x_i| \geq \sqrt {t}) \sim e^{-t},\end {align*}


\begin {align*}Z_n = \frac {1}{n} S_n \coloneqq \frac {1}{n} \sum _{i \in [n]} X_i \hskip 15pt X_i \stackrel {\textrm {iid}}{\sim } X, \hskip 15pt \E X = 0\end {align*}


$Z_n$


$s > 0$


\begin {align*}\mathrm {Pr}(Z_n \geq t) = \mathrm {Pr}(S_n \geq n t) \leq e^{-n s t} \left [ M^n_X(s)\right ]\end {align*}


$s > 0$


$s < 0$


$\mathrm {Pr}(Z_n \leq t)$


$s \in \R $


\begin {align*}\mathrm {Pr}(Z_n \geq t) &\leq \inf _{s \in \R } e^{-n s t} M^n_X(s) \\ &= \exp \left ( n \left (\displaystyle \inf _{s } -s t + \log M_X(s) \right ) \right )\\ &= \exp \left ( -n \displaystyle \sup _{s} \left [ s t - \log M_X(s) \right ]\right ).\end {align*}


\begin {align*}\frac {1}{n} \log \mathrm {Pr}(Z_n \geq t) &\leq -I(t), & I(t) = \sup _{s} (s t - \log M_X (s)).\end {align*}


$I(t)$


$K_X$


\begin {align*}K_X(s) \coloneqq \log M_X(s) = \log \E e^{s X},\end {align*}


$X$


$I(t)$


$K_X(s)$


\begin {align*}I_n(t) = \sup _{s} \left (s t - K_X(s)\right )\end {align*}


\begin {align*}\log \mathrm {Pr}\left (Z_n \geq t\right ) &\leq -I(t), & I(t) = \sup _{s} \left (s t - K_X(s)\right )\end {align*}


$I$


$K$


$f: \R \rightarrow \R $


$f^\ast $


\begin {align*}f^\ast (t) &\coloneqq \sup _{s} \left (s t - f(s)\right ),\end {align*}


$f$


$X$


$I(t) = K_X^\ast (t)$


$X$


$\mathrm {Pr}(Z_n \geq t) \leq \exp (-n I(t))$


\begin {align*}f^\ast (t) &\coloneqq \sup _{s} \left (s t - f(s)\right ), & I(t) &= K_{X}^\ast (t), & \mathrm {Pr}(Z_n \geq t) \leq \exp (-n I(t))\end {align*}


$\Longrightarrow $


$f^{\ast \ast } = f$


$X \sim \mathcal {N}(0,\sigma ^2)$


$\Longrightarrow $


$K_X(s) = \frac {1}{2} \sigma ^2 s^2$


$\Longrightarrow $


$K_X^\ast (t) = \frac {1}{2 \sigma ^2} t^2$


$X$


$\mathcal {N}(0, \sigma ^2)$


\begin {align*}I(t) = -\frac {1}{n} \log \mathrm {Pr}(Z_n \geq t) \geq n K_X^\ast (t) = \frac {n t^2}{2\sigma ^2} \hskip 10pt \Longrightarrow \hskip 10pt \mathrm {Pr}(Z_n \geq t) \leq \exp \left (-\frac {n t^2}{2 \sigma ^2}\right ).\end {align*}


$X \sim \mathcal {N}(0,1)$


$X^2$


$f_{X^2}(x) \sim \exp (-|x|)$


$Y$


$f_Y(y) = \frac {1}{2} \exp (-|y|)$


\begin {align*}Z_n &= \frac {1}{n} \sum _{i \in [n]} Y_i, & Y_i &\stackrel {\mathrm {iid}}{\sim } Y.\end {align*}


\begin {align*}I(t) &\coloneqq K_Y^\ast (t), & \mathrm {Pr}(Z_n \geq t) &\leq \exp (-n I(t)).\end {align*}


$M_Y(s) = \frac {1}{1-s^2}$


$|s| < 1$


$M_Y(s)$


$\R $


$|s| \geq 1$


$K_Y(s) = -\log (1-s^2)$


\begin {align*}K^\ast _Y(t) &= t s^\ast - K_Y(s^\ast ), & s^\ast (t) &= \left (K'\right )^{-1}(t),\end {align*}


\begin {align*}K_Y^\ast (t) = \log \left (\frac {2}{e}\right ) + \sqrt {1 + t^2} + \log \left ( \frac {1}{t^2} \left ( \sqrt {1 + t^2} - 1 \right )\right ).\end {align*}


\begin {align*}Z_n &= \frac {1}{n} \sum _{i \in [n]} Y_i, & Y_i &\stackrel {\mathrm {iid}}{\sim } Y, & f_Y(y) &= \frac {1}{2} \exp (-|y|)\end {align*}


\begin {align*}K_Y^\ast (t) = \log \left (\frac {2}{e}\right ) + \sqrt {1 + t^2} + \log \left ( \frac {1}{t^2} \left ( \sqrt {1 + t^2} - 1 \right )\right ).\end {align*}


$\sqrt {1 + x^2} \sim 1 + x^2/2$


$x$


\begin {align*}t \ll 1 \hskip 10pt &\Longrightarrow \hskip 10pt K_Y^\ast (t) \sim -1 + \frac {1}{2} t^2 \\ t \gg 1 \hskip 10pt &\Longrightarrow \hskip 10pt K_Y^\ast (t) \sim t.\end {align*}


\begin {align*}t \ll 1 \hskip 10pt &\Longrightarrow \hskip 10pt \mathrm {Pr}(Z_n \geq t) \sim \exp \left (-\frac {n t^2}{2}\right ) \\ t \gg 1 \hskip 10pt &\Longrightarrow \hskip 10pt \mathrm {Pr}(Z_n \geq t) \sim \exp \left (-n t\right ).\end {align*}


$t > 0$


$X$


$C > 0$


\begin {align*}\mathrm {Pr}(|X| \geq t) \leq 2 \exp (-C t).\end {align*}


$X$


$c > 0$


\begin {align*}K_X(s) &\leq c^2 s^2, & |s| \leq \frac {1}{c}\end {align*}


$f_X \sim \exp (-|x|)$


$K_X(s) \leq s^2$


$|s| < 1$


$K_X(s) \sim s^2$


$s \in \R $


$e^{-t^2}$


$t$


$e^{-t}$


$t$


$X_i$


$i \in [n]$


$c > 0$


\begin {align*}\mathrm {Pr} \left (\left | \frac {1}{n} \sum _{i \in [n]} X_i \right | \geq t \right ) &\leq 2 \exp \left (-c n h_X(t) \right ), & h_X(t) &= \min \left \{ \frac {t^2}{K^2}, \frac {t}{K} \right \},\end {align*}


$K$


$X_i$


\begin {align*}K = \max _{i \in [n]} \inf \left \{ t > 0 \;\big |\; \E \exp \left (|X|/t\right ) \leq 2 \right \}.\end {align*}


$X_i$


$i \in [n]$


$|X_i| \leq K$


$i \in [n]$


\begin {align*}\mathrm {Pr} \left (\left | \sum _{i \in [n]} X_i \right | \geq t \right ) &\leq 2 \exp \left (-\frac {t^2/2}{\sum _{i \in [n]} \E X_i^2 + K t/2} \right ).\end {align*}


$\sim \exp (-t)$


$t$


$\sim \exp (-t^2)$


$t$


$^2$


$\bs {X} \in \R ^{n \times m}$


\begin {align*}\bs {X} &= \left [ \bs {x}_1, \,\bs {x}_2, \;\cdots \; \bs {x}_m \right ].\end {align*}


$\bs {A} \in \R ^{k \times n}$


\begin {align*}\bs {Y} = \frac {1}{\sqrt {k}} \bs {A} \bs {X} = \left [ \bs {y}_1, \; \bs {y}_2, \; \cdots \; \bs {y}_m \right ] \in \R ^{k \times m}\end {align*}


\begin {align*}k \gtrsim \frac {(r+2)\, \log m}{\epsilon ^2} \hskip 10pt \stackrel {\textrm {w/ probability $\gtrsim 1 - m^{-r}$}}{\Longrightarrow } \hskip 10pt (1 - \epsilon ) \| \bs {x}_i - \bs {x}_j \|_2 \leq \|\bs {y}_i - \bs {y}_j \|_2 \leq (1 + \epsilon ) \|\bs {x}_i - \bs {x}_j\|_2,\end {align*}


$i,j \in [m]$


$\bs {z} \in \R ^n$


$\|\bs {z}\|_2 = 1$


$\bs {y} \coloneqq \frac {1}{\sqrt {k}} \bs {A} \bs {z}$


$\bs {z}$


$\bs {y}$


\begin {align*}\mathrm {Cov}\left ( \bs {y}\right )_{i,j} &= \E y_i y_j \\ &=\frac {1}{k} \sum _{q,\ell \in [n]} \E A_{i,q} A_{j,\ell } z_q z_\ell \\ &= \frac {1}{k} \delta _{i,j} \sum _{q \in [n]} z_q^2 = \frac {1}{k} \delta _{i,j}.\end {align*}


$\|\bs {y}\|_2^2 = \sum _{j \in [k]} y^2_j$


$k$


$\mathcal {N}(0,1/k)$


$W_i = y_i^2$


$\E \|\bs {y}_i^2\|_2 = \E \sum _{i \in [k]} W_i = 1$


$W_i$


$\sim 1/\sqrt {k}$


$\epsilon > 0$


\begin {align*}\mathrm {Pr}\left ( \left | \sum _{i \in [k]} W_i - 1 \right | \geq \epsilon \right ) \lesssim \exp (-k \epsilon ^2)\end {align*}


$1 - c e^{-k \epsilon ^2}$


\begin {align*}(1 - \epsilon ) \leq \| \bs {y}\|_2^2 \leq (1 + \epsilon ),\end {align*}


$\|\bs {z}\|_2^2 = 1$


$1 - c e^{-k \epsilon ^2}$


\begin {align*}(1 - \epsilon ) \leq \left \|\frac {\frac {1}{\sqrt {k}} \bs {A} \bs {z}}{\|\bs {z}\|_2^2} \right \|_2^2 \leq (1 + \epsilon ),\end {align*}


$\bs {z} = \bs {x}_i - \bs {x}_j$


$i,j \in [m]$


$i \neq j$


\begin {align*}(1 - \epsilon ) \leq \left \|\frac {\frac {1}{\sqrt {k}} \bs {A} (\bs {x}_i - \bs {x}_j)}{\|\bs {x}_i - \bs {x}_j\|_2^2} \right \|_2^2 \leq (1 + \epsilon ),\end {align*}


$i \neq j$


$1 - c m^2 e^{-k \epsilon ^2}$


$k \gtrsim (r+2) \frac {\log m}{\epsilon ^2}$


\begin {align*}1 - c m^2 \exp \left (-(r+2) \log m\right ) = 1 - c m^{-r}.\end {align*}



