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Provable Identifiability of Two-Layer ReLU Neural
Networks via LASSO Regularization

Gen Li, Ganghua Wang , and Jie Ding , Member, IEEE

Abstract— LASSO regularization is a popular regression tool
to enhance the prediction accuracy of statistical models by
performing variable selection through the ℓ1 penalty, initially
formulated for the linear model and its variants. In this paper,
the territory of LASSO is extended to two-layer ReLU neural
networks, a fashionable and powerful nonlinear regression model.
Specifically, given a neural network whose output y depends
only on a small subset of input x, denoted by S⋆, we prove
that the LASSO estimator can stably reconstruct the neural
network and identify S⋆ when the number of samples scales
logarithmically with the input dimension. This challenging regime
has been well understood for linear models while barely studied
for neural networks. Our theory lies in an extended Restricted
Isometry Property (RIP)-based analysis framework for two-layer
ReLU neural networks, which may be of independent interest to
other LASSO or neural network settings. Based on the result,
we advocate a neural network-based variable selection method.
Experiments on simulated and real-world datasets show promis-
ing performance of the variable selection approach compared
with existing techniques.

Index Terms— Lasso, identifiability, neural network, nonlinear
regression, variable selection.

I. INTRODUCTION

GIVEN n observations (yi,xi), i = 1, . . . , n, we often
model them with the regression form of yi = f(xi)+ξi,

with an unknown function f , xi ∈ Rp being the input
variables, and ξi representing statistical errors. A general
goal is to estimate a regression function f̂n close to f for
prediction or interpretation. This is a challenging problem
when the input dimension p is comparable or even much
larger than the data size n. For linear regressions, namely
f(x) = w⊤x, the least absolute shrinkage and selection
operator (LASSO) [1] regularization has been established as
a standard tool to estimate f . The LASSO has also been suc-
cessfully used and studied in many nonlinear models such as
generalized linear models [2], proportional hazards models [3],
and neural networks [4]. For LASSO-regularized neural net-
works, existing works have studied different properties, such as
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convergence of training [5], model pruning [6], [7], and feature
selection [8], [9]. The LASSO regularization has also been
added into the standard deep learning toolbox of many open-
source libraries, e.g., Tensorflow [10] and Pytorch [11].

Despite the practical success of LASSO in improving the
generalizability and sparsification of neural networks, whether
one can use LASSO for identifying significant variables is
underexplored. For linear models, the variable selection prob-
lem is also known as support recovery or feature selection
in different literature. Selection consistency requires that the
probability of supp(ŵ) = supp(w) converges to one as
n → ∞. The standard approach to selecting a parsimonious
sub-model is to either solve a penalized regression problem
or iteratively pick up significant variables [12]. The existing
methods differ in how they incorporate unique domain knowl-
edge (e.g., sparsity, multicollinearity, group behavior) or what
desired properties (e.g., consistency in coefficient estimation,
consistency in variable selection) to achieve [13]. For instance,
consistency of the LASSO method [1] in estimating the signifi-
cant variables has been extensively studied under various tech-
nical conditions, including sparsity, mutual coherence [14],
restricted isometry [15], irrepresentable condition [16], and
restricted eigenvalue [17].

Many theoretical studies of neural networks have focused
on the generalizability. For example, a universal approx-
imation theorem was established that shows any continu-
ous multivariate function can be represented precisely by a
polynomial-sized two-layer network [18]. It was later shown
that any continuous function could be approximated arbitrar-
ily well by a two-layer perceptron with sigmoid activation
functions [19], and an approximation error bound of using
two-layer neural networks to fit arbitrary smooth functions
has been established [20], [21]. Statistically, generalization
error bounds for two-layer neural networks [21], [22] and
multi-layer networks [23], [24], [25] have been developed.
From an optimization perspective, the parameter estimation of
neural networks was cast into a tensor decomposition problem
where a provably global optimum can be obtained [26], [27],
[28]. Very recently, a dimension-free Rademacher complexity
to bound the generalization error for deep ReLU neural
networks was developed to avoid the curse of dimension-
ality [29]. It was proved that certain deep neural networks
with few nonzero network parameters could achieve minimax
rates of convergence [30]. A tight error bound free from
the input dimension was developed by assuming that the
data is generated from a generalized hierarchical interaction
model [31].
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This work theoretically studies the identifiability of neural
networks and uses it for variable selection. Specifically, sup-
pose data observations are generated from a neural network
with only a few nonzero coefficients. The identifiability con-
cerns the possibility of identifying those coefficients, which
may be further used to identify a sparse set of input variables
that are genuinely relevant to the response. In this direction,
LASSO and its variant Group LASSO [32] have been advo-
cated to regularize neural-network for variable selection in
practice (see, e.g., [6], [8], [9], [33]).

In this paper, we consider the following class of two-layer
ReLU neural networks for regression.

Fr =
{
f : x 7→ f(x) =

r∑
j=1

ajrelu(w⊤
j x + bj),

where aj , bj ∈ R,wj ∈ Rp

}
.

Here, p and r denote the input dimension and the number of
neurons, respectively. We will assume that data are generated
from a regression function in Fr perturbed by a small term.
We will study the following two questions.

First, if the underlying regression function f admits a
parsimonious representation so that only a small set of input
variables, S⋆, is relevant, can we identify them with high
probability given possibly noisy measurements (yi,xi), for
i = 1, . . . , n? Second, is such an S⋆ estimable, meaning
that it can be solved from an optimization problem with high
probability, even in small-n and large-p regimes?

To address the above questions, we will establish a theory
for neural networks with the LASSO regularization by con-
sidering the problem minW ,a,b ∥W ∥1 under the constraint of

1
n

n∑
i=1

(
yi −

r∑
j=1

ajrelu(w⊤
j xi + bj)

)2

≤ σ2,

which is an alternative version of the ℓ1-regularization. More
notational details will be introduced in Subsection II-B.

Our theory gives positive answers to the above questions.
We theoretically show that the LASSO-type estimator can sta-
bly identify ReLU neural networks with sparse input signals,
up to a permutation of hidden neurons. We only focus on the
varying n and p and implicitly assume that the sparsity of W ⋆

and the number of neurons r are fixed. While this does not
address wide neural networks, we think it still corresponds to a
nontrivial and interesting function class. For example, the class
contains linear functions when input signals are bounded. Our
result is rather general as it applies to noisy observations of
y and dimension regimes where the sample size n is much
smaller than the number of input variables p. The theory
was derived based on new concentration bounds and function
analysis that may be interesting in their own right.

Inspired by the developed theory, we also propose a neural
network-based variable selection method. The idea is to use
the neural system as a vehicle to model nonlinearity and
extract significant variables. Through various experimental
studies, we show encouraging performance of the technique
in identifying a sparse set of significant variables from large
dimensional data, even if the underlying data are not generated

from a neural network. Compared with popular approaches
based on tree ensembles and linear-LASSO, the developed
method is suitable for variable selection from nonlinear, large-
dimensional, and low-noise systems.

The rest of the paper is outlined as follows. Section II intro-
duces the main theoretical result and proposes an algorithm
to perform variable selection. Section III uses simulated and
real-world datasets to demonstrate the proposed theory and
algorithm. Section IV concludes the paper.

II. MAIN RESULT

A. Notation

Let uS denote the vector whose entries indexed in the set S
remain the same as those in u, and the remaining entries are
zero. For any matrix W ∈ Rp×r, we define

∥W ∥1 =
∑

1≤k≤p,1≤j≤r

|wkj | , ∥W ∥F =
( ∑

1≤k≤p,1≤j≤r

w2
kj

)1/2

.

Similar notations apply to vectors. The inner product of two
vectors is denoted as ⟨u,v⟩. Let wj denote the j-th column
of W . The sparsity of a matrix W refers to the number
of nonzero entries in W . Let N (0, Ip) denote the standard
p-dimensional Gaussian distribution, and 1(·) denote the indi-
cator function. The rectified linear unit (ReLU) function is
defined by relu(v) = max{v, 0} for all v ∈ R.

B. Formulation

Consider n independently and identically distributed (i.i.d.)
observations {xi, yi}1≤i≤n satisfying

yi =
r∑

j=1

a⋆
j · relu(w⋆⊤

j xi + b⋆j ) + ξi (1)

with xi ∼ N (0, Ip), where r is the number of neurons, a⋆
j ∈

{1,−1}, w⋆
j ∈ Rp, b⋆j ∈ R, and ξi denotes the random noise

or approximation error obeying

1
n

n∑
i=1

ξ2i ≤ σ2. (2)

In the above formulation, the assumption a⋆
j ∈ {1,−1} does

not lose generality since a · relu(b) = ac · relu(b/c) for
any c > 0. The setting of Inequality 2 is for simplicity.
If ξi’s are unbounded random variables, the theoretical result
to be introduced will still hold, with more explanations in the
Appendix. The ξi’s are not necessarily i.i.d., and σ is allowed
to be zero, which reduces to the noiseless scenario.

Let W ⋆ = [w⋆
1 , . . . ,w

⋆
r ] ∈ Rp×r denote the data-

generating coefficients. The main problem to address is
whether one can stably identify those nonzero elements, given
that most entries in W ⋆ are zero. The study of neural networks
from an identifiability perspective is essential. Unlike the gen-
eralizability problem that studies the predictive performance
of machine learning models, the identifiability may be used to
interpret modeling results and help scientists make trustworthy
decisions. To illustrate this point, we will propose to use neural
networks for variable selection in Subsection II-E.
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To answer the above questions, we propose to study the
following LASSO-type optimization. Let

(
Ŵ , â, b̂

)
be a

solution to the following optimization problem,

min
W ,a,b

∥W ∥1 (3)

subject to
1
n

n∑
i=1

(
yi −

r∑
j=1

aj · relu(w⊤
j xi + bj)

)2

≤ σ2,

within the feasible range a ∈ {1,−1}r, W ∈ Rp×r, and
b ∈ Rr. Intuitively, the optimization operates under the
constraint that the training error is not too large, and the
objective function tends to sparsify W . Under some regularity
conditions, we will prove that the solution is indeed sparse and
close to the data-generating process.

C. Main Result

We make the following technical assumption.
Assumption 1: For some constant B ≥ 1,

1 ≤ ∥w⋆
j ∥2 ≤ B and |b⋆j | ≤ B ∀1 ≤ j ≤ r. (4)

In addition, for some constant ω > 0,

max
j,k=1,...,r,j ̸=k

∣∣⟨w⋆
j ,w

⋆
k⟩
∣∣

∥w⋆
j ∥2∥w⋆

k∥2
≤ 1
rω
. (5)

Remark 1: (Discussion of Assumption 1) The condition
in 4 is a normalization only for technical convenience, since
we can re-scale wj , bj , yi, σ proportionally without loss of
generality. Though this condition implicitly requires w⋆

j ̸= 0
for all j = 1, . . . , r, it is reasonable since it means the
neuron j is not used/activated. The condition in 5 requires
that the angle of any two different coefficient vectors is not
too small. This condition is analogous to a bounded-eigenvalue
condition often assumed for linear regression problems, where
each w⋆

j is understood as a column in the design matrix. This
condition is by no means mild or easy to verify in practice.
Nevertheless, as our focused regime is large p, n but small r,
we think the condition in 5 is still reasonable. For example,
when r = 2, this condition simply requires w⋆

1 ̸= w⋆
2 .

Our main result shows that if W ⋆ is sparse, one can stably
reconstruct a neural network when the number of samples (n)
scales logarithmically with the input dimension (p). A skepti-
cal reader may ask how the constants exactly depend on the
sparsity and r. We will provide a more elaborated result in
Subsection II-D and introduce the proof there.

Theorem 1: Under Assumption 1, there exist some con-
stants c1, c2, c3 > 0 depending only (polynomially) on the
sparsity of W ⋆ such that for any δ > 0, one has with
probability at least 1− δ,

â = Πa⋆ and ∥Ŵ −W ⋆Π⊤∥F + ∥b̂−Πb⋆∥2 ≤ c1σ (6)

for some permutation matrix Π, provided that

n > c2 log4 p

δ
and σ < c3. (7)

Remark 2: (Interpretation of Theorem 1) The permutation
matrix Π is necessary since the considered neural networks
produce identical predictive distributions (of y conditional x)

under any permutation of the hidden neurons. The result states
that the underlying neural coefficients can be stably estimated
even when the sample size n is much smaller than the number
of variables p. Also, the estimation error bound is at the order
of σ, the specified noise level in 2.

Suppose that we define the signal-to-noise ratio (SNR) to
be E∥x∥2/σ2. An alternative way to interpret the theorem is
that a large SNR ensures the global minimizer to be close to
the ground truth with high probability. One may wonder what
if the σ < c3 condition is not met. We note that if σ is too
large, the error bound in 6 would be loose, and it is not of
much interest anyway. In other words, if the SNR is small,
we may not be able to estimate parameters stably. This point
will be demonstrated by experimental studies in Section III.

The estimation results in Theorem 1 can be translated
into variable selection results as shown in the following
Corollary 1. The connection is based on the fact that if i-
th variable is redundant, the underlying coefficients associated
with it should be zero. Let w⋆

i,· denote the i-th row of W ⋆.
Then,

S⋆ = {1 ≤ i ≤ p : ∥w⋆
i,·∥2 > 0}

characterizes the “significant variables.” Corollary 1 states that
the set of variables with non-vanished coefficient estimates
contains all the significant variables. The corollary also shows
that with a suitable shrinkage of the coefficient estimates, one
can achieve variable selection consistency.

Corollary 1 (Variable Selection): Let Ŝc1σ ⊆ {1, . . . , p}
denote the sets of i’s such that ∥ŵi,·∥2 > c1σ. Under the same
assumption as in Theorem 1, and min1≤i≤r

∥∥w⋆
i,·
∥∥

2
> 2c1σ,

for any δ > 0, one has

P(S⋆ = Ŝc1σ) ≥ 1− δ,

provided that n > c2 log4 p
δ and σ < c3.

Considering the noiseless scenario σ = 0, Theorem 1 also
implies the following corollary.

Corollary 2 (Unique Parsimonious Representation): Under
the same assumption as in Theorem 1, there exists a constant
c2 > 0 depending only on the sparsity of W ⋆ such that for
any δ > 0, one has with probability at least 1− δ,

â = Πa⋆, Ŵ = W ⋆Π⊤, and b̂ = Πb⋆

for some permutation matrix Π, provided that n > c2 log4 p
δ .

Corollary 2 states that among all the possible representa-
tions W in 1 (with ξi = 0), the one(s) with the smallest
ℓ1-norm must be identical to W ⋆ up to a column permutation
with high probability. In other words, the most parsimonious
representation (in the sense of ℓ1 norm) of two-layer ReLU
neural networks is unique. This observation addresses the
questions raised in Section I.

It is worth mentioning that since the weight matrix W of
the neural network is row-sparse, Group-LASSO is a suitable
alternative to LASSO. We leave the analysis of Group-LASSO
for future study.

D. Elaboration on the Main Result

Suppose that W ⋆ has at most s nonzero entries. The
following theorem is a more elaborated version of Theorem 1.
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Theorem 2: There exist some constants c1, c2, c3 > 0 such
that for any δ > 0, one has with probability at least 1− δ,

â = Πa⋆ and ∥Ŵ −W ⋆Π⊤∥F + ∥b̂−Πb⋆∥2 ≤ c1σ (8)

for some permutation Π ∈ {0, 1}r×r, provided that
Assumption 1 holds and

n > c2s
3r13 log4 p

δ
and σ <

c3
r
. (9)

Remark 3: (Sketch Proof of Theorem 1) The proof of
Theorem 1 is nontrivial and is included in the Appendix. Next,
we briefly explain the sketch of the proof. First, we will define
what we refer to as D1-distance and D2-distance between
(W ,a, b) and (W ⋆,a⋆, b⋆). These distances can be regarded
as the counterpart of the classical ℓ1 and ℓ2 distances between
two vectors, but allowing the invariance under any permutation
of neurons (Remark 2). Then, we let

∆n :=
1
n

n∑
i=1

[ r∑
j=1

ajrelu(w⊤
j xi + bj)

−
r∑

j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j )
]2
,

where (W ,a, b) is the solution of the problem in 3, and
develop the following upper and lower bounds of it:

∆n ≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2 and

∆n ≥ c4 min
{

1
r
,D2

2

}
(10)

hold with probability at least 1 − δ, provided that n ≥
c5S

3r4 log4 p
δ , for some constants c4, c5, c6, and S to be

specified. Here, the upper bound will be derived from a series
of elementary inequalities. The lower bound is reminiscent of
the Restricted Isometry Property (RIP) [15] for linear models.
We will derive it from the lower bound of the population
counterpart by concentration arguments, namely

E

 r∑
j=1

ajrelu(w⊤
j x + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x + b⋆j )

2

≥ cmin
{

1
r
,D2

2

}
,

for some constant c > 0. The bounds in 10 imply that with
high probability,

c4 min
{

1
r
,D2

2

}
≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2,

Using this and an inequality connecting D1 and D2, we can
prove the final result.

Remark 4 (Alternative Assumption and Result): We pro-
vide an alternative to Theorem 2. Consider the following
Assumption 1’ as an alternative to Assumption 1.

Assumption 1’: For some constant B > 0,

∥w⋆
j ∥2 ≤ B and |b⋆j | ≤ B for all 1 ≤ j ≤ r.

In addition,

E
[
⟨a, relu(W⊤x + b)⟩ − ⟨a⋆, relu(W ⋆⊤x + b⋆)⟩

]2
≥ ψD2 [(W ,a, b), (W ⋆,a⋆, b⋆)]2 , (11)

and

n >
c2
ψ
s3r3 log4 p

δ
. (12)

With Assumption 1’ instead of Assumption 1, one can
still derive the same result as Theorem 2. The proof of the
above result is similar to that of Theorem 2, except that we
insert Inequality (11) instead of Inequality (22) into (21) in
Appendix A.

E. Variable Selection

To solve the optimization problem 3 in practice, we consider
the following alternative problem,

min
W∈Rp×r,a∈Rr,b∈Rr

{
1
n

n∑
i=1

(
yi −

r∑
j=1

aj · relu(w⊤
j xi + bj)

)2

+ λ ∥W ∥1

}
. (13)

It has been empirically shown that algorithms such as the
stochastic gradient descent can find a good approximate
solution to the above optimization problem [34], [35]. Next,
we will discuss some details regarding the variable selection
using LASSO-regularized neural networks.

Tuning parameters. Given a labeled dataset in practice,
we will need to tune hyper-parameters including the penalty
term λ, the number of neurons r, learning rate, and the
number of epochs. We suggest the usual approach that splits
the available data into training and validation parts. The
training data are used to estimate neural networks for a set
of candidate hyper-parameters. The most suitable candidate
will be identified based on the predictive performance on the
validation data.

Variable importance. Inspired by Corollary 1, we interpret
the ℓ2-norm of ŵi,· as the importance of the i-th variable,
for i = 1, . . . , p. Corollary 1 indicates that we can accurately
identify all the significant variables in S⋆ with high probability
if we correctly set the cutoff value c1σ.

Setting the cutoff value. It is conceivable that variables
with large importance are preferred over those with near-
zero importance. This inspires us to cluster the variables into
two groups based on their importance. Here, we suggest two
possible approaches. The first is to use a data-driven approach
such as k-means and Gaussian mixture model (GMM). The
second is to manually set a threshold value according to
domain knowledge on the number of important variables.

Extension to deep neural networks. Inspired by 13, we can
intuitively generalize the proposed method to deep neural
networks by penalizing the ℓ1-norm of the weight matrix in
the input layer. Though we do not have a theoretical analysis
for this broader setting, numerical studies show that it is still
effective.
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III. EXPERIMENTS

We perform experimental studies to show the promis-
ing performance of the proposed variable selection method.
We compare the variable selection accuracy and prediction
performance of the proposed algorithm (‘NN’) with several
baseline methods, including LASSO (‘LASSO’), orthogo-
nal matching pursuit (‘OMP’), random forest (‘RF’), gra-
dient boosting (‘GB’), neural networks with group LASSO
(‘GLASSO’) [5], group sparse regularization (‘GSR’) [8], and
LNET (‘LNET’) [9]. The ‘NN’ hyperparameters to search
over are the penalty term λ ∈ {0.1, 0.05, 0.01, 0.005, 0.001},
the number of neurons r ∈ {20, 50, 100}, the learning
rate in {0.01, 0.005, 0.001}, and the number of epochs in
{100, 200, 500}. Moreover, we extend ‘NN’ to a neural net-
work that contains an additional hidden layer of ten neurons.
We distinguish the proposed method with two-layer and three-
layer neural networks by ‘NN-2’ and ‘NN-3’, respectively.
Further experimental details are included in Appendix E.

A. Synthetic Datasets

1) NN-Generated Dataset: The first experiment uses the
data generated from Equation (1) with p = 100 variables,
r = 16 neurons. The first 10 rows of neural coefficients
W are independently generated from the standard uniform
distribution, and the remaining rows are zeros, representing
10 significant variables. The neural biases b are also gen-
erated from the standard uniform distribution. The signs of
neurons, a, follow an independent Bernoulli distribution. The
training size is n = 500, and the test size is 2000. The
noise is zero-mean Gaussian with standard deviation σ set
to be 0, 0.5, 1, and 5. For each σ, we evaluate its mean
squared error on the test dataset and three quantities for
variable selection: the number of correctly selected variables
(‘TP’, the larger the better), wrongly selected variables
(‘FP’, the smaller the better), and area-under-curve score
(‘AUC’, the larger the better). Here, ‘AUC’ is evaluated based
on the variable importance given by each method, which
is detailed in Appendix E. The procedure is independently
replicated 20 times.

The results are reported in Table I and Table II, which
suggest that ‘NN’ has the best overall performance for both
selection and prediction. In particular, ‘NN-2’ and ‘NN-3’
have almost the same performance among all situations, which
empirically demonstrates that the proposed method also works
for deeper neural networks. It is interesting to compare ‘NN’
with ‘LNET’: ‘NN’ has slightly higher test error than ‘LNET’
when the noise level is small, but a much smaller false positive
rate and higher AUC score than ‘LNET’. It indicates that ‘NN’
is more accurate for variable selection, while ‘LNET’ tends to
over-select variables for better prediction accuracy. Also, all
the methods perform worse as the noise level σ increases.

2) Linear Dataset: This experiment considers data gen-
erated from a linear model y = x⊤β + ξ, where β =
(3, 1.5, 0, 0, 2, 0, 0, 0)⊤, ξ ∼ N (0, σ2), and x follows a
multivariate Gaussian distribution whose (i, j)-th correlation
is 0.5|i−j|. Among the p = 8 features, only three of them are
significant. The training size is n = 60, and the test size is 200.

TABLE I
PERFORMANCE COMPARISON ON THE NN-GENERATED DATA, IN TERMS

OF THE NUMBER OF CORRECTLY (‘TP’), WRONGLY (‘FP’)
SELECTED FEATURES, AND THE AUC SCORE FOR DIFFERENT σ.

THE STANDARD ERRORS ARE WITHIN THE PARENTHESES

TABLE II
PERFORMANCE COMPARISON ON THE NN-GENERATED DATA, IN TERMS

OF THE AVERAGE MEAN SQUARED ERROR FOR DIFFERENT σ

The other settings are the same as Subsubsection III-A.1. The
results are presented in Tables III and IV.

The results show that the linear model-based methods
‘LASSO’ and ‘OMP’ have the best overall performance, which
is expected since the underlying data are from a linear model.
The proposed ‘NN’ approach is almost as good as the linear
methods. Note that ‘NN-3’ outperforms ‘NN-2’ in this case.
One possible explanation is that deeper neural networks have
much larger expressivity than two-layer networks. On the
other hand, the tree-based methods ‘RF’ and ‘GB’ perform
significantly worse. This is possibly because the sample size
n = 60 is relatively small, so the tree-based methods have
a large variance. Meanwhile, the ‘NN’ uses the ℓ1 penalty
to alleviate the over-parameterization and consequently spots
the relevant variables. Additionally, ‘NN’ exhibits a positive
association between the selection accuracy and prediction
performance, while the tree-based methods do not.

3) Friedman Dataset: This experiment uses the Friedman
dataset with the following nonlinear data-generating process,
y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10 x4 + 5 x5 + ξ.
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TABLE III
PERFORMANCE COMPARISON ON THE LINEAR DATA, IN TERMS OF THE

NUMBER OF CORRECTLY (‘TP’), WRONGLY (‘FP’) SELECTED
FEATURES, AND THE AUC SCORE FOR DIFFERENT σ

TABLE IV
PERFORMANCE COMPARISON ON THE LINEAR DATA, IN TERMS OF THE

NUMBER OF AVERAGE MEAN SQUARED ERROR FOR DIFFERENT σ

We generate standard Gaussian predictors x with a dimension
of p = 50. The training size is n = 500 and the test size
is 2000. Other settings are the same as before. The results are
summarized in Tables V and VI. For this nonlinear dataset,
‘NN’ and ‘GB’ accurately find the significant variables and
exclude redundant ones, while the linear methods fail to select
the quadratic factor x3. As for the prediction performance,
neural network-based methods outperform other methods.
In particular, ‘NN’ is better than ‘GLASSO’ and ‘GSR’,
while ‘LNET’ exhibits better prediction and worse selection
performance as seen in previous experiments.

B. BGSBoy Dataset

The BGSBoy dataset involves 66 boys from the Berke-
ley guidance study (BGS) of children born in 1928-29 in
Berkeley, CA [36]. The dataset includes the height (‘HT’),
weight (‘WT’), leg circumference (‘LG’), strength (‘ST’) at
different ages (2, 9, 18 years), and body mass index (‘BMI18’).

TABLE V
PERFORMANCE COMPARISON ON THE FRIEDMAN DATA, IN TERMS OF

THE NUMBER OF CORRECTLY (‘TP’), WRONGLY (‘FP’) SELECTED
FEATURES, AND THE AUC SCORE FOR DIFFERENT σ

TABLE VI
PERFORMANCE COMPARISON ON THE FRIEDMAN DATA, IN TERMS

OF THE AVERAGE MEAN SQUARED ERROR FOR DIFFERENT σ

We choose ‘BMI18’ as the response, which is defined as
follows.

BMI18 = WT18/(HT18/100)2, (14)

where WT18 and HT18 denote the weight and height at the age
of 18, respectively. In other words, ‘WT18’ and ‘HT18’ are
sufficient for modeling the response among p = 10 variables.
Other variables are correlated but redundant. The training size
is n = 44 and the test size is 22. Other settings are the same as
before. We compare the prediction performance and explore
the three features which are most frequently selected by each
method. The results are summarized in Table VII.

From the results, both linear and NN-based methods can
identify ‘WT18’ and ‘HT18’ in all the replications. Mean-
while, tree-based methods may miss ‘HT18’ but select ‘LG18’
instead, which is only correlated with the response. Interest-
ingly, we find that the linear methods still predict well in
this experiment. A possible reason is that Equation (14) can
be well-approximated by a first-order Taylor expansion on
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TABLE VII
EXPERIMENT RESULTS OF DIFFERENT METHODS ON THE BGSBOY DATASET. RMSE: THE MEAN OF THE ROOT MEAN SQUARED

ERROR(STANDARD ERROR). TOP 3 FEATURES: THE FEATURE NAME(NUMBER OF SELECTION, OUT OF 20 TIMES)

TABLE VIII
EXPERIMENT RESULTS OF DIFFERENT METHODS ON THE UJIINDOOR DATASET. RMSE: THE MEAN OF THE ROOT MEAN SQUARED

ERROR(STANDARD ERROR). TOP 10 FEATURES: THE FEATURE NAME(NUMBER OF SELECTION, OUT OF 20 TIMES)

‘HT18’ at the value of around 180, and the range of ‘HT18’
is within a small interval around 180.

C. UJIIndoorLoc Dataset

The UJIINdoorLoc dataset aims to solve the indoor local-
ization problem via WiFi fingerprinting and other variables
such as the building and floor numbers. A detailed description
can be found in [37]. Specifically, we have 520 Wireless
Access Points (WAPs) signals (which are continuous variables)
and ‘FLOOR’, ‘BUILDING’, ‘SPACEID’, ‘RELATIVEPOSI-
TION’, ‘USERID’, and ‘PHONEID’ as categorical variables.
The response variable is a user’s longitude (‘Longitude’).
The dataset has 19937 observations. We randomly sample
3000 observations and split them into n = 2000 for training
and 1000 for test. As part of the pre-processing, we create
binary dummy variables for the categorical variables, which
results in p = 681 variables in total. We explore the ten
features that are most frequently selected by each method.
We set the cutoff value as the tenth-largest variable importance.
The procedure is independently replicated 100 times. The
results are reported in Table VIII.

Based on the results, the ‘NN’ achieves the best prediction
performance and significantly outperforms other methods.
As for variable selection, since ‘BUILDING’ greatly influ-
ences the location from our domain knowledge, it is non-
surprisingly selected by all methods in every replication. How-
ever, except for ‘BUILDING’, different methods select dif-
ferent variables with some overlapping, e.g., ‘PHONEID_14’
selected by ‘GLASSO’ and ‘GB’, ‘USERID_16’ selected by
‘NN’ and ‘LASSO’, which indicate the potentially important
variables. ‘LNET’ again selects more variables than other
methods. There are nearly 60 variables selected by ‘LNET’ in
every replication. Nevertheless, those methods do not achieve
an agreement for variable selection. ‘NN’ implies that all the
WAPs signals are weak while categorical variables provide
more information about the user location. Given the very high
missing rate of WAPs signals (97% on average, as reported
in [37]), the interpretation of ‘NN’ seems reasonable.

D. Summary

The experiment results show the following points. First,
‘NN’ can stably identify the important variables and have
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competitive prediction performance compared with the base-
lines. Second, the increase of the noise level will hinder
both the selection and prediction performance. Third, the
LASSO regularization is crucial for ‘NN’ to avoid over-fitting,
especially for small data. Using group LASSO or a mixed type
of penalty has a similar performance as ‘NN’, while ‘LNET’
tends to over-select importance variables. Fourth, the selection
and prediction performances are often positively associated for
‘NN’, but may not be the case for baseline methods.

IV. CONCLUDING REMARKS

We established a theory for the use of LASSO in two-layer
ReLU neural networks. In particular, we showed that the
LASSO estimator could stably reconstruct the neural network
coefficients and identify the critical underlying variables under
reasonable conditions. We also proposed a practical method
to solve the optimization and perform variable selection.
We briefly remark on some interesting further work. First,
a limitation of the work is that we considered only a small r.
An interesting future problem is to study r that may grow fast
with p and n. Second, our experiments show that the algorithm
can be extended to deeper neural networks. It will be exciting
to generalize the main theorem to the multi-layer cases.

The Appendix includes proofs and experimental details.

APPENDIX A
ANALYSIS: PROOF OF THEOREM 2

Let S be the index set with cardinality S consisting of
the support for W ⋆ and top entries of Ŵ , where S will be
specified momentarily. Define

W := ŴS ∈ Rp×r,

and aj = âj , bj = b̂j . Define

d1(w1, a1, b1,w2, a2, b2)

=
{
∥w1 −w2∥1 + |b1 − b2| if a1 = a2;
∥w1∥1 + ∥w2∥1 + |b1|+ |b2| if a1 ̸= a2,

(15)

and

d2(w1, a1, b1,w2, a2, b2)

=
{ √

∥w1 −w2∥22 + |b1 − b2|2 if a1 = a2;
1 if a1 ̸= a2.

(16)

In addition, for permutation π on [r], let

D1 := min
π

r∑
j=1

d1(wπ(j), aπ(j), bπ(j),w
⋆
j , a

⋆
j , b

⋆
j ), (17a)

D2 := min
π

√√√√ r∑
j=1

d2(wπ(j), aπ(j), bπ(j),w
⋆
j , a

⋆
j , b

⋆
j )2 (17b)

denote the D1-distance and D2-distance between (W ,a, b)
and (W ⋆,a⋆, b⋆), respectively. Then, one has the following
bounds.

Lemma 1: For any W ∈ Rp×r with ∥W ∥0 ≤ S, there
exists some universal constants c4, c5 > 0 such that

1
n

n∑
i=1

 r∑
j=1

ajrelu(w⊤
j xi + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j xi+b⋆j )

2

≥ c4 min
{

1
r
,D2

2

}
(18)

holds with probability at least 1− δ provided that

n ≥ c5S
3r4 log4 p

δ
. (19)

Lemma 2: Then, there exists a universal constant c6 >
0 such that

1
n

n∑
i=1

 r∑
j=1

ajrelu(w⊤
j xi + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j xi+b⋆j )

2

≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2

holds with probability at least 1− δ.
By comparing the bounds given in Lemma 1 and 2, one has

c4 min
{

1
r
,D2

2

}
≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2,

provided that
n > c5S

3r4 log4 p

δ
.

Let Ŝ⋆ be the index set with cardinality 2s consisting of
the support for W ⋆ and top entries of Ŵ . In addition, let
D⋆

1 and D⋆
2 denote the D1-distance and D2-distance between(

ŴŜ⋆ , â, b̂
)

and (W ⋆,a⋆, b⋆) in a similar way as (17).

Observing the fact that for S ≥ 2s, one has S⋆ ⊂ Ŝ⋆ ⊂ S,
we have

∥wj −w⋆
j ∥2 ≥ ∥wj,Ŝ⋆ −w⋆

j ∥2 = ∥ŵj −w⋆
j ∥2,

after some permutation, and then

D⋆
2 ≤ D2.

In addition, after some permutation, we have D⋆
1 ≥

∥∥ŴŜ⋆ −
W ⋆

∥∥
1
≥ ∥W ⋆∥1−

∥∥ŴS⋆

∥∥
1

and ∥W ∥1 ≤
∥∥Ŵ∥∥

1
≤ ∥W ⋆∥1.

Then,

D1≤D⋆
1 +

∥∥∥ŴS−ŴŜ⋆

∥∥∥
1
≤ D⋆

1+
∥∥Ŵ∥∥

1
−
∥∥ŴS⋆

∥∥
1
≤2D⋆

1 .

Combined with Lemma 3 in Appendix D, the above results
give

D⋆
2 ≤

2c6
c4
σ,

provided that for some constant c7 > 0

n ≥ c5S
3 log4 p

δ
with S ≥ c7sr,

such that

c6

(
r

S
+
r log3 p

nδ

n

)
D⋆2

1 ≤ c4
8
D⋆2

2 .
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Then, we can conclude the proof since after appropriate
permutation,

∥Ŵ −W ⋆∥F ≤ 2∥ŴŜ⋆ −W ⋆∥F.

APPENDIX B
PROOF OF LEMMA 1 (LOWER BOUND)

This can be seen from the following three properties.
• Consider the case that

D1 ≤ ϵ =
δ

4nr

√
π

log 4pn
δ

.

With probability at least 1− δ,

1
n

n∑
i=1

[ r∑
j=1

ajrelu(w⊤
j xi + bj)

−
r∑

j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j )
]2

=
D2

1

ϵ2
1
n

n∑
i=1

[ r∑
j=1

ajrelu(w̃⊤
j xi + b̃j)

−
r∑

j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j )
]2
, (20)

where w̃j = w⋆
j + ϵ

D1

(
wj −w⋆

j

)
and b̃j = b⋆j +

ϵ
D1

(
bj − b⋆j

)
.

• For any ϵ > 0 and

D1 ≥
ϵ√

S
n log pr

S log BS
ϵδ

,

there exists some universal constant C1 > 0, such that
with probability at least 1− δ,

1
n

n∑
i=1

[ r∑
j=1

ajrelu(w⊤
j xi + bj)

−
r∑

j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j )
]2

≥ E

 r∑
j=1

ajrelu(w⊤
j x+bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x+b⋆j )

2

−C1D
2
1 log

pn

δ

√
S

n
log

pr

S
log

BS

ϵδ
. (21)

• For some universal constant C2 > 0

E

 r∑
j=1

ajrelu(w⊤
j x + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x + b⋆j )

2

≥ C2 min
{

1
r
,D2

2

}
. (22)

Putting the above together. Let

ϵ = C3
δ

nr

√
S

n
log

BnS

δ
,

for some universal constant C3 > 0 such that

ϵ√
S
n log pr

S log BS
ϵδ

<
δ

4nr

√
π

log 4pn
δ

.

Inserting (22) into (21) gives that

1
n

n∑
i=1

 r∑
j=1

ajrelu(w⊤
j xi + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j )

2

≥ C2 min
{

1
r
,D2

2

}
− C1D

2
1 log

pn

δ

√
S

n
log

pr

S
log

BS

ϵδ

≥ C2

2
min

{
1
r
,D2

2

}
, (23)

holds with probability at least 1 − δ provided that for some
constant C4 > 0

n ≥ C4S
3r4 log

pr

S
log

BS

ϵδ
log2 pn

δ
and

D1 ≥
δ

4nr

√
π

log 4pn
δ

.

Here, the last line holds due to Lemma 3 and we assume that
max {∥W ∥∞, ∥b∥∞} is bounded by some constant. On the
other hand, if

D1 <
δ

4nr

√
π

log 4pn
δ

,

it follows from (20) and (23) that

1
n

n∑
i=1

 r∑
j=1

ajrelu(w⊤
j xi + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j )

2

≥ D2
1

ϵ2
C2

2
min

{
1
r
, D̃2

2

}
=
C2

2
D2

2.

Summing up, we conclude the proof by verifying (20), (21),
and (22) below.

A. Proof of (20)

Since D1 ≤ ϵ = δ
4nr

√
π

log 4pn
δ

, without loss of generality,

we assume that aj = a⋆
j for 1 ≤ j ≤ r, and

D1 =
r∑

j=1

(
∥wj −w⋆

j ∥1 + |bj − b⋆j |
)
≤ ϵ.

By taking union bound, with probability at least 1 − δ
2 , one

has for all 1 ≤ i ≤ n and 1 ≤ j ≤ r,∣∣w⋆⊤
j xi + b⋆j

∣∣ > δ

2nr

√
π

2
,

since ∥w⋆
j ∥2 ≥ 1 and xi ∼ N (0, I). In addition, for all 1 ≤

i ≤ n and 1 ≤ j ≤ r,∣∣w⊤
j xi+bj −w⋆⊤

j xi − b⋆j
∣∣ ≤ ∥wj −w⋆

j ∥1∥xi∥∞+|bj − b⋆j |

≤ ϵ

√
2 log

4pn
δ
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holds with probability at least 1− δ
2 . Here, the last inequality

comes from the fact that with probability at least 1− δ
2 ,

∥xi∥∞ ≤
√

2 log
4pn
δ

for all 1 ≤ i ≤ n. (24)

Putting together, we have with probability at least 1− δ,

u(w⊤
j xi + bj) = u(w⋆⊤

j xi + b⋆j ), (25)

provided that

ϵ ≤ δ

4nr

√
π

log 4pn
δ

.

Note that u(x) = 1 if x > 0, and u(x) = 0 if x ≤ 0. Then
combining with the definition of w̃j and b̃j , the above property
yields

1
n

n∑
i=1

 r∑
j=1

ajrelu(w⊤
j xi + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j )

2

=
1
n

n∑
i=1

 r∑
j=1

a⋆
ju(w

⋆⊤
j xi+b⋆j )(w

⊤
j xi+bj −w⋆⊤

j xi−b⋆j )

2

=
D2

1

ϵ2
1
n

n∑
i=1

[ r∑
j=1

a⋆
ju(w

⋆⊤
j xi + b⋆j )

× (w̃⊤
j xi + b̃j −w⋆⊤

j xi − b⋆j )
]2

=
D2

1

ϵ2
1
n

n∑
i=1

[ r∑
j=1

ajrelu(w̃⊤
j xi + b̃j)

−
r∑

j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j )
]2
,

and the claim is proved. Here, the last equality holds due
to (25) and aj = a⋆

j for j = 1, . . . , r.

B. Proof of (21)

Notice that∣∣ajrelu(w⊤
j x + bj)− a⋆

j relu(w⋆⊤
j xi + b⋆j )

∣∣
≤
{
∥wj −w⋆

j ∥1∥x∥∞ + |bj − b⋆j | if aj = a⋆
j ,(

∥wj∥1 + ∥w⋆
j ∥1
)
∥x∥∞ + |bj |+ |b⋆j | if aj ̸= a⋆

j ,

which leads to∣∣∣∣∣∣
r∑

j=1

ajrelu(w⊤
j x + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x + b⋆j )

∣∣∣∣∣∣
≤ D1 max {∥x∥∞, 1} . (26)

For any fixed (W ,a, b), let

zi :=
r∑

j=1

ajrelu(w⊤
j xi + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j ),

and define the following event set

E :=

{
∥xi∥∞ ≤

√
2 log

4pn
δ

for all 1 ≤ i ≤ n

}
.

Then, with probability at least 1− δ,

1
n

n∑
i=1

(
z2
i − E

[
z2
i

])
(27)

=
1
n

n∑
i=1

{
z2
i 1(E)− E

[
z2
i 1(E)

]
− E

[
z2
i 1(E)

]}
≥ −4D2

1 log
4pn
δ

√
1
n

log
2
δ
−D2

1

δ

n

≥ −5D2
1 log

4pn
δ

√
1
n

log
2
δ
. (28)

Here, the first line holds due to (24); the last line comes from
Hoeffding’s inequality, and the fact that∣∣E [z2

i 1(E)
]∣∣ ≤ D2

1

∣∣∣∣∣E
[
∥xi∥2∞1(∥xi∥∞ >

√
2 log

4pn
δ

)

]∣∣∣∣∣
≤ D2

1

∫ ∞

√
2 log 4pn

δ

x2dP(∥xi∥∞ < x)

≤ D2
1

∫ ∞

√
2 log 4pn

δ

4xp exp(−x
2

2
)dx ≤ D2

1

δ

n
.

In addition, consider the following ϵ-net

Nϵ :=
{

(W ,a, b) : |Wij | ∈
ϵ

r + S

[⌈B(r + S)
ϵ

⌉]
,

∥W ∥0 ≤ S, |bj | ∈
ϵ

r+S

[⌈B(r+S)
ϵ

⌉]
, |aj | = 1

}
,

where [n] := {1, 2, . . . , n− 1}. Then, for all (W ,a, b) with
∥W ∥1 ≤ B and ∥b∥1 ≤ B, there exists some point, denoted

by
(
W̃ , ã, b̃

)
, in Nϵ whose D1-distance from (W ,a, b) is

less than ϵ. For simplicity, define

zi :=
r∑

j=1

ajrelu(w⊤
j xi + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j ),

z̃i :=
r∑

j=1

ãjrelu(w̃⊤
j xi + b̃j)−

r∑
j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j ).

Similar to (26), we can derive that∣∣∣∣∣∣
r∑

j=1

ajrelu(w⊤
j x + bj)−

r∑
j=1

ãjrelu(w̃⊤
j x + b̃j)

∣∣∣∣∣∣
≤ ϵmax {∥x∥∞, 1} ,

which implies∣∣z2
i − z̃2

i

∣∣ ≤ ϵ (ϵ+D1) max
{
∥xi∥2∞, 1

}
,

and then with probability at least 1− δ,

1
n

n∑
i=1

(
z2
i − E

[
z2
i

])
− 1
n

n∑
i=1

(
z̃2
i − E

[
z̃2
i

])
≥ −4ϵ (ϵ+D1) log

4pn
δ
. (29)

In addition, it can be verified that

log |Nϵ| ≤ C5S log
pr

S
log

BS

ϵ
, (30)
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for some universal constant C5 > 0. Combining (28), (29),
and (30) leads to

1
n

n∑
i=1

(
z2
i − E

[
z2
i

])
≥− 5 (ϵ+D1)

2 log
4pn
δ

√
1
n

log
2 |Nϵ|
δ

− 4ϵ (ϵ+D1) log
4pn
δ
.

It follows that (21) holds.

C. Proof of (22)

We first consider a simple case that bj = 0 and b⋆j = 0 for
1 ≤ j ≤ r, and show that for some small constant C6 > 0,

E

 r∑
j=1

ajrelu(w⊤
j x)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x)

2

≥ C6 min
{

1
r
,D2

2

}
. (31)

Next, we will assume that

E

 r∑
j=1

ajrelu(w⊤
j x)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x)

2

≤ C6

r
.

Otherwise, Inequality 31 already holds. According to
Lemma 4, one has for any constant k ≥ 0, there exists some
constant αk > 0 such that

E

 r∑
j=1

ajrelu(w⊤
j x)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x)

2

≥ αk

∥∥∥∥ r∑
j=1

aj∥wj∥2
( wj

∥wj∥2
)⊗2k

−
r∑

j=1

a⋆
j∥w⋆

j ∥2
( w⋆

j

∥w⋆
j ∥2
)⊗2k

∥∥∥∥2

F

. (32)

Assumption 1 tells us that for any integer k ≥ 2
ω ,∣∣⟨v⋆

j1 ,v
⋆
j2⟩
∣∣ ≤ 1

r2
. (33)

where

vj := vec
(( wj

∥wj∥2
)⊗k
)

with βj := aj∥wj∥2,

and

v⋆
j := vec

(( w⋆
j

∥w⋆
j ∥2
)⊗k

)
with β⋆

j := a⋆
j∥w⋆

j ∥2.

Then, (32) gives

E

 r∑
j=1

ajrelu(w⊤
j x)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x)

2

≥ α3k

∥∥∥∥∥∥
r∑

j=1

βjv
⊗6
j −

r∑
j=1

β⋆
j v⋆⊗6

j

∥∥∥∥∥∥
2

F

.

Define

S+ := span {vj}j:βj>0 S− := span {vj}j:βj<0 ,

and

S⋆
+ := span

{
v⋆

j

}
j:β⋆

j >0
S⋆
− := span

{
v⋆

j

}
j:β⋆

j <0
.

Let PS and P⊥
S denote the projection onto and perpen-

dicular to the subspace S, respectively. By noticing that
P⊥

S−vj = 0 for j obeying βj < 0, and P⊥
S⋆
+
v⋆

j = 0 for j
obeying β⋆

j > 0, one has∥∥∥∥∥∥
r∑

j=1

βjv
⊗6
j −

r∑
j=1

β⋆
j v⋆⊗6

j

∥∥∥∥∥∥
2

F

≥
∥∥∥∥ ∑

j:βj>0

βj

(
P⊥

S−vj

)⊗2 ⊗
(
P⊥

S⋆
+
vj

)⊗4

−
∑

j:β⋆
j <0

β⋆
j

(
P⊥

S−v⋆
j

)⊗2 ⊗
(
P⊥

S⋆
+
v⋆

j

)⊗4
∥∥∥∥2

F

≥
∑

j:β⋆
j <0

∥∥∥β⋆
j

(
P⊥

S−v⋆
j

)⊗2 ⊗
(
P⊥

S⋆
+
v⋆

j

)⊗4
∥∥∥2

F

≥ 1
2

∑
j:β⋆

j <0

∥∥∥P⊥
S−v⋆

j

∥∥∥4

2
,

where the penultimate inequality holds since the inner product
between every pair of terms is positive, and the last inequality
comes from the facts that |β⋆

j | ≥ 1 and (33).
Moreover, by means of AM-GM inequality and (33), one

can see that∑
j:β⋆

j <0

∥∥∥P⊥
S−v⋆

j

∥∥∥4

2
≥ 1
r

( ∑
j:β⋆

j <0

∥∥∥P⊥
S−v⋆

j

∥∥∥2

2

)2

=
1
r

∥∥∥P⊥
S−
[
v⋆

j

]
j:β⋆

j <0

∥∥∥4

F

≥ 1
2r

∥∥∥P⊥
S−PS⋆

−

∥∥∥4

F
.

Then combining with (31), the above result and the counterpart
for β⋆

j > 0 lead to

dim(S−) ≥ dim(S⋆
−) and dim(S+) ≥ dim(S⋆

+),

which gives

dim(S−) = dim(S⋆
−) and dim(S+) = dim(S⋆

+).

Furthermore, for some small constant C6 > 0, we have

dist(S−,S⋆
−) ≤ C6 and dist(S+,S⋆

+) ≤ C6.

Let P⊥
i denote the projection perpendicular to

span
{
v⋆

j

}
j ̸=i:β⋆

j >0
,

and

γj :=
βj⟨P⊥

S−vj , P
⊥
S−v⋆

i ⟩2⟨P⊥
i vi, P

⊥
S−v⋆

i ⟩2∥∥P⊥
S−v⋆

i

∥∥2

2

∥∥P⊥
i v⋆

i

∥∥2 .
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Then for any i,∥∥∥∥∥∥
r∑

j=1

βjv
⊗6
j −

r∑
j=1

β⋆
j v⋆⊗6

j

∥∥∥∥∥∥
2

F

≥
∥∥∥∥ ∑

j:βj>0

βj

(
P⊥

S−vj

)⊗2 ⊗ v⊗4
j

−
r∑

j=1

β⋆
j

(
P⊥

S−v⋆
j

)⊗2 ⊗ v⋆⊗4
j

∥∥∥∥2

F

≥ 1
2

∥∥∥∥ ∑
j:βj>0

βj

(
P⊥

S−vj

)⊗2 ⊗ v⊗4
j

−
∑

j:β⋆
j >0

β⋆
j

(
P⊥

S−v⋆
j

)⊗2 ⊗ v⋆⊗4
j

∥∥∥∥2

F

≥ 1
2

∥∥∥∥ ∑
j:βj>0

βj

(
P⊥

S−vj

)⊗2 ⊗
(
P⊥

i vi

)⊗2 ⊗ v⊗2
j

− β⋆
i

(
P⊥

S−v⋆
i

)⊗2 ⊗
(
P⊥

i v⋆
i

)⊗2 ⊗ v⋆⊗2
i

∥∥∥∥2

F

≥ 1
2

∥∥∥∥∥∥
∑

j:βj>0

γjv
⊗2
j − β⋆

i

∥∥P⊥
S−v⋆

i

∥∥2

2

∥∥P⊥
i v⋆

i

∥∥2
v⋆⊗2

i

∥∥∥∥∥∥
2

F

,

which, together with (31), implies that there exists some j
such that

∥
√
βjvj −

√
β⋆

i v⋆
i ∥22 ≤

1
r
.

Without loss of generality, assume that

∥
√
βjvj −

√
β⋆

j v⋆
j ∥22 ≤

1
r
, for all 1 ≤ j ≤ r. (34)

Then

E
[ r∑

j=1

ajrelu(w⊤
j x)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x)
]2

≥ αk

∥∥∥∥∥∥
r∑

j=1

βjvjv
⊤
j −

r∑
j=1

β⋆
j v⋆

j v⋆⊤
j

∥∥∥∥∥∥
2

F

≥ αk

r∑
j=1

∥∥βjvjv
⊤
j − β⋆

j v⋆
j v⋆⊤

j

∥∥2

F

− αk

2r

 r∑
j=1

∥∥βjvjv
⊤
j − β⋆

j v⋆
j v⋆⊤

j

∥∥
F

2

≥ αk

2

r∑
j=1

∥∥βjvjv
⊤
j − β⋆

j v⋆
j v⋆⊤

j

∥∥2

F
.

Here, the first line comes from (32); the second line holds
through the following claim∣∣⟨βj1vj1v

⊤
j1 − β⋆

j1v
⋆
j1v

⋆⊤
j1 , βj2vj2v

⊤
j2 − β⋆

j2v
⋆
j2v

⋆⊤
j2 ⟩
∣∣

≤ 1
2r
∥βj1vj1v

⊤
j1 − β⋆

j1v
⋆
j1v

⋆⊤
j1 ∥2∥βj2vj2v

⊤
j2 − β⋆

j2v
⋆
j2v

⋆⊤
j2 ∥2

since for δj :=
√
βjvj −

√
β⋆

j v⋆
j ,

βjvjv
⊤
j − β⋆

j v⋆
j v⋆⊤

j = δjδ
⊤
j +

√
β⋆

j δjv
⋆⊤
j +

√
β⋆

j v⋆
j δ⋆⊤

j .

Then the conclusion is obvious by noticing that

∥∥βjvjv
⊤
j − β⋆

j v⋆
j v⋆⊤

j

∥∥
F
≥ ∥wj −w⋆

j ∥2.

Finally, we analyze the general case with bj , b⋆j ̸= 0, which
is similar to the above argument. For simplicity, we only
explain the different parts here. According to Lemma 4, one
has for any constant k ≥ 0, there exists some constant
αk > 0 and some function fk : R → R such that

E

 r∑
j=1

ajrelu(w⊤
j x + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x + b⋆j )

2

≥
∞∑

k≥ 12
ω

∥∥∥∥ r∑
j=1

ajfk(
bj

∥wj∥2
)∥wj∥2

( wj

∥wj∥2
)⊗k

−
r∑

j=1

a⋆
jfk(

b⋆j
∥w⋆

j ∥2
)∥w⋆

j ∥2
( w⋆

j

∥w⋆
j ∥2
)⊗k
∥∥∥∥2

F

≳
r∑

j=1

∞∑
k≥ 12

ω

∥∥∥∥∥ajfk(
bj

∥wj∥2
)wj − a⋆

jfk(
b⋆j

∥w⋆
j ∥2

)w⋆
j

∥∥∥∥∥
2

F

≳
r∑

j=1

inf
Rl(x)

E
[
ajrelu(w⊤

j x + bj)

− a⋆
j relu(w⋆⊤

j x + b⋆j )−Rl(x)
]2

≳
r∑

j=1

(
∥wj −w⋆

j ∥22 + |bj − b⋆j |2
)
. (35)

Here, l =
[
12
ω

]
, and the second inequality holds in a sim-

ilar way to above analysis. Then the general conclusion is
handy.

APPENDIX C
PROOF OF LEMMA 2 (UPPER BOUND)

For simplicity, let

zi :=
r∑

j=1

ajrelu(w⊤
j xi + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j xi + b⋆j ),

ẑi :=
r∑

j=1

ajrelu(w⊤
j xi + bj)−

r∑
j=1

âjrelu(ŵ⊤
j xi + b̂j).

Recall the optimality of
(
Ŵ , â, b̂

)
with respect to the prob-

lem in 3. According to the triangle inequality, one has

√√√√ 1
n

n∑
i=1

z2
i ≤

√√√√ 1
n

n∑
i=1

ẑ2
i + 2σ. (36)
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We can bound the first term in the right hand side by

1
n

n∑
i=1

ẑ2
i

=
1
n

n∑
i=1

 r∑
j=1

aj

(
relu(w⊤

j xi + bj)− relu(ŵ⊤
j xi + b̂j)

)2

≤ 1
n

n∑
i=1

 r∑
j=1

∣∣(wj − ŵj)⊤xi

∣∣2

≤ r

n

n∑
i=1

r∑
j=1

∣∣(wj − ŵj)⊤xi

∣∣2 ,
where the second line holds due to the contraction property
of ReLu function, and the last line comes from the AM-GM
inequality. Lemma 5 further gives for some constant C7 > 0,

r∑
j=1

1
n

n∑
i=1

∣∣(wj − ŵj)⊤xi

∣∣2 ≤C7

r∑
j=1

∥wj − ŵj∥22

+ C7

log3 p
nδ

n

r∑
j=1

∥wj − ŵj∥21

holds with probability at least 1− δ. In addition,
r∑

j=1

∥wj − ŵj∥21 ≤
∥∥∥W − Ŵ

∥∥∥2

1

≤
(
∥W ⋆∥1 − ∥Ŵ ∥1

)2

≤ D2
1,

and
r∑

j=1

∥wj−ŵj∥22 =
∥∥∥W−Ŵ

∥∥∥2

1
≤
∥∥∥W−Ŵ

∥∥∥
1

∥∥∥W−Ŵ
∥∥∥
∞

≤

(
∥W ⋆∥1−∥Ŵ ∥1

)(
∥W ⋆∥1−∥Ŵ ⋆∥1

)
S/2

≤ 4
S
D2

1.

Here, Ŵ ⋆ denote the entries of Ŵ on the support set for W ⋆,
and we make use of the fact that ∥Ŵ ∥1 ≤ ∥W ⋆∥1 and∥∥∥W − Ŵ

∥∥∥
∞
≤ ∥Ŵ ⋆ − Ŵ ∥1

S − s
≤ ∥W ⋆∥1 − ∥Ŵ ⋆∥1

S/2
.

Putting everything together gives the desired result.

APPENDIX D
TECHNICAL LEMMAS

Lemma 3: For any (W ,a, b) with ∥W ∥0 + ∥b∥0 +
∥W ⋆∥0+∥b⋆∥0 ≤ S. Assume that ∥W ∥1+∥b∥1 ≤ ∥W ⋆∥1+
∥b⋆∥1 and ∥w⋆

j ∥22 + |b⋆j |2 ≤ 1. Then one has

D1 ≤ 2
√
SD2, (37)

where D1, D2 are defined in (17).
Proof: For simplicity, assume that

D2
2 =

∑
j∈J

(
∥wj−w⋆

j ∥22 + |bj−b⋆j |2
)
+
∑
j /∈J

(
∥w⋆

j ∥22 + |b⋆j |2
)
.

Here, j ∈ J means that aj = a⋆
j and

∥wj −w⋆
j ∥22 + |bj − b⋆j |2 ≤ ∥w⋆

j ∥22 + |b⋆j |2.

Then, according to the AM-GM inequality, one has
√
SD2 ≥

∑
j∈J

(
∥wj −w⋆

j ∥1 + |bj − b⋆j |
)

+
∑
j /∈J

(
∥w⋆

j ∥1 + |b⋆j |
)

≥
∑
j∈J

(
∥w⋆

j ∥1 − ∥wj∥1 + |b⋆j | − |bj |
)

+ ∥W ⋆∥1

+ ∥b⋆∥1 −
∑
j∈J

(
∥w⋆

j ∥1 + |b⋆j |
)

≥
∑
j /∈J

(
∥wj∥1 + |bj |

)
,

which implies that

2
√
SD2 ≥

∑
j∈J

(
∥wj −w⋆

j ∥1 + |bj − b⋆j |
)

+
∑
j /∈J

(
∥w⋆

j ∥1 + |b⋆j |+ ∥wj∥1 + |bj |
)
.

Thus we conclude the proof.
Lemma 4 (Theorem 2.1 [27]): For any constant k ≥ 0,

there exists some universal function fk : R → R such that

E

 r∑
j=1

ajrelu(w⊤
j x + bj)−

r∑
j=1

a⋆
j relu(w⋆⊤

j x + b⋆j )

2

=
∞∑

k=0

∥∥∥∥ r∑
j=1

ajfk

(
bj

∥wj∥2

)
∥wj∥2

(
wj

∥wj∥2

)⊗k

−
r∑

j=1

a⋆
jfk

(
b⋆j

∥w⋆
j ∥2

)
∥w⋆

j ∥2
(

w⋆
j

∥w⋆
j ∥2

)⊗k∥∥∥∥2

F

, (38)

with

αk := f2k(0) > 0, for all k > 0. (39)

In addition, we have

inf
Rl

E

arelu(w⊤x + b)−
r∑

j=1

a⋆relu(w⋆⊤x + b⋆)−Rl(x)

2

=
∞∑

k>l

∥∥∥∥afk

(
b

∥w∥2

)
∥w∥2

(
w

∥w∥2

)⊗k

− a⋆fk

(
b⋆

∥w⋆∥2

)
∥w⋆∥2

(
w⋆

∥w⋆∥2

)⊗k∥∥∥∥2

F

, (40)

where Rl denote a polynomial function of x with degree less
than l.

Lemma 5: There exists some universal constant c > 0, such
that for all w ∈ Rp,

1
n

n∑
i=1

∣∣w⊤xi

∣∣2 ≤ c ∥w∥22 + c
log3 p

nδ

n
∥w∥21 , (41)

holds with probability at least 1− δ.
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TABLE IX
HYPER-PARAMETERS USED IN OUR EXPERIMENTS

Proof: Before proceeding, we introduce some useful
techniques about Restricted Isometry Property (RIP). Let
X := 1√

n
[x1,x2, . . . ,xn]. For some constant c0 > 0, if n ≥

c0
(
s log p

s + log 1
δ

)
, then with probability at least 1− δ,∥∥X⊤w

∥∥2

2
≤ 2∥w∥22 (42)

holds for all w satisfying ∥w∥0 ≤ s.
We divide the entries of w into several groups S1 ∪

S2 ∪ . . . ∪ SL with equal size s (except for SL), such that
the entries in Sj are no less than Sk for any j < k. Then,
according (42), one has

1
n

n∑
i=1

(w⊤xi)2 = w⊤XX⊤w =
∑
j,k

w⊤
Sj

XX⊤wSk

≤ 2
∑
j,k

∥wSj
∥2∥wSk

∥2 = 2
( L∑

l=1

∥wSl
∥2
)2

.

In addition, the order of wSl
yields for l > 1,

∥wSl
∥2 ≤

√
s∥wSl

∥∞ ≤ 1
(l − 1)

√
s
∥w∥1,

which leads to( L∑
l=1

∥wSl
∥2
)2

≤ 2∥wS1∥22 + 2
( L∑

l=2

1
(l − 1)

√
s
∥w∥1

)2

≤ 2∥w∥22 +
2 log2 L

s
∥w∥21.

We conclude the proof by combining the above inequalities.

APPENDIX E
FURTHER EXPERIMENTS DETAILS

The hyper-parameters used in Section III are summarized
in Table IX.

We briefly explain the variable selection procedure. We first
obtain a vector of the variables’ importance. For ‘LASSO’ and
‘OMP’, we use the absolute value of the estimated coefficient
as the variable importance; for ‘NN’, ‘GLASSO’, and ‘GSR’,
we obtain the importance by applying row-wise ℓ2-norm to
the weight matrix in the input layer of the neural network; for
‘RF’, ‘GB’, and ‘LNET’, we use the importance produced by
those methods. Once we have the importance vector, we can
obtain the receiver operating characteristic (ROC) curve for
synthetic datasets by varying the cut-off thresholds and cal-
culate the AUC score. As for variable selection, we apply

GMM of two mixtures to the importance vector for the
synthetic datasets. The variables in the cluster with higher
importance are considered significant. Then, we calculate
the correctly or wrongly selected variables accordingly. For
BGSBoy and UJIIndoorLoc datasets, the variables with the
three- and ten-largest importance are selected, respectively.
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