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State-of-the-art industrial-level recommender system applications mostly adopt complicated model struc-
tures such as deep neural networks. While this helps with the model performance, the lack of system
explainability caused by these nearly blackbox models also raises concerns and potentially weakens the
users’ trust in the system. Existing work on explainable recommendation mostly focuses on designing inter-
pretable model structures to generate model-intrinsic explanations. However, most of them have complex
structures, and it is difficult to directly apply these designs onto existing recommendation applications due
to the effectiveness and efficiency concerns. However, while there have been some studies on explaining
recommendation models without knowing their internal structures (i.e., model-agnostic explanations), these
methods have been criticized for not reflecting the actual reasoning process of the recommendation model
or, in other words, faithfulness. How to develop model-agnostic explanation methods and evaluate them
in terms of faithfulness is mostly unknown. In this work, we propose a reusable evaluation pipeline for
model-agnostic explainable recommendation. Our pipeline evaluates the quality of model-agnostic explana-
tion from the perspectives of faithfulness and scrutability. We further propose a model-agnostic explanation
framework for recommendation and verify it with the proposed evaluation pipeline. Extensive experiments
on public datasets demonstrate that our model-agnostic framework is able to generate explanations that are
faithful to the recommendation model. We additionally provide quantitative and qualitative study to show
that our explanation framework could enhance the scrutability of blackbox recommendation model. With
proper modification, our evaluation pipeline and model-agnostic explanation framework could be easily
migrated to existing applications. Through this work, we hope to encourage the community to focus more
on faithfulness evaluation of explainable recommender systems.
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1 INTRODUCTION

With the emerging development of the Internet over the past few decades, researchers have de-
voted extensive efforts to the study of recommender systems (RS) [1, 11, 44, 69]. As complex
deep neural networks (DNN) are being introduced and deployed in real-world applications, the
blackbox nature of such models has raised several concerns in the RS research community. On the
one hand, users could be reluctant to trust an uninterpretable RS model that cannot provide ex-
planations to its recommendation decisions. On the other hand, system designers cannot control
the behavior and outputs of an uninterpretable RS model directly, which makes it non-trivial to
fix the system even when the exact failure cases have been detected. To overcome these problems
and challenges, the idea of designing explainable1 and scrutable [7, 8] recommendation models
has received considerable attention in recent years.
Existing works on explainable recommendation can be broadly classified into two categories:

model-intrinsic explanations andmodel-agnostic explanations [18, 66, 94]. Model-intrinsic explana-
tions are generated by interpretable recommendation models, while model-agnostic explanations
are generated from a separate explanation model by treating the recommendation model as
blackbox. Both explanation paradigms have been extensively studied by the RS community, and
they have their own strengths and weaknesses. Model-intrinsic explanations can reflect the actual
decision mechanism of the RS model, but deploying such applications could be non-trivial in prac-
tice. For example, due to historical reasons, deploying model-intrinsic explainable RS means an
overhaul to the existing system, which is time- and effort consuming. Also, from the perspective
of model design, enhancing model explainability often means the sacrifice of model perfor-
mance/latency [63], and taking the risk of adversarial attack [17]. Thus, despite recent advances
on model-intrinsic explainable models [79, 81, 84], most industrial RS still use uninterpretable
(blackbox) model designs [48, 56]. Model-agnostic explanation models, however, can bypass
the concerns above in practice by running a separate explanation model that does not disturb
the production model. However, whether these explanations are faithful, i.e., reflecting the actual
reasoning process of the recommendation model, is often questionable. Existing studies on
model-agnostic explainable recommendation methods either ignore the discussion of explanation
faithfulness [19, 23, 28, 42, 58, 72, 77, 78] or build explanations that are dependent on the specific
choice of blackbox recommendation models [8, 45, 67] and thus cannot be directly applied or
compared to other genres of models. To the best of our knowledge, there has not been a reusable
framework to build model-agnostic explanations for different RS models and evaluate the quality
of these explanations.
Seeing this gap, in this work, we focus on designing a reusable framework to build model-

agnostic explanations for different RS models and evaluate the quality of these explanations. We
first propose an evaluation pipeline to evaluate model-agnostic algorithms from two perspectives:
(1) faithfulness (to what extent can the explanation model reflect the true reasoning process of the rec-

ommendation model) and (2) scrutability (whether the explanation model allows the users to correct

the system such that the whole explanation system can be further improved). The model-agnostic

1we use the terms interpretable and explainable interchangeably.
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explanation framework to be evaluated is composed of two separate parts: a recommendation
model to make recommendation decisions, which we refer to as the blackbox model,2 and a sep-
arate explanation model to explain the recommendation model’s decisions, which we refer to as
the whitebox model. By implementing the recommendation model with a model-intrinsic explain-
able model, the faithfulness and the scrutability of the explanation model can be quantified based
on whether the explanation can match the actual explanation provided by the recommendation
model.
Following the evaluation pipeline, we propose a model-agnostic explanation framework to oper-

ationalize the desiderata of faithful explanation and system scrutability. Inspired by the technique
of knowledge distillation, we propose to build a model-agnostic explanation model by taking the
outputs of a blackbox recommendation model to train a whitebox explainable model and generate
explanations accordingly. In this work, we adopt two types of RS models, i.e., the aspect-based
models and knowledge-graph-based models, for both the blackbox recommendation model and
the whitebox explanation model to show how we can apply the evaluation pipeline and explana-
tion framework to different types of models. In addition to the aforementioned model categories,
we provide concrete guidelines to adapt the proposed explanation framework to other genres of
models. As for scrutability, we provide quantitative and qualitative studies to show that our expla-
nation framework can be potentially used to manipulate the blackbox recommendation’s behav-
iors to enhance the scrutability of blackbox recommendation model. To the best of our knowledge,
our work is among the first efforts to propose a model-independent and reusable evaluation and
learning framework for model-agnostic explainable recommendation. Our contributions can be
summarized as follows:

• We propose a reliable evaluation pipeline for model-agnostic explainable recommendation
with a focus on explanation faithfulness and system scrutability. Our pipeline can be used
on different genres of recommendation models with proper modification.
• We propose a model-agnostic explanation framework for recommendation with a
knowledge-distillation-style training strategy to improve explanation faithfulness and
system scrutability.
• We provide qualitative and quantitative studies to show that our explanation framework
could enhance the faithfulness of model-agnostic explanations and the scrutability of
blackbox recommendation model.

The rest of this article is organized as follows: We first review the related work (Section 2), and
then we give a high-level overview of the proposed model-agnostic explanation framework and
the proposed evaluation pipeline (Section 3) and introduce the idea of knowledge-distillation-style
training strategy in Section 4. We use two types of explainable recommendation models to detail
the designs and implementations of the model-agnostic explanation framework, the evaluation
pipeline, and the training strategy in Section 5. Further, we discuss the limitations of this work
and provide guidelines to adapt our work to other genres of explainable recommendation models
in Section 6. We cover the experimental details and report and analyze the results (Section 7). In
addition, we also present the qualitative and quantitative scrutability study (Section 7.3). Finally,
we summarize the article and point out possible future research directions (Section 8). Our code
implementation is made public.3

2Because model-agnostic explanation assumes no knowledge on the structure of the recommendation model, here we
simply refer to the recommendation model as the blackbox model. Note that this does not mean that the recommendation
model has to be implemented with models that are uninterpretable and inaccessible.
3https://github.com/zhichaoxu-shufe/Faithful-and-Scrutable-Recommendation-Framework.
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2 RELATEDWORK

There are four lines of works that are related to this article: (1) model-intrinsic explanation vs.
model-agnostic explanation in explainable machine learning and recommendation, (2) faithful-
ness and scrutability in model-agnostic explainable recommendation, (3) existing model-agnostic
explainable RS and evaluation, and (4) knowledge distillation.

2.1 Model-intrinsic Explanation vs. Model-agnostic Explanation

With the development of more complicated machine learning (ML) models, such as the “black-
box” deep neural networks, there has been an urge for explainable and controllable/scrutable ML
models. By whether the explanations are generated by the decision model itself, the existing ex-
planation paradigms can be broadly classified into two categories: model-intrinsic (or pre hoc)
explanations and model-agnostic (or post hoc) explanations [50, 94].

Model-intrinsic approaches aim to design inherently interpretable models, so that the gener-
ated explanations can reflect the actual inference mechanism of the decision model [12, 30, 75,
79, 81, 84, 85, 95]. Most of recently proposed explainable recommendation models fall into this
category. For example, Zhang et al. [95] propose to combine extracted Aspect-Opinion-Sentiment
triplets with vanilla matrix factorization for recommendation explanation. He et al. [30] propose to
model user-item-aspect interactions via a tripartite graph. A different line of research propose to
leverage the explainable nature of knowledge graph (KG) for recommendation. Wang et al. [79]
incorporates knowledge graph into recommendation to improve click-through rate. Knowledge-

aware Path Reasoning Network (KPRN) [81] treats the knowledge graph path as a sequence
and train a LSTM neural network for explicit reasoning over KG. Xian et al. [84] use a reinforce-
ment learning (RL) algorithm featuring soft reward strategy, user-conditional action pruning,
and a multi-hop scoring strategy to generate knowledge graph reasoning paths. Inspired by Path
Language Modeling [47], Geng et al. [22] propose PLM-Rec framework to learn knowledge graph
representations and generate reasoning paths over the knowledge graph for recommendation in
an autoregressive manner. For the experiments in this work, we adopt two types of RS models, i.e.,
the aspect-based models and knowledge-graph-based models for both the blackbox recommenda-
tion model and the whitebox explanation model. We will further provide guidelines on modifying
the proposed evaluation pipeline and explanation framework on other genres of explainable rec-
ommendation models.
Although various model-intrinsic explainable recommmendation models have been proposed,

most industrial RS applications still use uninterpretable (blackbox) model designs [48, 56]. As dis-
cussed in previous works [58, 63] explainability and model performance/efficiency could some-
times be conflicting goals in model design that we have to tradeoff. Due to the fact that the deep
neural recommendation models being deployed take heterogeneous information sources as input,
and are growing more complicated in terms of model structures, it is hard to ask the model to
provide human-interpretable explanations without hurting the system performance as well as ef-
ficiency. However, the model-agnostic approach aims to design a separate explanation model to
explain the decision model’s output [2, 3, 23, 38, 58, 72, 77, 86, 89, 96]. With model-agnostic expla-
nation, the decision model’s performance and efficiency can be preserved. But it is also criticized
for not being able to fully reflect the actual reasoning process of the decision model [5, 9, 36, 66],
thus not exhibiting faithfulness. Seeing this gap, in this work, we make attempts to improve the
faithfulness of the model-agnostic explanation paradigm.

2.2 Faithfulness and Scrutability in Model-agnostic Explainable Recommendation

In explainable ML, faithfulness measures how accurately the generated explanations reflect the actual

reasoning process of the decision model [25, 29, 31, 35, 36]. A similar concept is transparency, which
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is whether the explanation explains how the system works, proposed by Tintarev and Masthoff [76]
and further refined in References [7, 8]. It is also referred to as trustworthiness [13] and related to
completeness [25].4

While the problem of how to improve the faithfulness of model-agnostic explanations has been
widely recognized in the explainable ML literature [5, 9, 36], only a few works tackle this problem
in explainable recommendation. This discrepancy exists, because RS data and methods are very
different from traditional supervised ML settings [54]. The model-agnostic explainable RS model
takes user–item pairs as input, and thus the definition and evaluation of faithfulness needs to take
both the user and item-side information into account. For example, ter Hoeve et al. [74] take a
perturbation approach to generate faithful and model-agnostic explanations for a blackbox news
recommendation system. However, their experiments are conducted under the classical learning-
to-rank setting, where only a few explicit categorical features are utilized for the recommendation
decision, and no representations learning is involved during the model’s training phase. Such an
intervention approach is not applicable for state-of-the-art DNNmodels such as References [48, 56].
Zhu et al. [97] propose a faithfully explainable recommendation model with knowledge graph, but
their model generates model-intrinsic explanations, and the faithfulness is defined as the similarity
between the generated knowledge graph reasoning paths and the paths in the trainset.
Related but different from faithfulness, in the explainable ML and recommendation literature

[75, 76], scrutable/scrutability5 is used to describe whether the system allows its users to correct

the system’s reasoning or modify the users’ preferences such that the system can be improved in the

long run. Scrutability is also among the desiderata for industrial-level RS applications [8, 24], as a
scrutable system could enable the system designers to control the its behavior abd debug its fail-
ure cases such that the system could be further improved. It is well recognized that scrutability is
related to faithfulness, because one cannot learn how to control a system based on explanations
that are unfaithful in describing system behaviors. Yet, having faithful explanations does not nec-
essarily improve system scrutability, e.g., we can explain an attention network by checking the
attention scores, but we may not know how the changing of these attention scores would affect
the final predictions [36, 83].

2.3 Existing Model-agnostic Explainable RS and Evaluation

Tintarev and Masthoff [76] propose in total seven design goals for explainable recommendation,
including effectiveness, efficiency, persuasiveness, satisfication, scrutability, transparency, and trust.
Balog and Radlinski [7] and Nunes and Jannach [55] point out that most of the existing works
only focus on one single goal, and only a few consider multiple goals [16, 21]. Balog and Radlinski
[7] conducted user study to measure the correlation between the aforementioned goals and the
results, not surprisingly, show that these goals are interrelated. However, we notice that some
goals are more important than others in certain application scenarios/domains, e.g., rersuasiveness
in generating post hoc explanations in recipe/music recommendation [46, 87]. More importantly,
while various models have been proposed for explainable recommendation, there has not been
a universal and model-independent metric to systematically evaluate the quality of generated
explanations in terms of faithfulness and scrutability. Peake and Wang [58] propose to mine asso-
ciation rules to explain the recommendations given by matrix factorization, but their evaluation is
limited to the explanations’ fidelity, i.e., whether the association rules recommend similar items to
the matrix factorization model. Some works [3, 23, 96] use user/case study to prove the generated

4The terminologies are not yet standardized in literature and we choose the most well-accepted Faithfulness throughout
the article.
5also referred to as “decipherable” or “understandable” [7, 8, 27].

ACM Transactions on Information Systems, Vol. 42, No. 1, Article 29. Publication date: August 2023.



29:6 Z. Xu et al.

explanations are superior than those from the baseline models in terms of persuasiveness. For
example, Ai and Narayanan [3] conduct crowdsourcing to compare model-intrinsic and model-
agnostic explanations from informativeness, usefulness, and satisfaction, where usefulness has the
same definition as persuasiveness. Similarly, Ghazimatin [23] shows that the proposed explanation
framework outperforms other explanation types in terms of usefulness. A recent line of works
[23, 38, 46, 72] takes a counterfactual perspective. Ghazimatin et al. [23] propose to use a subset of
users’ interaction history as counterfactual explanation and use user studies to prove the gener-
ated explanations are of higher quality. Tan et al. [72] propose to evaluate the explanations using
necessity (whether the condition is necessary) and sufficiency (whether the condition is sufficient).
However, their methods are bound to the specific recommendation algorithm, and the authors fail
to properly illustrate how these explanation frameworks can be adapted to other explanation mod-
els. Besides, although the counterfactual models can deliver human-interpretable explanations
[23, 65, 72], the evaluation of faithfulness has been overlooked in these works. We also include
two counterfactual baselines and show that explanations being counterfactually true do not
necessarily guarantee they can reflect the actual reasoning process of the recommendation model.
In this work, we propose an evaluation pipeline to evaluate the model-agnostic explanations from
the perspective of faithfulness and scrutability. Our work is different from existing works from
three perspectives: (1) We focus on the evaluation of generated explanations from the perspectives
of faithfulness and scrutability, which has been largely overlooked by previous works in explain-
able recommendation; (2) our evaluation pipeline is not limited to a certain explanation style,
e.g., aspects [72] or association rules [58]; and (3) with proper modification, our model-agnostic
explanation framework can be used for other genres of recommendation model (detailed in
Section 6.3).

2.4 Knowledge Distillation

The idea of knowledge distillation is first brought up by Hinton et al. [32]. By adding soft-targets
generated from teacher networks as training objectives, the student network can achieve knowl-
edge transfer [57]. Originally, knowledge distillation is used for model compression and accel-
eration [32, 68]. It has also been explored for other purposes, such as efficient building blocks
for deep models (see Reference [26] for a comprehensive survey). Hofstätter et al. [33] use cross-
architecture distillation to enable model compression and performance improvement for dense
retrieval. Within the IR community, knowledge distillation has also been studied. Tang and Wang
[73] study ranking distillation for model compression. Liu et al. [49] design a knowledge distil-
lation framework for counterfactual recommendation via uniform data. Zhang et al. [96] explore
distilling the knowledge from knowledge graph paths into latent factor embeddings in matrix fac-
torization for better recommendation performance. Perhaps the closest works to this work are
References [20, 59], where the authors explore self distillation for better performance. Within this
work, we aim to provide a model-agnostic explanation framework for explainable recommenda-
tion for better faithfulness and scrutability. To achieve this goal, we use the knowledge distillation
technique where the student model, i.e., the explanation model is able to learn the reasoning pro-
cess from the teacher model, i.e., the recommendation.

3 OVERVIEW

We start this section by introducing the problem formulation and presenting a high-level overview
to our model-agnostic explanation framework for explainable recommendation (Section 3.1); then
we illustrate the design logic for the proposed evaluation pipeline with the focus of improving
explanation faithfulness and system scrutability (Section 3.2). In Section 3.3, we discuss the as-
sumptions we use in this work.

ACM Transactions on Information Systems, Vol. 42, No. 1, Article 29. Publication date: August 2023.
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Table 1. A Summary of Notations We Use in This Article

u,U , i , I, a, A, D user, user set, item, item set, aspect, aspect set, interaction set
Iu items that user u has interacted with previously
Aui aspects of item i mentioned by user u
Au aspect set mentioned by user u
Ai aspect set of item i
−→u ,
−→
i , −→a user/aspect/item latent factor

X |U |×|A | user–aspect attention matrix
Y |I |×|A | item–aspect quality matrix
sui ranking score for user–item pair (u, i )
Aui@k most important k aspects determined by blackbox recommendation model
A′ui@k most important k aspects determined by whitebox explanation model
s (pathui ) ∈ Pui knowledge-graph reasoning path & paths set connecting (u, i )

3.1 Problem Formulation and Overview of Model-agnostic Explanation Framework

We study the task of top-N recommendation task with implicit feedback. Formally, letU , I be the
set of users and the set of items.We observe the user–item interactions setD = ⋃u ∈U {(u, i ) |i ∈ Iu }
where Iu is the set of items useru previously interacted with. The task is to provide each user with
a ranklist of recommended items and to provide a piece of explanation E to each item. Depending
on the specific model choices, the explanations can be in different forms (detailed in Section 5.1).
A summary of notations can be found in Table 1.

Our explanation framework consists of two parts: a blackbox recommendation model to gen-
erate recommendation decisions and a whitebox explanation model to generate the explanations
for the recommendation decisions. We provide an overview of our model-agnostic explanation
framework in Figure 1. The blackbox recommendation model is on the left side and the whitebox
explanation model on the right side. The input of the whitebox explanation model is the user–item
pair, and it will generate explanations for why this item might be relevant to the user.

3.2 Evaluation Pipeline

The proposed evaluation pipeline evaluates a model-agnostic explanation framework from two
perspectives, explanation faithfulness and system scrutability. Here we illustrate the high-level
logic for our evaluation pipeline and leave the detailed design and implementation of metrics to
Section 5.4.

3.2.1 Faithfulness and Its Evaluation. Faithfulness measures to what extent the generated ex-
planations can reflect the actual reasoning process of the recommendation model. From this sense,
it is hard to quantify the level of faithfulness if the two parts of the explanation framework utilizes
completely different inputs andmodel structures, e.g., matrix factorization for blackbox recommen-
dation model and association rules for whitebox explanation model [58]. Some works in natural

language processing (NLP) [35, 36, 83] and computer vision (CV) [42] propose to evaluate the
faithfulness by measuring the overlap of important inputs with regard to model predictions deter-
mined by the decision model and explanation model, i.e., feature attribution, such as the overlap
of input tokens or pixels highlighted by the two models. We take a similar view and propose to
consider the overlap of important input features to the output of interest.
In our evaluation pipeline, the explanation faithfulness is measured by the overlap between ex-

planation generated by blackbox recommendation model and explanation generated by whitebox
explanation model (Explanations→ Faithful→ Reasons in Figure 1).

ACM Transactions on Information Systems, Vol. 42, No. 1, Article 29. Publication date: August 2023.
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Fig. 1. We use a simple product recommender to explain the proposed model-agnostic explanation frame-

work and evaluation pipeline. The faithfulness is evaluated by the overlap of important features determined

by the blackbox recommendation model and the whitebox explanation model. We show a workflow of

scrutability analysis in the outer loop.

3.2.2 Scrutability and Its Evaluation. Scrutability is another ideal property for industrial-level
RS [8, 24, 38, 75]. A scrutable RS model could help system designers analyze failure cases, e.g.,
a video received Dislike on YouTube, and improve the system in the long run. In Reference [75],
scrutability is defined aswhether the system allows its users to tell it is wrong. Balog et al. [8] propose
a scrutable explainable RS algorithm with set-based preference, but their discussion is limited to
model-intrinsic explanations. In model-agnostic explainable RS, the concept of scrutability and its
evaluation has not been well studied.
Here in a model-agnostic setting, we adapt the definition of scrutability to whether the explana-

tion model can take the negative feedback from users, understand the reasons for the failure cases, and

improve the system in terms of other explanable recommendation design goals. The whitebox expla-
nationmodel is responsible for finding the exact reasons for the failure cases and uses those to help
improve the blackbox recommendation model. In our evaluation pipeline, the workflow of system
scrutability measurement is shown in the outer loop of Figure 1 (Ranklist → Failure Cases →
Failure Reasons → Improved RS). Here we should note that, unlike faithfulness, the evaluation
of scrutability does not require the blackbox recommendation model and whitebox explanation
model to share the same set of input features. A content-based explanation model can still help
debug a matrix factorization recommendation model if with specific design (more discussion in
Section 6.3).

3.3 Assumptions

Throughout this article, we follow three key assumptions:

• The blackbox recommendation model is already trained, and we only focus on providing
a good whitebox explanation model to improve explanation faithfulness and system
scrutability.

ACM Transactions on Information Systems, Vol. 42, No. 1, Article 29. Publication date: August 2023.
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• We use input features as explanations, which is referred to as the Attribution
method [4] and has been common practice in previous explainable AI/ML literature
[2, 23, 58, 61, 62, 65, 72, 74].
• Following the previous point, we assume the blackbox recommendation model and the
whitebox explanation model share the same set of input features.6 The whitebox expla-
nation model has access to the blackbox recommendation model’s predictions but has no
knowledge on the detailed model structures, gradients, and embeddings of the blackbox
recommendation model; thus our whitebox explanation model is “model agnostic” and
“data-type agnostic” [39]. This setup has also been widely adopted by previous explainable
AI/ML and recommendation literature [2, 3, 8, 58, 61, 62, 65, 72, 74, 82].

4 MODEL-AGNOSTIC RECOMMENDATION EXPLANATION WITH KNOWLEDGE

DISTILLATION

Since we follow the model-agnostic setting i.e., the whitebox explanation model will have no
knowledge w.r.t. the blackbox recommendation other than its predictions, it can be challenging to
design a trainable whitebox model, because neither the blackbox recommendation model’s struc-
tures nor the trained parameters are available. Ideally, the whitebox explanation model should
be able to learn the blackbox recommendation model’s actual reasoning process. Previous works
[32, 33, 68] has shown that with knowledge distillation style training, the student network is able
to efficiently and effectively distill the knowledge from teacher network. This matches our design
goal of explanation faithfulness and system scrutability.
In this work, we propose to train the whitebox model in our model-agnostic explanation frame-

work with a knowledge-distillation-style training strategy. Specifically, the whitebox explanation
model is treated as a student network and is trained with the supervision signals generated by
the teacher network, i.e., the blackbox recommendation model in our problem setting. By using
this knowledge-distillation strategy, the whitebox explanation should be able to learn from black-
box recommendation model’s decision pattern and learn its actual reasoning processes, even if
their model structures and parameters are different. We should note that we are not the first to
use this knowledge-distillation-style training strategy in the explainable AI/ML literature. Bastani
et al. [9] term this asModel Extraction and use it to train model-agnostic explainer. However, their
experiment is conducted under classical ML settings, e.g., classification tasks with random forest
as whitebox explanation model. And how to adapt this strategy for model-agnostic explanation
for explainable recommendation has not been studied by the IR community.
We present an example figure for our training strategy in Figure 2. Considering recommen-

dation as a personalized ranking task, for each user u, we denote the supervision signals Su =
[su1, su2, . . . , su |I |], where |I | denotes the size of whole item set, and sui is blackbox recommen-
dation model’s predicted ranking score for (u, i ); similarly, we let the whitebox explanation model
generate the corresponding S ′u in the forward pass.We construct the loss function as standard cross
entropy loss used in previous knowledge distillation literature [32]. In addition, we normalize the
supervision signals Su to Pu with a softmax operation with τ as a hyperparameter to smooth the
gradients:

pui =
exp (sui/τ )∑I
j=1 exp(suj/τ )

. (1)

This Pu reflects the user’s preference over I as a softer probability distribution learned by the
blackbox recommendationmodel, and we use it to train the whitebox explanation model. Similarly,

6Also classified as dataset sharing in Reference [50].

ACM Transactions on Information Systems, Vol. 42, No. 1, Article 29. Publication date: August 2023.



29:10 Z. Xu et al.

Fig. 2. A closer look of our model-agnostic explanation framework for recommendation, both the blackbox

recommendation model and the whitebox explanation model take user id and item ids as input and generate

prediction scores Pu and P ′u , respectively. The parameters of the whitebox explanation model is optimized

by the cross-entropy loss function L (Pu , P ′u ). Within the whitebox explanation model, the path u→ r1→ a

→ r2→ i1 means user u interacts item i via aspect a; the path u→ r3→ b→ r4→ c→ r5→ d→ r6→ i2

means user u interacts item i2 via a multi-hop knowledge-graph reasoning path.

we denote the output probability distribution from the whitebox model’s forward as P ′u . And the
loss is computed by

L =
∑

u ∈U
CrossEntropy(Pu , P

′
u ) = −

∑

u ∈U

∑

i ∈I
pui logp

′
ui . (2)

We leave the specific details of constructing Su and transformation from S ′u to P ′u to Section 7.1.3
and Section 5.3, respectively.

5 DETAILED DESIGN AND IMPLEMENTATION

In this section, we first summarize the model-specific notations (Section 5.1). Then we illustrate
how we implement the above model-agnostic explanation framework using two representative
genres of models, aspect-based models and knowledge-graph-based models. We further introduce
the model-specific design and implementation for our evaluation pipeline metrics (Section 5.4).

5.1 Model-specific Notations

In this work, we include both explicit feedback-based datasets, i.e., user-generated reviews, and
implicit feedback-based datasets, i.e., clicks. For implicit feedback-based datasets, we can observe
the click/interaction set D. For explicit feedback-based datasets, each user–item interaction pair
(u, i ) ∈ D is associated with a piece of textual reviews from which we can extract explicit textual
features that describes the aspects of the item, e.g., price, novelty, and durability. We denote these
explicit textual features as Aspects a(s), and the aspects extracted from this user–item interaction
as Aui This user-aspect-item relations form a triparitite graph (example in Figure 3(a)) and has
been studied by previous works [30, 80]. In the meantime, we can also extract a product knowledge
graph G from the dataset with entity set E and relation set R (example in Figure 3(b)). A summary
of notations can be found at Table 1.
In our experiments, we implement the model-agnostic explanation framework with two genres

of models. The aspect-based model predicts the ranking score sui via aspect-level interactions. The
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Fig. 3. In Figure 3(a), a sample user-aspect-item tripartite graph is presented where u stands for User, a

stands for Aspect, and i stands for Item; the graph nodes are connected via undirected edges. In Figure 3(b),

a sample product knowledge graph is presented, additionally, b stands for Brand, c stands for Category ; the

user node and item node are connected via multi-hop connections through different categories of nodes and

edges. Note that the product knowledge graph is a directed graph.

explanation task is defined as follows: For user u and a recommended item i , find several explicit
textual features/aspects fromA and use them to explain why this item is recommended to u. The
knowledge-graph-based model predicts the ranking score sui from learning the representations
from product-knowledge-graph G and interaction set D. The explanation task is defined as fol-
lows: For user u and a recommended item i , to generate a knowledge graph reasoning path pathui
connecting u and i to explain the recommendation.
We present a running example in the right-hand side of Figure 2, where u→ r1→ a→ r2→ i1

means user u interacts item i1 because of aspect a and u→ r3→ b→ r4→ c→ r5→ d→ r6→
i2 means user u interacts item i2 via a multi-hop knowledge-graph reasoning path. For the aspect-
based models, we adopt the explanation template used by previous works [30, 95]: You might be
interested in [aspect a], on which this product performs well. We will cover more model
details in Sections 5.2 and 5.3.
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5.2 Blackbox Recommendation Model

We use two representative lines of models: aspect-based models and knowledge-graph-based mod-
els. For aspect-based models, we select the Explicit Factor Model (EFM) [95] and Attribute-

aware Collaborative Filtering Model (A2CF) [15]; we select Policy-Guided Path Reasoning

(PGPR) [84] and Coarse-to-Fine Neural Symbolic Reasoning (CAFE) [85] as the representa-
tive knowledge-graph-based models. We give a brief introduction here and refer the model details
to the original papers.

5.2.1 Explicit FactorModel. In EFM, the user, item, and aspect latent representations are learned
by performing matrix factorization over the user–item rating matrix R |U |×|I | , the user–aspect
attention matrix X |U |×|A | , and the item–aspect quality matrix Y |I |×|A | . In the inference stage, the
predicted ranking score sui is computed by combining the user–item rating score and user–item
similarity score, which is based on the top-k most important product aspects inAu ∩Ai . Here the
top-k important aspects are determined by acquiring the top-k largest values of the element-wise
product between the user–aspect vector from X |U |×A and item–aspect vector from Y |I |×|A | .

5.2.2 Attribute-aware Collaborative FilteringModel. The training of A2CFmodel consists of two
stages. First, it leverages a residual feed-forward network to predict the missing values in user–
aspect attention matrix X |U |×|A | and item–aspect quality matrix Y |I |×|A | . Then it combines the
aspect latent factors in stage 1 to build user and item representations and use a deep feed-forward
neural network to compute the ranking score. The algorithm originally considers both user–item
preference relations and item–item similarity relations for substitute recommendations. To make
it compatible with our problem setting, we only use the user–item preference relations.

5.2.3 Policy-guided Path Reasoning. PGPR regards the path reasoning in knowledge graph as a
searching algorithm and propose a RL algorithmmotivated byMarkovDecision Process. The graph
reasoner starts from user node u, walks through graph G, and eventually reach item node i via
path pui . In the training stage, the ground-truth paths are not annotated so the authors propose to
train the model by interactions D. In the inference stage, the graph reasoner search all the items
reachable from the user node and construct the ranklist using the ranking scores of the paths
connecting the user node and item nodes.

5.2.4 Coarse-to-Fine Neural Symbolic Reasoning. Similarly to PGPR, CAFE also treats the path
reasoning in knowledge graph as a search process, and the same authors improve over PGPR
by using a behavior cloning [37] technique to improve the search process. In the training stage,
a random walk module is used to sample the paths between training user–item pairs, and then
these paths are used to train a behavior cloning module with negative log-likelihood loss. In the
inference stage, for each user, CAFE first constructs a layout tree starting from the user node and
then ranks the candidate items by sorting the ranking scores from the log-likelihood of the possible
paths to the candidate items.

5.3 Whitebox Explanation Model

Correspondingly, we also utilize aspect-based model and KG-based model as our whitebox ex-
planation model. For aspect-based models, we take the common practice in the literature [30] to
treat the User-Aspect-Item (U-A-I) relations as a tripartite graph and use node embeddings to
represent the users, items, and aspects. The recommendation process is divided into two stages:
user–aspect match and item–aspect match. Correspondingly, we propose two simple models re-
ferred to asHard-Aspect-Match (HAM)model and Soft-Aspect-Match (SAM)model. A sample
U-A-I tripartite graph gets shown in Figure 3(a).
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5.3.1 Hard-Aspect-Match Model. The HAM model utilizes hard user–aspect match and item–
aspect match. The hard user–aspect matching score sua is computed by

sua =
f (−→u ,−→a )

∑
aj ∈Au

f (−→u ,−→aj )
, (3)

where f (·, ·) is a function to measure the similarity of two vectors, e.g., dot product or cosine
similarity. Similarly, we have

sia =
f (
−→
i ,−→a )

∑
aj ∈Au

f (
−→
i ,−→aj )

. (4)

The matching score of user u interacting with item i via aspect a is computed by
suai = sua · sia . (5)

The matching score sui is computed by summing up all aspects in Au ∩ Ai ,

sui =
⎧⎪⎨⎪⎩

∑
aj ∈Au∩Ai

(suaj · siaj ), if Au ∩ Ai � ∅
0, otherwise

, (6)

and we simply set pui = sui . Here
∑ |I |

i pui = 1, and thus we can train the hard-aspect-match
model with cross entropy loss from Equation (2). In HAM, the term “hard” means that we force
the user–item interaction to happen through the aspects they have in common.

5.3.2 Soft-Aspect-Match Model. In the SAM model, we relax the constraint on the user–item
interaction by allowing the user and item to attend to every aspect a in A even if a is not in Au

or Ai . We have

sua =
f (−→u ,−→a )

∑
aj ∈A f (−→u ,−→aj )

, (7)

sia =
f (
−→
i ,−→a )

∑
aj ∈A f (

−→
i ,−→aj )

, (8)

sui =
∑

aj ∈A
(suaj · siaj ). (9)

Similarly to Equation (6),pui = sui and
∑I

i=1 pui = 1. Aswe do not restrict the user–item interaction
to happen in shared aspects set, we refer to this model as the Soft-Aspect-Match model.

5.3.3 Knowledge-graph-based Model.

We show a sample knowledge graph in Figure 3(b). We use an existing path-based model KPRN
[81]. KPRN treats the knowledge graph paths as sequences and nodes and relations as tokens in a
sequence. It trains a LSTM model to score the potential paths s (pathui ) connecting (u, i ) pairs in
interactions setD. In the inference stage, it first uses a graph search algorithm to find all potential
paths connecting (u, i ) and uses the LSTM model to generate a ranking score for each path path.
The final ranking score is derived by averaging s (pathui ) in Pui . The model can be formulated as

s (pathui ) = FFN(LSTM(pathui )), (10)

sui =
1

|Pui |
∑

pathui ∈Pui
s (pathui ), (11)
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where FFN is a feed-forward neural network, and | · | denotes the size of the set. We convert
the ranking scores Su over I into probability distribution Pu with a softmax operator similar to
Equation (1).

5.4 Detailed Evaluation Pipeline Design and Implementation

We have briefly covered the high-level logic for our evaluation pipeline, and now we dive into
more details on how we design and implement the evaluation metrics of explanation faithfulness
and system scrutability.

5.4.1 Faithfulness Metric Design. As mentioned in Section 3.2, we opt to evaluate the explana-
tion faithfulness by measuring the overlap of important input features determined by the blackbox
recommendation model and whitebox explanation model. Under this setup, the design of faithful-
ness metric is quite flexible and more model dependent. Here we only provide two sample faith-
fulness metric designs for aspect-based models and KG-based models and will discuss guidelines
for other genres of models later in Section 6.3.

Previous aspect-based explainable recommendation models [10, 30, 34, 95] define their task as to
provide item recommendations as well as the aspects that the user may be interested. Bauman et al.
[10] evaluate their model by computing precision between the predicted aspects and the ground-
truth aspects, i.e., the aspects that appear in users’ reviews. Therefore, we believe the overlap of
predicted aspects between our blackbox recommendation model and whitebox explanation model
should be a good reflection on the faithfulness of whitebox explanationmodel. Formally, for aspect-
basedmodel, we define the faithfulness as theAverageAspectOverlap (AAO) per item as follows:

AAO =

∑
u ∈U
∑

i ∈Iu@n |Aui@k ∩ A′ui@k |
|U | × n , (12)

where Aui@k and A′ui@k are the top-k most important aspects determined by the blackbox rec-
ommendation model and whitebox explanation model, respectively; Iu@n are the blackbox rec-
ommendation model’s top-n recommended items for u; and | · | is the size of the set.

For knowledge-graph-based model, we propose to evaluate the faithfulness by computing the
normalized Generalized Levenshtein Distance (nGLD) [50, 52, 92] between blackbox recom-
mendation model generated path pathui and whitebox explanation model generated path path′ui .
Generalized Levenshtein Distance is originally proposed to measure the similarity of two strings
by computing the minimum number of steps to transfer one string to the other through Insert,
Delete, or Replace. We propose to evaluate the similarity of two knowledge graph reasoning paths
by casting them as two sequences of strings and compute the similarity between the two strings.
Specifically, we encode pathui and pathui into two strings strui and str ′ui and compute the nGLD
as

nGLD =
max {len(strui ), len(str ′ui )} − GLD(strui , str ′ui )

max {len(strui ), len(str ′ui )}
, (13)

whereGLD is the Generalized Levenshtein Distance.7 From Equation (13) we can seenGLD ∈ [0, 1]
where 1 means two paths are identical and 0 means two paths are totally different.

5.4.2 Scrutability Metric Design. Recall from Section 3.2 that the idea of scrutability in model-
agnostic explainable recommendation is to use the whitebox explanation model to help de-
bug/improve the blackbox recommendation model. We start from the logic that after detecting

7We skip the detailed computation process here as this is not the focus of this article; interested readers can refer to
Reference [52] for details.
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one failure case (u, i ) (e.g., Dislike on Youtube), the explanation model could generate an explana-
tion on why i is being recommended. If the explanation model is correct about this explanation,
then removing it from the dataset can prevent this failure item from being recommended, i.e., the
rank of the failure item will drop out from the top of ranklist. This reason located by the expla-
nation model could be a historical record of user u when matrix factorization is used as blackbox
recommendation model, or an aspect/KG-entity in our experiments. If the failure item i is ranked
lower after removing the training instances located by the whitebox explanation model, then it
suggests that the agnostic explanation model could be used to interpret the blackbox recommen-
dation model and improve the system scrutability. A more interpretable example is presented in
the outer loop of Figure 1.
We propose to measure the scrutability of a model-agnostic explanation algorithm by Average

Position Change (APC):

APC =

∑
fui ∈F R ( f )

′ − R ( f )
|F | , (14)

where fui ∈ F is a failure case, R ( f ) and R ( f )′ are the item’s rank on the ranklist before and after
removing the training instances, and | · | measures the size of set. A higher APC for failure items
suggests the effectiveness of the explanation model, i.e., it is able to help find the reason for the
failure cases, and in return improve the blackbox recommendation model. We leave the detailed
algorithm to Section 7.3.

5.5 Detailed Training of Whitebox Explanation Model

In our model-agnostic explanation framework, we adopt a knowledge-distillation-style training
strategy. Specifically, we train the whitebox explanation model using blackbox recommendation
model’s output as supervision signals. To better understand our whitebox explanation models, we
also use ground truth in trainset as supervision signals to train them and use the result on testset
as a benchmark. We refer to this training strategy as vanilla training. For simplicity, we refer
to SAM model trained with EFM output as SAM-EFM, SAM model trained with A2CF output as
SAM-A2CF, and SAM model trained with ground truth as SAM-Vanilla; the same naming pattern
also applies for HAM; we refer the KPRN model trained with PGPR output as KPRN-PGPR, KPRN
model trained with CAFE output as KPRN-CAFE, and, similarly, KPRN-Vanilla.

5.5.1 Knowledge-distillation-style Training. For user u and item i , let sui be the blackbox rec-
ommendation model’s prediction for (u, i ), and s ′ui be the whitebox prediction on (u, i ), thus Su
denotes the blackbox recommendation model’s predictions for user u over the item set. We apply
a softmax transformation (Equation (1)) to map Su into probability distribution Pu , and construct
whitebox model’s output such that it can be treated as probability distribution over I (detailed
in Section 5.3). Then we optimize the whitebox models with the cross entropy loss (Equation (2))
between the two probability distributions. We detail the construction of supervision signals Su in
Section 7.1.3.

5.5.2 Vanilla Training. For each user u in the trainset, we use the negative sampling approach
to sample a small set of negatives Ω(I\Iu ). Then we correspondingly construct the supervision
signals Su and optimize the following loss function,

L = − ��
�

∑

u

∑

i ∈Iu

exp (s ′ui/τ )∑
j ∈Ω(I\Iu )∪Iu exp (s

′
uj/τ )

− λ | |Φ| |2	

�
, (15)
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where Φ is the set of all model parameters to be learned in the training process, τ is a temperature
hyperparameter for gradient smoothing andmodel convergence, and λ is regularization coefficient
to prevent overfitting.

6 DISCUSSIONS

Within this section, we discuss the time complexity as well as limitations of the proposed model-
agnostic explanation framework and provide practical guidances on adapting it to other genres of
recommendations.

6.1 Time Complexity Analysis

We should note that within the proposed model-agnostic recommendation and explanation frame-
work, the recommendation stage and explanation stage can be executed asynchronously, i.e., the
framework first generates a small ranklist πk of k items from the whole collection of size |I | with
the blackbox recommendation model and then generates explanations for these k items with the
whitebox explanation model.

Denote the time complexity of blackbox recommendation model’s inference for one item as P,
and time complexity of generating explanation for one single item as Q, which varies in practice
depending on the specific choice of the whitebox explanation model, the overall time complexity
for the recommendation stage is O (P |I |), and the explanation stage is O(Qk); the overall time
complexity for our framework is O (P |I | + Qk ). Since in real-world systems the item collection
usually consists of millions of items, among which only a small subset of items is shown in the
final ranklist, k � |I|, it is therefore safe to assume O (P |I | + Qk ) ≈ O (P |I |). Moreover, we do
not need to restrict the model choice of the recommendation model to model-intrinsic explainable
models and have the freedom to choose uninterpretable but efficient models, such as embedding-
based models; this way we can make P < Q , and O (P |I | +Qk ) ≈ O (P |I |) < O (Q |I |).
6.2 Limitations

At this stage, one potential concern from the readers may be how our explanation framework can
be truly model agnostic, i.e., the whitebox explanation model should assume no knowledge w.r.t.
the blackbox recommendation model, such as input features; Our experiment is currently limited,
because for the sake of evaluation, we still need to implement the blackbox recommendationmodel
with model-intrinsic explainable recommendation model and allow the blackbox recommendation
model and whitebox explanation model to share the same set of input features. Only with this
setting, the faithfulness of the whitebox explanation model could be quantitatively evaluated by
whether the explanation generated by the whitebox explanation model can match the explanation
generated by the blackbox recommendation.

6.3 Guidelines on Adapting our Framework to Other Recommendation Models

According to the genres of blackbox recommendation model, we can further divide our framework
into two separate subcategories:

6.3.1 The Recommendation Model Does Not Use Explicit Content-based Features. Such kinds of
recommendation models can include matrix factorization [60] and other complicated interaction-
basedmodels [71, 88]: This setting can be intricate, as there has not been a well-establishedmethod
to quantitatively evaluate the faithfulness of explanations w.r.t. interaction-based models. Unlike
faithfulness, we can still measure the system scrutability following the same idea as Section 5.4. For
example, similarly to Reference [8], we can implement the explanation model as a model-intrinsic
explainable model and use the explicit features as explanation, e.g., the tags of user’s previously
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interacted items as in Reference [8]; then we measure the Average Position Change after removing
the corresponding user–item pair of the tags found by the explanation model from user’s historical
interactions.

6.3.2 The Recommendation Model Makes Use of Explicit Features. These models make use of
content-based features, such as user-generated product reviews [14, 90, 93], Heterogeneous Infor-
mation Graph or Product Knowledge Graph [22, 84, 85], or hand-crafted learning-to-rank style
features [70, 91]. This setting is more straightforward, because as system designer, we already
know what features the blackbox recommendation model uses and its detailed model structure.
The design goal is changed to designing a similar but simpler whitebox explanation model with
same set of features and to train it with the knowledge distillation training strategy in Section 4
such that certain requirements can bemet. For example, if the reasoning of recommendationmodel
is too complicated for users to comprehend, then the system designer can design the whitebox ex-
planation model to provide simplified and more straightforward reasonings while maintaining
a certain degree of faithfulness with the proposed knowledge-distillation-style training strategy;
if the design goal is to provide real-time explanation for an offline recommendation model, e.g.,
to provide explanation to a certain recommended item that the user clicks through from a promo-
tional email, then the system designer can put the focus of whitebox explanation model on latency,
e.g., predefined templates with aspects predicted by an aspect-based explanation model.

7 EXPERIMENTS

In this section, we study the effectiveness of our framework. Specifically, we discuss three research
questions:

RQ1: Can our model-agnostic framework and training strategy improve the faithfulness of
generated explanations?

RQ2: Can our whitebox explanation model be used to improve the scrutability of blackbox
recommendation model?

RQ3: Since our whitebox explanation model can give recommendations by itself, how is the
recommendation performance? To what extent can it mimic the blackbox recommenda-
tion model’s recommendation decisions?

7.1 Experimental Setup

7.1.1 Datasets and Dataset Partitions. We use three categories of data from the famous Amazon
Product Review Dataset8 [53] and one implicit-feedback click dataset Last FM.9 Amazon datasets
focus on product recommendation while Last FM dataset focuses on music recommendation.
For the Amazon datasets, we use the well-established aspect extraction tool Sentires10 [95] to

extract the aspects from the product reviews. We filter out the users, items, and aspects with fewer
than five, five, and three entries, respectively. Thus, each user will have at least five interactions.
Due to the sparsity of our dataset, we use each user’s last two interactions as a testset, the second-
to-last interaction as a validation set, and the rest as the trainset. For the Last-FMdataset, we use the
preprocessed knowledge graph and train-test split from Reference [6]. Since the Last-FM dataset
is constructed from implicit-feedback clicks, we do not conduct aspect-based models’ experiments
on it. Detailed statistics of the dataset are shown in Table 2.

8Amazon Product Review: http://jmcauley.ucsd.edu/data/amazon/links.html.
9https://grouplens.org/datasets/hetrec-2011/.
10Sentires: https://github.com/evison/Sentires.
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Table 2. The Basic Statistics of the Datasets

Dataset Electronics Office Product Tools & Home Last-FM
#users 3,151 1,983 651 5,941
#items 3,253 957 515 10,303
#aspects 200 452 326 —
#total nodes 7,313 3,712 1,888 33,970
#total relations 14 14 14 14
interaction density 0.31% 1.15% 1.63% 1.73%

7.1.2 Ablations and Baselines. Ablations:Weuse thewhitebox explanationmodel trainedwith
ground-truth (vanilla training) as an ablation. The intuition is that if our knowledge-distillation-
style training strategy works, then the result generated by the explanation model should have
better faithfulness compared to the result from the explanation model with vanilla training
strategy.
We additionally make use of two other model-agnostic counterfactual baselines:
PRINCE [23]: PRINCE propose to find a subset from user’s historical interactions and use them

as counterfactual explanations. More specifically, the explanation of PRINCE is defined as a user’s
necessary set of historical actions such as Click, View, and Add-to-cart and if removed will lead to
a different recommended item.
CountER [72]: CountER is another comparable baseline that proposes a counterfactual joint

optimization problem by solving which it generates explanations based on the explicit aspects of
the items.
We adapt both baselines to make them work for the aspect- and KG-based models. For ease

of comparison, we also include a weak Random baseline, specifically, in the inference stage, we
randomly arrange the candidates items (or candidate aspects) in the candidates set.

7.1.3 Construction of Supervision Signals. For aspect-based models, we construct the supervi-
sion signals Su over the whole item set I. For KG-based models, it is computationally expensive
to go through I due to the unparalleled nature of LSTM. We adopt the negative sampling strategy
used in the original KPRN paper [81]. Specifically, for each u, we construct Su Pu by assigning top-
20 items from the blackbox recommendation model’s ranklist with label 1 and assign the sampled
negatives from the rest of ranklist with label 0, i.e., pui ∈ {0, 1}. This can be regarded as sui = +∞
for positive items and sui = −∞ for sampled negatives. In practice, we use a ratio of 1:4, i.e., 20
positive items and 80 negative items for eachu. More specifically, during training we organize each
training batch into mini batches, and each mini batch consists of 1 positive item and 4 negative
items. Then we compute the loss with Equation (2), but instead the denominator is calculated over
the mini batch rather than the whole item set I. For vanilla training, we use a same 1:4 ratio, but
instead the positive items are from the training set rather than the ranklist from the blackbox rec-
ommendation model as teacher. And the same mini batch training setup applies to vanilla training
for the aspect-based models as well.

7.1.4 Training and Evaluation. We train our model on the trainset and use the validation set to
tune hyperparameters. We conduct a full ranking on all datasets, namely, for each user u, we rank
all items in I\Iu . We use the evaluation metrics introduced in Section 5.4. We use the top-20 items
on the ranklist and top-5 aspects per (u, i ) pair for AAO, top-1 KG path per (u, i ) pair for nGLD.
We repeat each experiment three times and report the mean values.

7.1.5 Implementation Details. For implementation, we build EFM, A2CF, PGPR, CAFE, HAM,
SAM, and KPRN using PyTorch. We train all the models using Adam [43] and SGD [64]. We set
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the latent factor size to 128 for all models. We search the learning rate between 1e-1 and 1e-6,
L2-regularization between 1e-1 and 1e-4, and the number of negative samples in Equation (15)
between 2 and 10. We search the temperature hyperparameter τ for knowledge-distillation-style
training and vanilla training separately.

7.2 Comparison of Faithfulness

We report the AAO and nGLD results in Table 3. We find (1) when using EFM as blackbox rec-
ommendation model, all whitebox explanation models have better AAO compared to Random.
(2) Compared to PRINCE and CountER, the vanilla training approach generally are not able to
generate more faithful explanations. For example, in the Electronics dataset, when using EFM
as blackbox recommendation model, PRINCE has an AAO of 0.072 and CountER has an AAO of
0.087 compared to HAM-Vanilla’s 0.074. The same pattern applies for A2CF. (3) Our knowledge-
distillation-style training strategy could enable the whitebox explanation model to generate more
faithful explanations compared to the other model-agnostic baselines and the whitebox explana-
tion model with vanilla training strategy. For aspect-based models, HAM-EFM, SAM-EFM, HAM-
A2CF, and SAM-A2CF all outperform their vanilla versions and the best counterfactual baselines.
For example, compared to the vanilla versions, SAM-A2CF has 0.089 improvement in Electronics,
0.062 in Office, and 0.058 in Tool & Home, and HAM-A2CF has 0.222, 0.120, and 0.119, respectively.
Compared with CountER, SAM-A2CF’s improvement is 0.041, 0.069, and 0.032 on three datasets,
respectively. And the improvement is 0.257, 0.099, and 0.080 for HAM-A2CF. When use knowledge
graph-based models as the blackbox model, with the proposed training strategy, the improvement
in terms of nGLD is also significant. For example, KPRN-PGPR outperforms best baseline CountER
by 0.026, 0.024, and 0.027 in three Amazon datasets, respectively, and outperforms best baseline
PRINCE by 0.023 in Last-FM. And the improvement is 0.042, 0.034, and 0.036 over KPRN-Vanilla in
three Amazon datasets and 0.028 in Last-FM dataset; the same pattern also applies for KPRN-CAFE
and KPRN-Vanilla.
To summarize, the proposed model-agnostic explanation framework can provide more faithful

explanations compared to the existing model-agnostic algorithms and our model ablations. The
improvement is consistent on both genres of models, suggesting our framework’s universality
under the model-agnostic and data-type-agnostic settings.
We go further to discuss the evaluation of faithfulness in model-agnostic explanation paradigm.

Lakkaraju et al. [45] discuss the definition of faithfulness in the problem of decision model and pro-
pose to evaluate the level of faithfulness by the overlap of decision rules set used by the twomodels.
Works in CV and NLP [35, 36, 42, 51, 62, 83] also propose to measure faithfulness by the overlap of
important inputs determined by the two models, e.g., important input text tokens and pixels. By
definition, the evaluation of faithfulness can be flexible andmodel dependent, as long as itmeasures
the overlap of inputs or important intermediate features shared by both the blackbox recommen-
dation model and the whitebox explanation model. Therefore, the proposed evaluation pipeline
could be easily adapted and extended to other genres of explainable recommendation models.

7.3 Scrutability Analysis

Scrutability is an ideal property for industrial-level RS. Suppose one user purchased the item being
recommended by the blackbox recommendation model and was not satisfied with it afterwards.
In this case, the blackbox recommendation model generates one failure case. We want to analyze
the potential reason behind this failed case with the help of the agnostic explanation model and
potentially find methods to fix the problem for the blackbox recommendation model.
In our scrutability analysis, for each failure case in blackbox recommendation model, we use

the whitebox explanation model to determine the top-1 most important aspects/KG-path used in
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Table 3. The Evaluation of Faithfulness

Datasets Electronics Office Product Tool & Home Last FM
Aspect-based Models (measured in AAO)

EFM

Random 0.024 0.011 0.016 —
PRINCE 0.072 0.105 0.084 —
CountER 0.087 0.097 0.099 —
SAM-Vanilla 0.057 0.034 0.029 —
SAM-EFM 0.119 0.066 0.053 —
HAM-Vanilla 0.074 0.089 0.058 —
HAM-EFM 0.175† 0.152† 0.141† —

A2CF

Random 0.026 0.011 0.015 —
PRINCE 0.085 0.097 0.102 —
CountER 0.112 0.145 0.136 —
SAM-Vanilla 0.064 0.152 0.110 —
SAM-A2CF 0.153 0.214 0.168 —
HAM-Vanilla 0.147 0.124 0.097 —
HAM-A2CF 0.369† 0.244† 0.216† —

KG-based Models (measured in nGLD)

PGPR

Random 0.416 0.445 0.431 0.602
PRINCE 0.439 0.455 0.459 0.622

CountER 0.443 0.469 0.462 0.619
KPRN-Vanilla 0.427 0.459 0.453 0.617
KPRN-PGPR 0.469† 0.493† 0.489† 0.645†

CAFE

Random 0.405 0.437 0.425 0.597
PRINCE 0.445 0.459 0.455 0.612

CountER 0.462 0.471 0.460 0.605
KPRN-Vanilla 0.450 0.469 0.466 0.622
KPRN-CAFE 0.482† 0.499† 0.487† 0.657†

We use the AAO metric and nGLD metric for aspect-based model and KG-based model, respectively.
We highlight the whitebox explanation model with best performance within each sub-category. We
conduct paired t -test at 0.05 level and mark the whitebox explanation model that are significantly
better than other models with the same blackbox recommendation model with †. The left-most
column is the blackbox recommendation model while the second column from the left is the
whitebox explanation model.

recommending this i to u. After that, we manually set the aspect/KG-path embedding vector to 0s

for (u, i )11 and re-run the blackbox recommendation model to generate a new ranklist for u. We
are interested to know that whether the items in failure cases will be ranked lower after masking
the aspect. We show the algorithm we use for quantitative scrutability analysis in Algorithm 1 and
report the APC result in Table 4.
We find that (1) for aspect-based models, the proposed training strategy enables the whitebox

explanation model to have significantly higher APC compared to the vanilla strategy. For example,
in the Electronics dataset, HAM-A2CF has 1411.41 APC compared to HAM-Vanilla’s 457.60, and
the number is 45.59 compared to 2.72 for SAM-A2CF and SAM-Vanilla. (2) For aspect-based
models, the HAM model has higher APC compared with SAM. For example, in the Electronics
dataset, HAM-A2CF has APC of 1411.41 compared to SAM-A2CF’s 45.59. The reason is the nature

11We refer to this step as “mask the aspect/path for (u, i ).”
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Table 4. The Quantitative Scrutability Analysis

Datasets Electronics Office Product Tool & Home Last FM
Aspect-based Models

EFM

PRINCE 244.82 19.77 34.40 —
CountER 325.85 23.52 54.19 —
SAM-Vanilla 2.14 1.42 1.35 —
SAM-EFM 35.62 12.94 25.27 —
HAM-Vanilla 386.12 6.65 43.25 —
HAM-EFM 1068.43† 43.22† 124.06† —

A2CF

PRINCE 295.80 22.85 41.27 —
CountER 396.89 26.41 65.28 —
SAM-Vanilla 2.72 1.47 1.85 —
SAM-A2CF 45.59 29.53 41.34 —
HAM-Vanilla 457.60 8.67 63.47 —
HAM-A2CF 1411.41† 59.52† 197.23† —

Knowledge graph-based Models

PGPR

PRINCE 284.71 19.58 37.79 114.28
CountER 342.90 23.18 54.70 75.92
KPRN-Vanilla 455.39 60.97 82.37 89.37
KPRN-PGPR 1352.49† 62.55† 205.39† 175.26†

CAFE

PRINCE 287.55 19.91 38.62 132.74
CountER 352.45 26.82 62.03 77.95
KPRN-Vanilla 397.19 63.72 87.44 115.84
KPRN-PGPR 1178.35† 69.24† 192.73† 186.40†

We show the result for APC defined in Equation (14). Being positive means the item is ranked lower
on the ranklist. For each blackbox recommendation model, we highlight the whitebox explanation
model with highest APC. We use † to indicate the model’s improvement over other models is
significant in terms of paired t -test at the 0.05 level. The leftmost column is the blackbox
recommendation model while the second column from the left is the whitebox explanation model.

ALGORITHM 1:Workflow of Scrutability Analysis

1: Train the blackbox recommendation model on the trainset.
2: Use blackbox recommendation model’s output as supervision signals to train the whitebox

explanation model.
3: For user u, let blackbox recommendation model generate a ranklist.
4: Manually set the non-ground-truth items at top-3 of the ranklist as failed items.
5: Use the whitebox explanation model to find the top-1 most important aspects/path for each

failure case (u, i ).
6: Re-run blackbox recommendation model to generate a ranklist for u again, specifically, for

each failure case (u, i ),mask the corresponding aspect/path during blackbox’s inference.
7: Compute the average position change of failure items.

of “hard-match” make impact of the removal of aspect significant. (3) Compared to PRINCE
and CountER, HAM-A2CF and HAM-EFM have significantly higher APC, which suggests the
effectiveness of the proposed training strategy. However, SAM-A2CF and SAM-EFM fail to
outperform PRINCE and CountER. The reason is PRINCE and CountER are still “hard-match”
model by design, and the removal of important aspects still have significant impact for the item’s
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Table 5. The Result for Qualitative Analysis of Correct Cases

Aspect-based Models

Datasets User Target Failure Item Item Type Masked Aspect Original Rank New Rank

Electronics
A12GKGLR2L4MZY B002R5AM7C Video Camera Sound 1 1332
AVSD11L7NZG3I B003YH9EZ8 Earbud Size 3 34
A2BYV7S1QP2YIG B004MSQZUU Headphone Price 3 67

Office Product
A3BTL4FV60DKAT B005HFJFK4 Inkjet Printer Network 2 21
A1HFT68GJ42LTM B002K9IHJK Removable Label Pad Tape 2 15
AEL6CQNQXONBX B00CPXDK2U View Binder Price 2 7

Tool & Home
A1MC6BFHWY6WC3 B005NXPSTM LED Penlight Batteries 2 8
A3KPJ1MOGTZVGC B00B8BPAHQ Floor Lamp Bulb 3 11
A1KJO5VP4K3CHU B00GY71PT8 Lantern Flashlight Weight 3 8

Knowledge graph-based Models

Datasets User Target Failure Item Masked KG Path Original Rank New Rank

Last FM
user_2426 product_789 user_0

l istened−−−−−−−→ product_3648
r ev_l istened−−−−−−−−−−−→ user_1945

l istened−−−−−−−→ product_789 1 525

user_837 product_985 user_837
l istened−−−−−−−→ product_7490

belonдs_to−−−−−−−−−→ category_0
r ev_belonдs_to−−−−−−−−−−−−−→ product_837 2 1091

user_405 product_1300 user_405
l istened−−−−−−−→ product_3536

sanд_by−−−−−−−→ artist_907
r ev_sanд_by−−−−−−−−−−−→ product_1300 2 927

Within each dataset, we show three cases where the failed items are ranked significantly lower after masking the top-1
important aspect/knowledge graph path for the failed user–item pair. The results of aspect-based models are
generated with A2CF as blackbox recommendation model and HAM as whitebox explanation model, and the results of
knowledge graph-based models are generated with PGPR as blackbox recommendation model and KPRN as whitebox
explanation model.

Table 6. The Result for Qualitative Analysis of Cases Where the Proposed Framework Fails

Aspect-based Models

Datasets User Target Failure Item Item Type Masked Aspect Original Rank New Rank

Electronics
A1EARN5PUVIF1S B002R5AM7C Video Camera Feature 1 2
A2BVOBG7YDSVOZ B003YH9EZ8 Earbud Manual 2 2

Office Product
ABDR6IJ93HFIO B005HFJFK4 Inkjet Printer Price 1 1

A1V4VVBQBFXRHC B002K9IHJK Removable Label Pad Plastic 2 3

Tool & Home
A2MSBIA18RXYQC B005NXPSTM LED Penlight Output 1 2
A55PCTJ6NINET B005Z29U6S LED Penlight Output 1 2

Knowledge graph-based Models

Datasets User Target Failure Item Masked KG Path Original Rank New Rank

Last FM
user_612 product_16 user_612

l istened−−−−−−−→ product_379
r ev_l istened−−−−−−−−−−−→ user_492

l istened−−−−−−−→ product_16 1 1

user_4465 product_95 user_4465
l istened−−−−−−−→ product_126

r ev_l istened−−−−−−−−−−−→ user_2294
l istened−−−−−−−→ product_95 1 1

Within each dataset, we show two cases where the failed items are ranked not significantly lower after masking the
top-1 important aspect/knowledge graph path for the failed user–item pair. The results of aspect-based models are
generated with A2CF as blackbox recommendation model and HAM as whitebox explanation model; and the results of
knowledge graph-based models are generated with PGPR as blackbox recommendation model and KPRN as whitebox
explanation model.

position on the ranklist. (4) The result for KG-based models is consistant with the aspect-based
models. We observe that both KPRN-PGPR and KPRN-CAFE has the highest APC compared to
the baselines and its ablation. Interestingly, we find that KPRN-Vanilla outperforms baselines in
three Amazon datasets, but is outperformed PRINCE in Last FM datasets. This might be because
of the different path patterns and distributions between the Amazon and Last FM dataset.
We also present qualitative studies to help readers understand how the proposed framework

achieves system scrutability (Table 5) and its limitation (Table 6). From Table 5, we can see that
when the whitebox explanation model is able to extract meaningful aspects for (u, i ) pair, the
blackbox recommendation model could further effectively rank the failed items to the lower part
of the ranklist after masking those aspects. For example, item B002R5AM7C is ranked lower after
masking the aspect Sound. Similar pattern holds for the knowledge graph-based models; for ex-
ample, for (user_2426,product_789), the rank of product_789 drops from 1 to 525 after setting the
embedding vector ofproduct_3648 anduser_1945 to 0s. However, this also suggests that our white-
box explanation model effectively distills the knowledge learned by the blackbox recommendation
model and achieves better faithfulness.
We can also observe some limitations of our framework from Table 6. (1) When the whitebox

explanation model is not able to find the important features, i.e., aspects or knowledge graph paths,
removing these features makes hardly any effect on the ranks of the target items. For example, item
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B002K9IHJK is not ranked lower when themasked aspect is Plastic. This suggests our framework
can be improved by designing better knowledge distillation training strategy to train the whitebox
explanation model. (2) Whether our framework can achieve scrutability is also limited by the fea-
tures set used by the recommendation and the explanation models and is related to the patterns of
the dataset itself. For example, item B005NXPSTM is not ranked lower when the masked aspect is
Output, and Output is an ambiguous aspect. For knowledge graph-based models, by manually ex-
amining the cases where items are not ranked lower, we find that most of the paths belongs to the

metapath user_a
l isteded−−−−−−−→ product_b

r ev_l istened−−−−−−−−−−−→ user_c
l istened−−−−−−−→ product_d , which is the most

common metapath on the dense Last FM dataset. Between one (u, i ) pair, there might be hundred
of such paths; therefore, removing one of them does not make the item being ranked lower. Thus
suggests that when applying the proposed framework, we need to take dataset-specific factors into
consideration.
The scrutability of our framework is potentially helpful from two perspectives: (1) Using the

agnostic model could help us understand how blackbox recommendation model works. In our
implementation, the whitebox explanation model helps us better profile user preferences as well
as item features and conduct more personalized recommendations. (2) With the information ex-
tracted by the whitebox explanation model, we can effectively control the results of an originally
not-controllable blackbox recommendation model. This is particularly important for debugging
production models online and could potentially lead to new algorithms and techniques for the
study of negative feedback and conversational recommendation with non-explainable recommen-
dation models.

7.4 RS Performance and Decision Pattern

Since our whitebox explanation model is also able to generate recommendation decisions by itself,
we additionally include a subsection to discuss its performance. Also, fidelity is defined as the
extent to which the explanation model could mimic the decision model’s decision pattern [35,
58, 70], i.e., the similarity of ranklists or the overlap of recommended items given by the two
models. We show the comparison of recommendation performance (evaluated by hit rate@20 and
nDCG@20) in Table 7 and fidelity in Table 8.

7.4.1 Recommendation Performance. From Table 7, we find that (1) EFM, A2CF, PGPR, and
CAFE can deliver good recommendation performance, and thus it is suitable to use them as black-
box recommendation models. (2) Compared to the vanilla versions, the whitebox explanation mod-
els trained with the proposed knowledge-distillation-style training strategy can also deliver com-
petitive performance, even if no ground-truth labels are used in training. For example, in the Elec-
tronics dataset, KPRN-PGPR outperforms both vanilla PGPR and KPRN in terms of hit rate and
nDCG, and KPRN-CAFE outperforms vanilla CAFE and KPRN as well. This finding is consistent
with recent knowledge-distillation papers [20, 59]. It may suggest we could utilize the same train-
ing strategy to design better model-intrinsic explainable recommendation models.

7.4.2 Fidelity of Explanation Model. We evaluate the fidelity from both the item level and
ranklist level. Similarly to previous works [58], we measure the item-level fidelity by the over-
lap of recommended items given by blackbox recommendation model and whitebox explanation
model via Average Item Overlap (AIO),

AIO =

∑
u ∈U |Iu@n

⋂I′u@n |
|U | , (16)

where Iu@n and Iu@n′ are the blackbox recommendation model’s and whitebox explanation
model’s top-n recommended items for user u, respectively, and | · | denotes the size of set. In
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Table 7. The Recommndation Performance (Hit Rate@20, nDCG@20) Measured in %

Datasets Electronics Office Product Tool & Home Last FM
Models / Metrics HR nDCG HR nDCG HR nDCG HR nDCG
Random 0.74 0.09 0.89 0.13 7.24 1.92 — —
EFM 5.54 1.25 7.26 1.68 16.28 4.71 — —
A2CF 7.03 1.52 7.61 1.55 27.95 7.08

PGPR 6.11 1.58 7.92 2.05 15.51 4.95 43.19 5.15

CAFE 6.57 1.64 8.11 2.12 16.62 5.13 41.74 4.82
SAM-Vanilla 5.21 1.06 5.59 1.10 17.66 5.28 — —
HAM-Vanilla 5.15 1.15 3.96 0.77 15.20 4.49 — —
KPRN-Vanilla 6.72 1.59 8.69 2.32 13.67 3.96 39.92 4.45
SAM-EFM 4.45 1.20 5.59 1.24 15.36 3.94 — —
HAM-EFM 4.88 1.09 7.01 1.59 13.97 3.77 — —
SAM-A2CF 6.65 1.36 6.45 1.18 26.96 7.08 — —
HAM-A2CF 4.95 1.25 7.06 1.47 17.05 4.54 — —
KPRN-PGPR 7.19 1.71 8.57 2.36 14.29 4.18 40.72 4.52
KPRN-CAFE 7.32 1.75 8.72 2.42 15.52 4.33 41.44 4.62
We highlight the model with best Performance within each sub-category. Note we do not include CountER
and PRINCE, because they cannot generate recommendation decisions.

Table 8. The Evaluation of Fidelity

Datasets Electronics Office Product Tool & Home Last FM
Models / Metrics ρ AIO ρ AIO ρ AIO ρ AIO

EFM

Random 0.05 0.14 0.03 0.33 0.02 0.44 — —
SAM-Vanilla 0.59 8.75 0.59 1.92 0.33 6.65 — —
SAM-EFM 0.85 11.52 0.64 5.57 0.44 8.83 — —
HAM-Vanilla 0.46 2.64 0.31 1.57 0.35 3.66 — —
HAM-EFM 0.63 2.75 0.34 3.16 0.43 5.18 — —

A2CF

Random 0.01 0.16 0.02 0.27 0.05 0.39 — —
SAM-Vanilla 0.28 4.85 0.61 1.92 0.26 6.65 — —
SAM-A2CF 0.95 14.52 0.94 14.77 0.27 9.53 — —
HAM-Vanilla 0.22 2.15 0.21 1.46 0.26 3.35 — —
HAM-A2CF 0.29 2.36 0.39 4.60 0.34 6.78 — —

PGPR
Random 0.02 0.17 0.03 0.35 0.04 0.45 0.03 0.18
KPRN-Vanilla 0.31 3.56 0.30 2.95 0.34 4.72 0.53 7.42
KPRN-PGPR 0.45 4.72 0.38 3.70 0.45 6.69 0.60 9.04

CAFE
Random 0.03 0.15 0.03 0.34 0.04 0.45 0.04 0.20
KPRN-Vanilla 0.33 3.72 0.35 3.12 0.33 4.62 0.55 7.76

KPRN-CAFE 0.47 4.85 0.39 3.85 0.42 6.59 0.64 9.39

We use Spearman Rank Correlation Coefficient (Spearman’s ρ) and AIO. We highlight the whitebox
explanation model that is significantly better its vanilla version by paired t -test at 0.05 level. The left-most
column is the blackbox recommendation model the whitebox explanation model compares the ranklist to.
The second column from the left is the whitebox explanation model.

practice, we calculate the overlap between the top-20 items on the ranklists for each user. The Item
Overlap is calculated for each user and is averaged to derive AIO. We also evaluate the ranklist-
level fidelity by the similarity between the two whole ranklists via Spearman Rank Coefficient

ρ [40, 41].
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For a sample of size n, the n raw scores Xi , Yi are converted to ranks R (Xi ) and R (Yi ), and
Spearman’s Rank Correlation ρ is computed by

ρ =
cov (R (X ),R (Y ))

σR (X )σR (Y )
∈ [−1, 1], (17)

where cov (R (X ),R (Y )) is the covariance of the rank variables, σR (X ) and σR (Y ) are the standard
deviations of the rank variables, and we have

cov (R (X ),R (Y )) = E[(X − E[X ]) (Y − E[Y ])]
= E[XY ] − E[X ]E[Y ].

(18)

Specifically, in our implementation, there are no tied ranks of the items, so we compute ρ as

ρ = 1 − 6
∑

i ∈I d2i
n(n2 − 1) , (19)

where di is the difference of item i’s rank between two ranklists and n = |I |. ρ = −1 means the
two ranks are perfect negative correlation, while ρ = 1 means perfect positive correlation; ρ = 0
means no correlation between two ranks.
We report the results for fidelity in Table 8. We find the following: (1) within the scope of aspect-

based models, SAM has better fidelity compared to HAM model. This might be because the “hard-
match” nature of HAM limits the candidate items so that it cannot learn the blackbox recommen-
dation model’s decision pattern well; (2) for both aspect-based models and KG-based models, the
whitebox explanation model with the proposed training strategy has signiciantly better Spear-
man Rank Coefficient as well as AIO. To summarize, the proposed training strategy enables the
whitebox explanation model to generate more similar recommendation decisions to the blackbox
recommendation model, compared to its vanilla versions.

8 CONCLUSION AND FUTURE WORK

In this work, we propose a reusable evaluation pipeline for model-agnostic explainable recom-
mendation. Our pipeline focuses on faithfulness and scrutability, which have not been the focus
of previous model-agnostic explainable recommendation literature. We further propose a model-
agnostic explanation framework with a knowledge-distillation-style training strategy. Extensive
qualitative and quantitative studies demonstrate that our explanation framework could enhance
the faithfulness of model-agnostic explanations and the recommender system scrutability. Our
framework could be potentially used in other IR tasks such as negative feedback, conversational
recommendation/product search and dense retrieval, which will be the focus of our future work.
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