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Fig. 1: Visualizing the Isabel dataset compressed with classic TTHRESH and Augmented TTHRESH compressors with topological
controls. Left: input data visualized with critical points of the contour tree; maximum are in red, minimum are in dark blue, 1-saddles are
in light blue, and 2-saddles are in light orange. Middle: reconstructed data using TTHRESH, labeled with compression ratio, PSNR, and
false cases (false positives, false negative, false types). Right: reconstructed data using Augmented TTHRESH along with compression
ratio and PSNR. We also provide zoomed-in views that highlight the connectivity among critical points of the contour trees.

Abstract— Topological descriptors such as contour trees are widely utilized in scientific data analysis and visualization, with applications
from materials science to climate simulations. It is desirable to preserve topological descriptors when data compression is part of the
scientific workflow for these applications. However, classic error-bounded lossy compressors for volumetric data do not guarantee the
preservation of topological descriptors, despite imposing strict pointwise error bounds. In this work, we introduce a general framework
for augmenting any lossy compressor to preserve the topology of the data during compression. Specifically, our framework quantifies
the adjustments (to the decompressed data) needed to preserve the contour tree and then employs a custom variable-precision
encoding scheme to store these adjustments. We demonstrate the utility of our framework in augmenting classic compressors (such as

SZ3, TTHRESH, and ZFP) and deep learning-based compressors (such as Neurcomp) with topological guarantees.

Index Terms—Lossy compression, contour tree, topology preservation, topological data analysis, topology in visualization

1 INTRODUCTION

Modern scientific simulations generate enormous amounts of data,
such that it is not practical to store all of the data produced [6]. Data
compression helps reduce the size of data, making data storage more
practical. There are two types of compression techniques: lossy and
lossless. Lossy compression techniques allow for some distortion of the
data to achieve smaller compressed file sizes and have wide applicability
in the compression of images [21], audio [23], and scientific data [6].
Among them, error-bounded lossy compressors, such as SZ [34], ZFP
[36], and TTHRESH [5], play a crucial role in reducing the storage
demand of large-scale scientific data. Not only can such compressors
significantly reduce the data volume, but also they can control the data
distortion and guarantee the validity of the reconstructed data for post
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hoc analysis, based on user-defined error bounds [38]. For instance,
error-bounded lossy compressors have been shown to reduce file size
dramatically without significant degradation of the visual quality on
the reconstructed (decompressed) data (e.g., [5,33,62]).

In the analysis of scientific data, topological data analysis (TDA)
employs topological descriptors, such as contour trees [7] and Morse—
Smale complexes [13], to describe, summarize, and draw conclusions
about scientific data (e.g., [3, 8,48]); see [61] for a survey. Although
error-bounded lossy compressors typically allow the user to impose
pointwise error bounds that are maintained during compression, such
compressors seldom make guarantees about how the compression will
affect the geometry and topology of the reconstructed data.

For example, Lu et al. [39] examined the impact of lossy compres-
sion on data fidelity and complex scientific data analytics. They studied
the detection of blobs, features used by fusion scientists to study the
trajectory of high-energy particles. Blobs are defined by areas with high
electric potentials, i.e., areas enclosed by contours above certain thresh-
olds. Their experiments demonstrated that as the error bound increases,
the blobs will change in both number and position. They concluded that
“lossy compression may seriously distort data, thus having a disastrous
impact on data analytics,” and therefore “determining a proper error
bound is key to performing meaningful lossy compression in science
production.” [39] We argue that determining a proper error bound is
only part of the story. It is also important to develop error-bounded
lossy compressors that explicitly preserve features of interest to domain
scientists—such as topological features—during compression.
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In this paper, we introduce a general framework that augments any
lossy compressor for volumetric scalar fields—error bounded or not—in
order to impose topological control, while maintaining a user-specified
pointwise error bound. Specifically, our framework augments any lossy
compressor in order to preserve the contour tree in terms of its critical
points and the connectivity among those critical points. Preserving the
contour tree of the reconstructed data is crucial to support a variety
of post hoc scientific visualization tasks, since the contour tree has
been used for feature extraction, tracking, comparison, and interactive
contour exploration (e.g., [27,64]).

Previous work by Yan et al. [60] modified the classic SZ compressor
with a customized error-controlled quantization strategy to preserve
the contour tree. Instead of modifying any single compressor [60],
our general framework can augment any scalar field compressor, with
no restrictions on the base compressor. We effectively leverage the
capabilities of a wide variety of data compressors to preserve the con-
tour tree. Additionally, as data compressors continue to improve, our
framework can be used to augment increasingly effective compressors
and thereby achieve better results.

During augmentation, our framework introduces a progressive strat-
egy to compute upper and lower error bounds for specific data points,
which, if maintained, will guarantee that the contour tree is preserved
and the pointwise error bound is maintained. The classic algorithm
constructs a contour tree by combining two merge trees [7] (i.e., a join
tree and a split tree, see Sec. 3.1 for details). Our progressive strategy
works with these merge trees: if the merge trees are preserved, then so
is the contour tree. Our framework is progressive in the sense that it
works through a merge tree computation, preserving one branch at a
time. Only a small portion of the merge tree is computed more than
once during the error bound tightening process. This is in contrast with
TopoSZ, which iteratively recomputes the entire contour tree many
times. Thus, our progressive approach shows significant speedups com-
pared with TopoSZ. Our strategy then uses a novel variable-precision
encoding scheme to store any adjustments that must be made to the
output of an augmented compressor in order to ensure that these upper
and lower bounds are maintained. Our contributions include:

* A novel progressive strategy that efficiently refines upper and lower
bounds during the merge tree computations (subroutines for contour
tree computation) without computing contour trees explicitly (as in
TopoSZ). These error bounds correspond to adjustments that must
be made to the output of any compressor in order to preserve the
contour tree.

* A custom variable-precision encoding scheme to efficiently store
these adjustments.

* A systemic comparative study that evaluates five lossy compressors
(ZFP, SZ3, Cubic Spline, TTHRESH, Neurcomp) augmented with
topological control, and two state-of-the-art topology-preserving
compressors, across a number of scientific datasets.

Our experimental study demonstrates the effectiveness and efficiency
of our framework in enabling topological controls for a wide variety of
lossy compressors.

2 RELATED WORK

We give a brief review of data compression for volumetric data. We then
discuss the use of contour trees in topological data analysis, followed
by related work for topology-preserving compression techniques.

Lossy compression. Lossless compression techniques allow the orig-
inal data to be perfectly reconstructed, but they usually suffer from
limited compression ratios (less than 2x according to [50]) in scientific
data and thus are not practical. Lossy compression is an alternative
way to reduce the unprecedented size of scientific data. Traditional
lossy techniques such as JPEG/JPEG2000 leverage wavelet theories
and bit plane encoding to compress image data, but they are not adept
at dealing with multidimensional scientific data in floating-point format.
Recently, there has been an increasing trend to leverage deep learning
techniques, such as the autoencoder [29] and implicit neural represen-
tation (INR) [40], for data compression. An autoencoder is a neural
network composed of two components: an encoder and a decoder. The

encoder is trained to produce low-dimensional representations of the
input data, whereas the decoder is trained to reconstruct the original
input data from the output of the encoder. An INR model trains a small
neural network that can be used to recreate the ground truth. The neural
network itself is shipped as a compressed file, and to decompress it, one
must simply evaluate the network on an appropriate input. One notable
INR model for volumetric scalar fields is Neurcomp [40]. Recently,
spatial super-resolution (SSR) models have employed neural networks
to accurately upscale low-resolution representation of data as a form
of interpolation. Several volumetric scalar field compressors incorpo-
rate SSR models, such as SSR-TVD [19] and the deep hierarchical
model [59]. Unfortunately, these general lossy techniques lack precise
error control on the data, which limits their use on scientific data.
Error-controlled lossy compressors [5,28,36,62] have been proposed
and leveraged by the scientific computing community to reduce the
data size while controlling the distortion in the decompressed data. In
general, such compressors can be categorized into transform-based and
prediction-based. Transform-based lossy compressors rely on domain
transforms for data decorrelation. For instance, ZFP [36] divides data
into small blocks and then compresses each block independently. The
compression procedure inside each block includes exponent alignment
for fixed point conversion, a near-orthogonal domain transform, and
embedded encoding. TTHRESH [5] is another transform-based com-
pressor that leverages singular value decomposition (SVD) to improve
the decorrelation efficiency for high-dimensional data.
Prediction-based compressors employ prediction methods such as
interpolation to approximate the ground truth. The differences be-
tween original and predicted data are quantized and then encoded using
entropy encoding and lossless techniques. ISABELA [28], as one
of the pioneering error-controlled prediction-based compressors, uses
B-splines to predict data. SZ3 [32, 34, 62], the most recent general
release in the SZ compressor family, uses a combination of a Lorenzo
predictor [22], cubic spline interpolation, and linear interpolation. In
addition, AE-SZ [37] is proposed as a variation of SZ that incorporates
autoencoders in the prediction pipeline.
Contour trees. Our augmented compressors aim to preserve the con-
tour tree of an input scalar field. Contour trees capture the relationships
among contours of scalar fields. They have been used to support data
analysis and visualization tasks across diverse disciplines, such as as-
tronomy [48], fluid dynamics [3], and medicine [4,51,56]. They have
also been incorporated into algorithms in computer vision [42] and
visualization [27,64] for interactive exploration of contours.

Topology-preserving compression. To the best of our knowledge, only
three compressors have been developed for scalar field compression
with topological guarantees. The first compressor was developed by
Soler et al. [49]. We shall refer to it as TopoQZ. TopoQZ allows the
user to specify a single parameter €. It preserves all critical point
pairs with finite persistence greater than ¢ and eliminates all critical
points with persistence less than €. TopoQZ is not designed to perfectly
preserve the contour tree. Therefore, the locations of preserved critical
points may shift slightly during compression, and the connectivity of
the critical points in the contour tree may be altered. TopoQZ can also
guarantee that the reconstructed values differ from the ground truth
at most by a user-specified error bound . It is required that £ > e.
TopoQZ is currently implemented in the Topology Toolkit [18,41,54].
That implementation couples TopoQZ with ZFP [36], which improves
the smoothness of the data but introduces additional pointwise error.
Another topology-preserving compressor is TopoSZ [60]. TopoSZ
modifies the classic SZ pipeline to perfectly preserve the contour tree
of the ground truth data up to the persistence threshold of €. That is,
the contour tree of the output of TopoSZ will be equal to that of the
ground truth after both datasets have been topologically simplified with
a persistence threshold of €. TopoSZ also allows the user to impose a
strict error-bound £ (and allows & < €). When compared with TopoQZ,
TopoSZ yields generally higher compression ratios and reconstruction
quality, although the algorithm takes longer to execute. Our general
framework borrows some elements from the TopoSZ pipeline. However,
our framework differs significantly from TopoSZ due to two technical
innovations: progressive bound tightening and logarithmic-scaling



quantization (see Sec. 4 for details).

Most recently, Li et al. developed mSZ [30] that augments an
existing lossy compressor to compress a 2D/3D scalar field while
preserving its piecewise-linear (PL) Morse—Smale segmentation [12,
13], i.e., a partition of the data domain based on the Morse—Smale
complex. In comparison to the contour tree that is based on the level
sets of a scalar field, a Morse—Smale complex is a different topological
descriptor based on the gradient behavior of a scalar field. Because our
framework instead preserves contour trees and does not consider the
gradients in its pipeline, mSZ is not directly comparable to our work.

Finally, even though it does not preserve any common topological de-
scriptor, cpSZ [31]—a variation of SZ—preserves the critical points of
a vector field. cpSZ also introduces a log-scale quantization technique
to store different error bounds for individual points.

3 TECHNICAL BACKGROUND
3.1 Merge Tree and Contour Tree

Merge Tree. Let f : X — R be a continuous scalar field defined on
a simply connected domain X. The sublevel set of f at a threshold
t € Risdefinedas X; = f~'(—o00,t] := {z € X | f(z) < t}. The
merge tree of f tracks when (connected) components of X; appear and
merge as t increases. X; evolves from being an empty set to contain
components surrounding various local minima; these components then
merge into one other until eventually there is only a single component.
Leaves of the merge tree correspond to local minima, and interior
nodes correspond to saddles where components merge. Figure 2(A)
and (C) visualize a scalar field and its merge tree. Formally, we define
an equivalence relation ~ on X. We say that z ~ y if and only if
f(x) = f(y) = t and x belongs to the same component of X; as y.
The merge tree of f is defined by the quotient space X/~.

The merge tree of f defined above is sometimes referred to as the join

tree, whereas the merge tree of — f is called a splif tree (see Fig. 2(B)
for its visualization). The merge tree naturally induces a segmentation
of the domain. Let ¢ be the canonical map that maps each z € X
to its equivalence class [z] under ~. Then for each edge e of the
contour tree, ¢ ' (e) is a monotonic region in X. The inverse image
of each edge partitions the domain, which is called the merge-tree-
induced segmentation. See Fig. 2(D) (cf., (E)) for a split-tree-induced
segmentation.
Contour Tree. The level set of f at a threshold t € Ris f~'(t) :=
{xz € X | f(x) = t}. Each component of f~*(¢) is called a contour.
A contour tree tracks the relations among contours as ¢ increases.
Analogous to a merge tree, as ¢ increases, components of f~* () appear
at local minima, disappear at local maxima, and join or split at saddles.
Formally, we define another equivalence relation ~ on X, where x ~ y
if and only if f(z) = f(y) and x belongs to the same contour as y.
The contour tree is the quotient space T' = T'(X, f) := X/ ~. There is
a 1-1 correspondence between the local extrema of X and the leaves of
T'. The interior nodes of I" correspond to a subset of the saddle points
of X [47]. Fig. 2(F) visualizes the contour tree. Similar to the merge
tree, we can define a contour-tree-induced segmentation.

The classic algorithm for computing the contour tree [7] combines
join and split trees together to form a contour tree, and comes with
a state-of-the-art multi-core implementation [17]. In this paper, we
compute the contour tree of the input data to determine the initial point-
wise error bound. We use the algorithm of Gueunet et al. [17] (with
an in-house implementation) to compute join and split trees, and the
algorithm of Carr et al. [7] to combine them into the contour tree.

The algorithm by Gueunet et al. [17] constructs the merge tree one
edge at a time. First, starting from each minimum m, the algorithm
visits points surrounding m in an increasing order until a saddle s is
reached. The edge ms is discovered and added to the merge tree; in
other words, m is grown during this process. For each saddle s, once
all edges that terminate at s have been discovered, s is grown until
some new saddle s’ is reached, and the edge ss’ is discovered and
added to the merge tree. This process repeats until the merge tree has
been completely discovered. To grow from a minimum or a saddle,
the points surrounding that minimum or saddle are stored in a heap to
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Fig. 2: (A) Visualizing the graph of a 2D scalar field f defined on a square
domain. Local minima are in blue, saddles are in white, and local maxima
are in red. (B) Split tree of f. (C) Merge tree of f (a.k.a., join tree). (D)
The domain is colored according to split-tree-induced segmentation. (E)
Split tree is colored according to the segmentation in (D). (F) Contour
tree of f. (G) The graph of f after its persistence simplification where a
peak is removed. (H) Split tree of f after persistence simplification. Edge
ab is removed. (F) Contour tree of f after the merge tree in (B) has been
simplified.

ensure that they are processed in an increasing order. The use of heaps
presents the main performance bottleneck of the algorithm.

Persistence simplification. In practice, real-world data typically con-
tain noise that creates many small branches in the merge or contour
tree, where persistence simplification [13] can be used to eliminate
these small branches and thereby separate topological features from
noise. In the context of merge trees, ordinary persistent homology pairs
a local extremum (i.e., a peak or a valley in Fig. 2(A)) with a nearby
saddle and assigns the pair a value of persistence, which describes the
scale at which the pair disappears via a perturbation to the function.
The persistence is equal to the absolute difference in function value
between an extremum and its paired saddle. A function f is simplified
by perturbing the function values in order to cancel pairs of critical
points below a certain persistence threshold €. See Fig. 2(G) for an
example. The cancellation of one pair of critical points of f corre-
sponds to a branch being removed from the merge tree, giving rise to
its simplification. The simplified contour tree is more complex [20],
but it can be computed by combining the simplified join and split trees.

In Fig. 2, (G) depicts the graph of a function after persistence sim-
plification. For the split tree shown in (B), assuming a persistence
threshold of ¢ > | f(a) — f(b), the edge ab will be removed after a per-
sistence simplification at €. As a result, node c is directly connected to
node d in the split tree (H), and the join tree in (C) remains unchanged.
(I) depicts the contour tree produced by combining the simplified split
tree in (H) with the join tree in (C).

3.2 A Review on TopoSZ

Our framework builds upon a few ingredients from TopoSZ [60].
TopoSZ, in turn, modifies the pipeline from the error-bounded lossy
compressor SZ version 1.4 [52].

Let f represent the input scalar field, and f’ be the reconstructed
scalar field (after compression and decompression). Let 7' be the
contour tree of f and 7. the persistence simplified contour tree at a
threshold of €. Let 7" and T be defined analogously for f'.

SZ1.4 allows the user to specify &, a pointwise error bound dur-
ing compression. In turn, there are two user-defined parameters in
TopoSZ: a persistence threshold €, and a pointwise error bound &.
Unlike TopoQZ, TopoSZ does not require that £ < £. TopoSZ guaran-
tees the preservation of the persistence simplified contour tree during
compression while maintaining the pointwise error bound. That is, it



guarantees that T, = Ty, and | f(z) — f'(x)| < £ foreach z € X.
Linear-scaling quantization. SZ version 1.4 introduces a linear-
scaling quantization technique to ensure that a strict absolute error
bound £ is maintained. This technique is implemented in TopoSZ.

For each point z € X with a ground truth value f(x), an initial
guess for its value g(z) (e.g., from a Lorenzo predictor; see below) is
shifted by an integer multiple of 2£ to obtain a new value f’(z) such
that |f'(z) — f(2)| < €.

This process can be conceptualized as follows: divide the real line
into intervals of length 2€, where one interval is centered on g(x).
The compressor then calculates how many intervals to shift g(z), so
that it can assign a value to f’(z) that is a distance less than & from
f(x). By construction, if f(z) lies in an interval of length 2¢ centered
on f'(z), then |f(xz) — f'(z)] < & This process is illustrated in
Fig. 3. Following this construction, each x € X is assigned an integer

Final predicted value

f(a) =g(x) — 4¢

A
A

% |
f(@)
Actual value Initial predicted value

Fig. 3: A standard implementation of a linear-scaling quantization.
ny (corresponding to how many intervals g(x) is shifted) such that
f'(z) = g(z) + 2&n,. These quantization numbers {n, } are encoded
and stored in the compressed file.

If the distribution of {n } has low entropy (e.g., if {n. } are mostly

zeros), then the quantization numbers can be compressed to small
size using an entropy-based compression algorithm, such as Huffman
coding. More accurate predictions g(z) generally lead to {n,} with
lower entropy.
False Cases. Yan et al. [60] introduced three types of false cases to
quantify the level of contour tree preservation: false positives, false
negatives, and false types, which are illustrated in Fig. 4. A false
positive occurs when a new edge appears in the contour tree of the
reconstructed data that does not exist in the same position of the contour
tree of the original data. A false negative occurs when an edge of the
contour tree from the original data is missing from the contour tree
of the reconstructed data. A false type occurs when the critical type
(maximum, minimum, saddle) of one or both endpoints of an edge of
the contour tree does not match between the original and reconstructed
data. TopoSZ focuses on false cases involving extremum-saddle pairs
and its algorithm terminates when there are no such false cases.

Andn/ Ay

Fig. 4: Three types of false cases. (A) The original contour tree.

false positive: an extra edge is added (C) A false negative: an edge is
missing. (D) A false type: an edge contains a critical point as its endpoint
that changes its type.

TopoSZ Pipeline. The TopoSZ pipeline is as follows:

Step 1: Upper and lower bound calculation. TopoSZ first applies
persistence simplification to f in order to calculate 7%. For each point
z € X, alower bound L(z) and an upper bound U (z) are assigned
to x according to the contour-tree-induced segmentation. If x be-
longs to the segmented region corresponding to edge ab € T, then
L(z) = min(f(a), f(b)) and U(z) = max(f(a), f(b)). The nodes
of the contour tree are stored losslessly.

Step 2: Prediction. TopoSZ uses a Lorenzo predictor [22] to predict
the values of each data point. For each point x, the Lorenzo predictor
predicts f(x) as a weighted sum of the values from previously predicted

points =’ satisfying ||z — z'||c = 1. The weights are fixed, and are
chosen such that quadratic functions will be perfectly predicted.

Step 3: Linear-scaling quantization. TopoSZ uses linear-scaling
quantization with a decreased interval size to ensure that the point-
wise upper and lower bounds, as well as the global error bound &, are
maintained for each x € X. For any € X where no possible quanti-
zation code n satisfies these conditions, f(x) is stored losslessly.
Step 4: Iterative upper and lower bound tightening. If the results
from Step 3 do not perfectly preserve the contour tree, that is, if there
are false cases presented in the reconstructed data, then the upper and
lower bounds are tightened around points corresponding to those false
edges, and then Step 3 is repeated. This cycle repeats until there are no
false cases.

Step 5: Lossless compression. The numbers from linear-scaling quan-
tization are encoded using Huffman Coding. The relevant information is
then stored in a binary file that is further compressed using ZSTD [10].

4 METHOD

We give an overview of our framework in Sec. 4.1. We then describe
two novel and technical ingredients in our framework: the logarithmic-
scaling quantization (Sec. 4.2) and the progressive upper and lower
bound tightening (Sec. 4.3).

4.1

We now describe our framework for augmenting any lossy compressor
(called a base compressor) to preserve contour trees and maintain strict
error bounds. Our framework requires two user-specified parameters,
a persistence threshold € and a pointwise absolute error bound £. It
also requires user-specified parameters associated with the specific
base compressor being augmented. Our implementation works with
rectilinear meshes, and it could easily be modified to work with any
simply-connected tetrahedral mesh.

Our framework guarantees that, for any augmented compressor,

T. = T, and |f(z) — f'(z)| < & for every x € X. Starting with a
standard compressor as the base compressor, we start with a step-by-
step overview of our framework.
Step 1: Upper and lower bound calculation. We store critical points
of the simplified contour tree 7 losslessly. We calculate the initial
pointwise upper and lower bounds for other point z € X. The key idea
is to locate an edge ab in T, whose corresponding range of function
values contains f(z). This requires a careful computation using the
join and split trees of T ; see Appendix E for details. We let L(z) =
min(f(a), /(b)) + ¢ and U(z) = max(f(a), f(b)) — C. where ¢ =
107°|f(b)— f(a)|. If we allow  to have the same function value as a or
b, the topology may be altered (e.g., along the boundary of the induced
region), resulting in more false cases. Adjusting the error bound by
¢ prevents such issues. We also adjust L(z) and U(z) as needed to
ensure that if L(z) < f'(z) < U(z) then |f(z) — f'(z)] < &

‘When computing 7%, we compute the join and split trees of f and
simplify the trees directly with persistence threshold €. We then com-
bine them to obtain 7. During this construction, we track which edge
of T, each point x € X corresponds to. Compared to simplifying
the entire scalar field f and then computing the contour tree of the
simplified field (like TopoSZ), our strategy leads to equivalent results
in less time.

Step 2: Base compressor. We apply the base compressor to the input
data f. We compress and then decompress the data to assess changes
that need to be made during decompression. We refer to the compressed-
then-decompressed data as the intermediate data.

Step 3: Logarithmic-scaling quantization. We introduce a novel
quantization technique that respects the pointwise upper and lower
bounds imposed in Step 1. If possible, the entropy of the quantiza-
tion numbers {n, } will be identical to that of standard linear-scaling
quantization. However, when linear-scaling quantization cannot pro-
duce a prediction for a point z that respects L(z) and U (z), = will be
quantized with more precision (i.e., £ < £/2) to satisfy those bounds.
Step 4: Progressive upper and lower bound tightening. We intro-
duce a novel technique for calculating adjustments to the intermediate
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data to guarantee that the contour tree is preserved. We compute the
join and split trees directly. If a false edge is detected during com-
putation, the upper and lower bounds are tightened around points in
the segmentation region corresponding to the edge (see Sec. 3.1). All
edges whose growth involved these points are recomputed. We continue
until the join and split trees of the decompressed data match those of
the ground truth. We do not compute the contour tree directly as the
preservation of the join and split trees guarantees the preservation of
the contour tree.

Step 5: Lossless compression. We encode the quantization numbers
using Huffman coding. The output of the base compressor, the encoded
quantization numbers, and any losslessly stored values are written to a
binary file which is further losslessly compressed using xz, a general-
purpose data compression tool available via XZ Utils [11].

4.2 Logarithmic-Scaling Quantization

We now describe the first novel ingredient in our framework: a variable
precision quantization technique that preserves tight pointwise upper
and lower bounds. For each z € X, the intermediate data contains an
estimated value g(x) for the ground truth value f(x). Let L(x) and
U (z) denote the lower and upper bounds assigned to z. To ensure that
L(z) < f'(z) < U(x), we assign to each x € X a numerator a,, € Z
and a precision p, € N that indicates the number of iterations. Our
reconstructed value is

2 - ay
2Pz :

9(z) + )
To calculate each a, and p,, we first set p, = 0. We then look for
the value of a, satisfying

2 s )

2Pz -

g(x) +

such that |a | is minimized. If there is no valid value of a.., we increase
pz by 1 and search again. This process is repeated until a valid a,
is found. If p, reaches an arbitrary threshold, we stop searching and
instead store f(z) losslessly. We set this threshold equal to 11.

When p, = 0, the above process is the same as the standard linear-
scaling quantization, except that we also seek to maintain the upper and
lower bounds. Each time a linear-scaling quantization fails to identify
a valid choice for a, that yields a value of f’(x) within the upper and
lower bounds for =, we cut the interval lengths in half by increasing p,,
by 1 and continue searching. When the interval lengths are smaller, it
is more likely that a valid choice of a, exists. It is also possible that
during an iteration, multiple valid choices of a. exist, so we choose the
one with the smallest absolute value to minimize the entropy of {a, }.

P::::O p;,,:l
L(z) U(x) L(x) U(x)
F—et—o—] [—oetre
f * R IR
Q) f(z) g(x) ®) f'z) f(x)  g(x)

Fig. 5: (A) If p = 0, there are no valid quantization intervals. (B)
Increasing p; to 1 allows for a valid quantization interval.

This process is illustrated in Fig. 5. (A) contains an example where
there are no quantization intervals where we can place f'(z) to respect
the upper and lower bounds. In (B), by raising the precision p,, by 1,
the quantization intervals are halved, giving a valid choice for f'(z).

When encoding the data, we store a single quantization number 7
for each z € X. To calculate each n,, we first find the maximum
precision p,, used for any single point. The points are assigned the
single quantization number n; = az - 2P P and the max precision
Pm 1s stored in the compressed output. During decompression, the
point x is assigned the value

2 ng

2pm

g(x) + )

Setting ny = ag - 2°™ 7P« in Eq. (2) means that

26 - ng

2Pm

25 cag - ZPM*PI
2Pm

2 - ay
2Dz '

g(x) +

Therefore, the formulation in Eq. (2) is equivalent to the original for-
mulation of f’ in Eq. (1).

In comparison with TopoSZ, the above variable precision technique
allows us to store fewer points losslessly. In order to ensure the quanti-
zation numbers do not get too large, if any point has a precision greater
than 10 it is stored losslessly. This ensures that p,,, < 10 for all trials.

=g(x) + =g(z) +

4.3 Progressive Upper and Lower Bound Tightening

We now describe the second novel ingredient in our framework, namely,
a progressive error bound tightening process. Specifically, the process
computes the join and split trees of the decompressed data. During the
computation, it detects false cases, and tightens the upper and lower
bounds in the neighborhoods of false cases. The algorithm progresses
through merge tree computation, checking the correctness of each edge
and tightening when needed, until every edge is correctly preserved.
The process allows us to bypass iteratively recomputing the entire
contour tree (in the case of TopoSZ), significantly speeding up the
compression process. During the tightening process, we work with
merge trees (instead of contour trees), since the persistence of a leaf
(local extremum) can be computed from its nearby saddle based on
branch decomposition (i.e., local information), thereby allowing for our
progressive tightening strategy. By contract, computing the persistence
of a leaf of a contour tree may require global information from the
whole contour tree due to the existence of V and W structures [20].

We describe this process for the join tree, which works analogously

for the split tree. We only consider false cases involving extremum-
saddle pairs.
False case detection. To detect false cases, we construct 7’. Doing
so allows us to locate mismatches between edges in 7. and those in
T.. We construct T” using a modified version of the edge growing
procedure from local minima and saddles (see Sec. 3.1). To start, we
extract a list of local minima of f’ sorted by decreasing function values.
Then, proceeding in sorted order, we grow an edge from each local
minimum m to a saddle s, and check two cases for s; see Appendix E
for illustrations:

Case (I). If s is unpaired, i.e., m is the first local minimum (among
all local minima) whose growth terminates at s, then m and s form a
persistence pair, with a persistence p = |f'(s) — f'(m)|. If p < &,
then the edge ms does not belong to T ; otherwise, ms belongs to T7.

Case (ID). If s is already paired, then m must pair with some other
saddle s’, and s’ must be an ancestor of s in the join tree. A paired s
means that s has been discovered earlier during the growth of another
local minimum m’ such that m’ and s form a persistence pair with
persistence p’, and the edge m's belongs to T”.

Case (IL.a). Suppose that p’ > ¢. Since m’ preceds m in the sorted
order, f'(m’) > f’(m). Since s’ is an ancestor of s, f'(s") > f'(s).
Therefore |f'(s') — f'(m)| > |f'(s) — f'(m')| = p’ > €. Thus, the
pair (m, s) has a persistence above ¢, and ms must be an edge in 7.

Case (IL.b). Now suppose that p’ < e. In this case, we do not have
enough information to determine the persistence of (m, s’). Therefore,
we grow from saddle s to reach a new saddle s”. We then check cases
(D) and (II) again, using s” in place of s.

Once we are done checking cases (I) and (IT), if m ¢ T butm € T,
then m is a false negative. Likewise, if ms € T, but ms ¢ T¢, then
ms is a false positive.

Growing the global minimum will never produce a false case as long
as the rest of T, is correctly predicted. Thus, we skip the growth at
the global minimum, denoted as 7. Because m is the last growth that
remains active, its growth will form the frunk, a monotone sequence
of edges to the root that links 72 to the remaining saddles [17]. Since
mm and the remaining saddles are already correctly predicted, so is
the trunk, therefore no further false cases are possible, and we skip
growing M. This algorithm also admits a number of special cases;
see Appendix E.



Progressive false case correction. If there is a false case, we first
tighten the upper and lower bounds of points in some region R to
correct it. If ms is a false positive, then R is the region of the merge-
tree-induced segmentation of f’ corresponding to ms. If m is a false
negative, and edge ms belongs to 7T (for some saddle ), then R is the
region of the merge-tree-induced segmentation of f corresponding to
md3. If the same false case occurs multiple times, we grow the region
R. We tighten the upper and lower bounds of each z € R similarly to
TopoSZ, but we tighten more aggressively to speed up compression.
We then update the decompressed data f' to respect the new bounds;
see Appendix E for numerical specifics and a comparison with TopoSZ.

Once we update f’, these updates may affect parts of the join and
split trees beyond the false cases, thus we must recompute those areas
to ensure correctness. Specifically, we must check for any extrema
bordering R that may have appeared or disappeared as a result of the
tightening process and update the trees accordingly. Let I be the set of
edges whose segmentation regions border R. Then the tightening also
may have affected each edge e € E and every ancestor of e (i.e., edges
connecting e to the root of the tree). We recompute all such edges to
ensure correctness. As before, we recompute parts of the tree in order
of the function values.

5 EXPERIMENTAL RESULTS

We provide an overview in Sec. 5.1, describing the base compressors
and datasets used in our experiments, highlighting the main takeaways,
and introducing the evaluation metrics. We include compressor config-
urations and implementation details in Sec. 5.2. In Sec. 5.3 we describe
the main utilities of our augmented compressors in preserving contour
trees in the reconstructed data. We evaluate a number of augmented
compressors qualitatively and quantitatively, followed by a comparison
against the state-of-the-art topology-preserving compressors in Sec. 5.4.
We end this section with a run time analysis in Sec. 5.5.

5.1 An Overview of Experiments

We present a comparative analysis of five error-bounded lossy compres-
sors augmented with our framework, including the classic compressors
ZFP [36], SZ3 [34], and TTHRESH [5], a custom-built cubic spline
interpolation (CSI) model, and a deep learning-based compressor Neur-
comp [40]. We test these augmented compressors—denoted as Aug-
mented ZFP, Augmented SZ3, and so on—against two state-of-the-art
topology-preserving compressors, TopoSZ [49] and TopoQZ [60].

We test the five augmented compressors and two topology-
preserving compressors on nine volumetric datasets from scientific
simulations. The Nyx dataset is very topologically complex—its con-
tour tree has over twenty million nodes—and it is included as a stress
test. See Tab. 1 and Appendix A for details on these datasets.

We further conduct an ablation study demonstrating the effective-
ness of logarithmic-scaling quantization and progressive error bound
tightening. In every trial, logarithmic-scaling quantization leads to
higher compression ratios, whereas progressive tightening results in
faster compression times. We also analyze the individual effects of
varying € and &; see Appendix G for details on these experiments and
the ablation study.

Dataset | Dimension Size (MB)

QMCPACK 69 X 69 x 115 4.4
Tangaroa 300 x 180 x 200 27.0
Earthquake 175 x 188 x 50 28.2
ITonization 310 x 128 x 128 40.6
Isabel 500 x 500 x 90 105.0
Miranda 384 x 384 x 256 302.0
Nyx 512 x 512 x 512 641.4

S3D 500 x 500 x 500 1000.0

SCALE-LETKF 1200 x 1200 x 98 1129.0

Table 1: Scientific datasets used for compression analysis.
Highlighted results. We highlight our experimental results below.

* Applying any of the five original base compressors to any of the
nine datasets produces a large number of topological false cases in

the reconstruction, even with a small pointwise error bound. On the
other hand, augmenting any compressor with our general framework
completely eliminates these false cases while maintaining a user-
specified error bound (Sec. 5.3).

¢ Augmented TTHRESH and Augmented ZFP respectively yield the
best compression ratios and run times among all the augmented
compressors (Sec. 5.3).

* Our augmented compressors generally have a better trade off between
bit-rate and reconstruction quality compared to TopoQZ and TopoSZ
while taking similar or less time to run (Sec. 5.4).

* Our framework has a worst-case time complexity of O(Fhnlogn),
where h is the maximum height of the contour tree during tightening
and I is the number of false cases during computation. The majority
of the compression time is spent on computing merge trees (Sec. 5.5).

Evaluation metrics. We evaluate whether the contour tree has been
perfectly preserved in the reconstructed (decompressed) data. We also
evaluate the standard compression metrics of compression ratio, bit-rate,
and peak signal-to-noise ratio (PSNR). We further employ topology-
based metrics of the bottleneck distances dp [9] and the Wasserstein
distances dw [14, page 183] to quantify the topological similarity
between the original data and the reconstructed data. The evaluation
metrics are described in detail in Appendix B.

In general, higher values of PSNR indicate better reconstruction
quality, and lower values of dp and dw indicate higher topological
similarity. We measure the total compression time for each compressor,
which includes (a) the total time to run the base compressor, and (b) the
time to augment the output of the base compressor. We also measure
decompression time for each compressor. We measure compression
and decompression time for TopoSZ and TopoQZ as well. For our
framework and TopoSZ, we decompress to RAW binary format. Be-
cause TopoQZ is integrated in the Topology Toolkit, an extension for
ParaView, we decompress to VTK image format.

5.2 Compressor Configurations and Implementation

In addition to augmenting the out-of-box base compressors SZ3,
TTHRESH, ZFP, and Neurcomp, we implement and augment our own
super-resolution compressor, a simple custom-built cubic spline interpo-
lation (CSI) model. It compresses a dataset by downsampling the data
by a user-defined ratio in each direction (called a target scale factor)
and uses a cubic spline interpolation technique for reconstruction that
is similar to the one implemented in SZ3.

‘We compare our augmented compressors to TopoSZ and TopoQZ.
We use the TopoQZ implementation in TTK [54].

Our general framework requires two user-defined parameters, a
persistence threshold e and a global absolute pointwise error bound
. e represents, as a percentage of the range, the level of persistence
simplification. For example, ¢ = 0.01 corresponds to a persistence
simplification by 1% of the range of the scalar function. Similarly, £ is
the percentage of the range that will be used as an absolute error bound.

Each base compressor takes a number of intrinsic parameters in
order to run. Both ZFP and SZ3 require an absolute error bound,
denoted as § and 7, respectively. CSI requires a target scale factor
s. TTHRESH takes in a target RMSE of 7. Neurcomp requires a
target compression ratio c¢. Changing the intrinsic parameters of a
base compressor will cause it to generate different intermediate data
which will be augmented differently. As a result, even though our
augmented compressor guarantees topology preservation and maintains
the user-defined global error bound, the compression results may vary.

For our experiments, we set the error parameter for each base com-
pressor (except CSI and Neurcomp) to be equal to k¢ for some £ € R
that is compressor-dependent. Specifically, we set 6 = 5, n = 0.25¢,
and 7 = 0.05¢. To decide each value of k, we conduct a grid search
and observe the effects of different values of k across different values of
¢ and different datasets. The optimal value of k varies between datasets
and values of &, but the values that we chose are always approximately
optimal. Hypothesized explanations as to why these values of k im-
prove results are described in Appendix D. We also set ¢ = 100 and
s = 7. We chose these configurations because they empirically led to
the highest compression ratios.
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Fig. 6: Scientific datasets compressed using different augmented compressors with topological controls. From left to right: the original input dataset,
the reconstructed datasets from Augmented ZFP, Augmented SZ3, and Augmented TTHRESH, respectively, that preserve the contour trees up to a
persistence threshold ¢ = 0.04. From top to bottom: Tangaroa, Miranda, S3D datasets, respectively. We also display the PSNR and compression

ratio next to each decompressed dataset.

To differentiate from the persistence threshold € used by an aug-
mented compressor, TopoQZ takes a persistence threshold e. The TTK
implementation of TopoQZ is tightly coupled with ZFP, which requires
an error bound ¢, allowing for a total pointwise error upper-bounded
by e + ¢. To measure compression ratio and compression times while
respecting a topological constraint € and an error bound £, we measure
how each augmented compressor and TopoSZ perform for € = 0.04
and £ = 0.012. When testing TopoQZ, to ensure that it respects both €
and &, we set e = ¢ = 0.006 so that the max error is less than 0.012.

To measure the trade off between compression ratio and recon-
struction quality, for TopoSZ and each augmented compressor, we set
e = 0.04 and vary & € {0.003, 0.006, 0.009, 0.012, 0.015, 0.018}.
In some cases we need to vary £ (and ¢, for TopoQZ) in a different
range in order to obtain a meaningful curve. Notably, for TopoQZ, we
set e = 0.04 and vary ¢ € {0.003, 0.11, 0.22, 0.33, 0.44, 0.55}. We
further discuss our methodology for choosing parameters and provide
the parameter used in Appendix F.

The combination of a chosen compressor, a fixed dataset, a value
of € and &, is a trial. We perform each trial on a single cluster node
running an Intel Xeon Sandy Bridge-E processor with 16 cores and
64GB of RAM. For Neurcomp, we perform the training on an RTX
2080ti GPU with 32GB of RAM.

5.3 Comparative Analysis of Augmented Compressors

In this section, we perform a comparative analysis of five augmented
compressors, qualitatively and quantitatively. We visualize three scien-
tific datasets before and after compression with three of our augmented
compressors in Fig. 6. We also display the PSNR and compression
ratio next to each decompressed dataset. Compression ratios and times
for a single combination of € and £ are reported in Tab. 3. Charts
showing the reconstruction quality on two datasets is reported in Fig. 8.
Similar charts for the remaining datasets and compressors are shown in
Appendix F. Results demonstrating the effect of independently varying
€ or £ on the evaluation metrics are given in Appendix G.

5.3.1

When compressing a dataset with any base compressor, the contour tree
of the data is often significantly distorted with a large number of false
cases, whereas it is always perfectly preserved using our augmented
compressor. This observation has been validated empirically in every
trial: the contour tree is perfectly preserved in terms of the locations of
its critical points and their connectivity.

For instance, we visualize the Isabel dataset in Fig. 1 using
TTHRESH and augmented TTHRESH. We highlight parts of the con-
tour trees via zoomed-in views before and after compression. In a
bottom zoomed-in view, TTHRESH (middle) fails to preserve a few
critical points of the contour tree. In a top zoomed-in view, TTHRESH
(middle) preserves the locations of the critical points, but not their
connectivity. In contrast, the augmented TTHRESH preserves both the
locations and connectivity among the critical points.

We further provide zoomed-in views for the Ionization and SCALE-
LETKF datasets in Fig. 7. We observe clearly that TTHRESH fails to
predict many critical points, whereas augmented TTHRESH preserves
them all.

In Tab. 2, we report the number of false cases, including both
extremum-saddle and saddle-saddle connections in the contour tree
reconstructed with ZFP and TTHRESH. We again use parameter config-
urations that produce the same compression ratios as their augmented
versions with ¢ = 0.04 and £ = 0.012 (for those configurations see
Appendix D). In Tab. 2, we can see that ZFP and TTHRESH produce
many false cases.

Topological Guarantees

5.3.2 Evaluation Metrics

Compression ratio and times are reported in Tab. 3 for a fixed parameter
configuration of ¢ = 0.04 and £ = 0.012. We chose this parameter
configuration because a small amount of persistence simplification
preserves a large number of topological features in the input data,
generating complex test cases for topology-preserving compression.
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Fig. 7: Zoomed-in views of the critical points of the contour trees of the
lonization (top) and SCALE-LETKF (bottom) datasets with persistence
simplification e = 0.04. For each dataset, arrows indicate one example
where compression with TTHRESH led to critical points shifting. Local
maxima are in orange, local minima are in dark blue, 1-saddles are in
light blue, 2-saddles are in light orange. Top row: lonization. Bottom row:
SCALE-LETKF.

Dataset ZFP TTHRESH | Total #edges

QMCPACK (23,23,0) (8,8,0) 69
Tangaroa (90, 92, 0) (39, 46, 0) 418
Earthquake (20, 19, 0) (26,25, 0) 169
Ionization (181, 187, 0) (37,44, 0) 568
Isabel (16, 15, 0) (15, 16, 0) 29
Miranda (6,6,0) (3,3,0) 11
Nyx (133,132, 0) (2,373,0) 743

S3D (100, 100, 0) (74, 80, 0) 1013
SCALE-LETKF | (152,153,0) (129, 127,0) 401

Table 2: Reporting the number of false cases (false positives, false nega-
tives, false types) produced by base compressors SZ3 and TTHRESH,
respectively, together with the total number of edges of the input (ground
truth) contour tree. Contour trees are simplified with ¢ = 0.04.

For the reconstruction quality demonstrated in Fig. 8, ¢ = 0.04 is
chosen similarly, and £ is varied between 0.003 and 0.018 to yield a
variety of different compression ratios while still remaining small. In
this section, we compare the different augmented compressors. We
leave the comparison with TopoQZ and TopoSZ to Sec. 5.4.

Compression ratios. As shown in Tab. 3, Augmented TTHRESH pro-
duces the best compression ratios in every trial. Augmented Neurcomp
performs noticeably worse than the other compressors.

Reconstruction quality. In every trial, our framework successfully
maintains a pointwise error bound . There is a natural trade off
between compression ratio and reconstruction quality. As shown in
Fig. 8, Augmented SZ3 and Augmented TTHRESH have the best trade
off between bit-rate, PSNR, dy and dp, and perform equally well.
Augmented Neurcomp performs the worst based on above metrics.
When visualized, we find that the decompressed volumes generally
resemble the ground truth. However, when using certain transfer func-
tions, visual artifacts may become visible. Artifacts appear more in
visualizations that are sensitive to small changes in the transfer function.
For the volume renderings in this paper, we chose transfer functions that
led to fewer visual artifacts; see Appendix H for adversarial examples.
In practice, we find that upper and lower bound tightening does
not affect PSNR very much; most of the reconstruction quality is
determined by the initial upper and lower bounds. Fig. 9 shows a map
of the absolute error of each point for a topologically complex slice
of the Ionization dataset before and after tightening. We can see that
tightening does not have a significant effect on the average error.
Run time analysis. There are significant differences in run time among
the augmented compressors. As discussed in Sec. 5.5, these times are
affected by factors other than the base compression time. However,

Dataset A-ZFP A-SZ3 A-CSI A-TTHRESH A-Neurcomp|[TopoQZ TopoSZ
Compression Ratio
QMCPACK 58.7 86.1 102.3 104.8 239 234 27.8
Tangaroa 37.3 43 335 44.8 153 - 243
Earthquake 86.1 1274 794 129.2 63.5 13.4 50.1
Tonization 1188 121.5 1199 170.5 72.7 30.0 25.1
Isabel 474 1035  70.6 182.2 41.6 - 37.6
Miranda 1723 1986 1572 318.7 95.0 76.5 95.9
Nyx 65.3 69.5 70.4 84.5 18.9 - -
S3D 38.4 46.6 43.6 59.6 6.0 9.2 -
SCALE-LETKF  69.5 74.4 58.5 114.2 8.6 11.4 -
Total Compression and Augmentation Time Compression Time
QMCPACK 1.27 1.36 1.21 1.45 172.08 1.05 10.46
Tangaroa 9.51 10.99  9.33 11.98 1519.21 - 314.56
Earthquake 7.08 7.39 7.08 8.66 1039.94 8.08 48.17
Tonization 8.68 10.00 14.08 15.16 1221.12 1040 42531
Isabel 33.77 3549 42.69 42.67 7147.86 - 367.10
Miranda 223.52 284.18 248.51 348.72 9359.59 | 160.60  434.98
Nyx 1059.06 1137.33 5664.46  25594.54 38959.73 - -
S3D 209.83 253.82 173.09 253.72 34610.78 | 633.13 -
SCALE-LETKF 221.49 399.32 343.58 371.19 40887.62 | 524.05 -
Decompression Time
QMCPACK 0.14 0.32 0.14 0.17 424 0.63 0.01
Tangaroa 0.49 0.52 0.51 0.96 16.32 - 0.12
Earthquake 0.38 0.41 0.37 0.55 8.50 5.50 0.07
Tonization 0.48 0.54 0.54 0.83 11.62 5.08 0.10
Isabel 1.43 1.35 1.34 2.64 79.61 - 0.41
Miranda 2.92 3.1 3.38 4.53 175.61 532 0.67
Nyx 6.72 8.05 9.71 9.49 245791 - -
S3D 1152 1147 11.84 16.33 213547 | 390.94 -
SCALE-LETKF 11.59 1192 12.89 21.50 2629.48 | 351.61 -

Table 3: Compression ratio, compression time, and decompression time
for each compressor with e = 0.04 and error bound £ = 0.012 (except
TopoQZ has e = ¢ = 0.006). Times are in seconds. Trials that did not
finish are marked with a dash. TopoQZ ran out of memory on Nyx and it
crashed on Isabel and Tangaroa due to unknown reasons. TopoSZ ran
out of memory on Nyx, S3D, and SCALE-LETKF.
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1.2%

0%

A)

B)
Fig. 9: Error map of a topologically complex slice of the lonization dataset
(A) before error bound tightening and (B) after error bound tightening.

Augmented Neurcomp is the slowest because Neurcomp compresses
data by training a neural network. Of the remaining four compressors,
ZFP is typically the fastest, and TTHRESH the slowest, although this



observation does not hold for all trials. For decompression time, ZFP
is the fastest, while Neurcomp remains the slowest.

Highlighted results. There is no clear best augmented compressor
that outperforms others across all metrics. Other than augmented Neur-
comp, utilizing any augmented compressor plays a trade off between
compression ability and speed. For the remainder of our analysis,
we will primarily focus on Augmented ZFP, which is the fastest aug-
mented compressor, and Augmented TTHRESH, which yields the best
compression ratios and reconstruction quality.

5.4 Comparison with TopoQZ and TopoSZ

Topological guarantees. Our framework preserves the contour tree
during compression, and achieves the same topological guarantee as
TopoSZ. TopoQZ ensures that all critical point pairs are preserved
above a persistence threshold e, but their locations and connectivity
may be distorted after compression.

Compression ratio. In terms of compression ratio, when maintaining a
strict topological constraint € = 0.04 and error bound £ = 0.012, every
augmented compressor except Augmented Neurcomp outperforms both
TopoQZ and TopoSZ in every trial.

Reconstruction quality. The curves in Fig. 8 show that every aug-
mented compressor except Augmented Neurcomp can match the PSNR
of TopoQZ and TopoSZ, while using less space. In terms of topological
distance, the augmented compressors except Augmented Neurcomp
outperform TopoSZ in terms of dw and dg. They also outperform
TopoQZ in terms of dp, but are comparable in terms of dy .

Run time analysis. In terms of compression time, the augmented
compressors except Augmented Neurcomp produce times that are com-
parable to or better than TopoQZ, and significantly outperform TopoQZ
on the largest datasets. These four augmented compressors are also
significantly faster than TopoSZ across all trials.

In terms of decompression time, the augmented compressors except
Augmented Neurcomp perform slower than TopoSZ but faster than
TopoQZ. There are several possible reasons why our decompression
times are slower than TopoSZ. First and most notably, our decompres-
sion process is more complex, as it involves a decompression with the
base compressor and then an augmentation of the decompressed results.
This process requires more operations and has a higher I/O overhead.
Second, we use XZ along with tar archives for lossless compression,
which is slower than ZSTD used by TopoSZ. See Appendix C for a
more detailed analysis of the decompression time.

5.5 Analysis of Compression Time

Asymptotic analysis. Let n be the number of vertices in the rectilin-
ear mesh. Our algorithm utilizes heap merges [17] during the merge
tree computation; however, we use binary heaps (stored in arrays)
instead of Fibonacci heaps from [17]. For a binary heap with m ele-
ments, a single insertion operation has a worst-case time complexity
of O(logm). Following [17], from bottom to top, constructing an
edge e in a merge tree requires merging its heap with the heaps of its
descendants, which takes O(n logn). Let h denotes the height of the
tree, which corresponds to the maximum number of ancestor edges.
Then constructing a merge tree using these insertion-based heap merges
takes O(hnlogn). During the progressive tightening process, let F’
denote the total number of detected false cases, each of which triggers
a (partial) recomputation of the merge tree. Therefore, our algorithm
takes O(Fhnlogn) = O(n®logn).

In practice, F' < n as shown in Tab. 4. Additionally, h < n. We
found that % ranged from 0.0004 (Miranda, A-ZFP) to 0.025 (Nyx,
A-Neurcomp). Excluding Augmented Neurcomp, % < 0.011in 97% of
trials. On the other hand, using Fibonacci heaps to construct a merge
tree [17] takes O(n logn) due to constant time heap merges; however,
in our setting, we have found that binary heaps have lower run time in
practice. Likewise, it is possible to merge heaps in linear time, but we
instead merge by repeatedly inserting each element of the smaller heap
into the larger one, as doing so has a much lower run time in practice.
Empirical analysis. To analyze the run time empirically, we calculate
the amount of time for each portion of our algorithm with Augmented

ZFP and Augmented TTHRESH, with € = 0.04 and £ = 0.012. These
run times are shown in Tab. 4.

In Tab. 4, the most time-consuming task is the computation of merge
and contour trees. We compute the contour tree of the input data at the
beginning of the algorithm. During the error bound tightening steps
we also compute the contour tree of the decompressed data. These run
times are shown in Tab. 4 under the ‘CT’ and ‘Grow’ columns, and
account for 35 — 77% of the total run time for each trial in Tab. 4.

For most of the trials, the time to run the base compressor, shown
in the ‘BC’ column, is a relatively small percentage of the overall
compression time. However, if a base compressor produces results that
nearly preserve the contour tree and does not produce too many extra
branches, including those of persistence below ¢, the augmentation
time may be lower. This phenomenon suggests that the accuracy of the
base compressor may have more effect on the total compression and
augmentation time than just base compression. In general, the run time
of each base compressor is much faster than its augmented counterpart;
see Appendix C for a comparison.

Dataset [BC CT ULB Grow %B #FC  Fix File  Total
Augmented ZFP
QMCPack 0.15 034 021 038 0.17% 0 0.0 0.27 1.35
Tangaroa 142 216 2.80 1.34  043% 14 0.0004 1.84 9.57
Earthquake | 0.45 156 1.26 288 0.79% 2 0.0001 097 7.12
Ionization 0.70 156  2.09 310 1.15% 10 0.0009 135 8.8I
Isabel 473 461 895 948 0.54% 1 0.0647 6.17 34.01
Miranda 4.00 156.79 17.92 3785 121% 0 0.0 7.02 223.58
NYX 24.75 695.26 150.27 142.16 047% 6 4.60 42.21 1084.05
S3D 142 2793 69.11 5640 1.04% 39 0.01411 38.44 206.63
SCALE-LETKF| 152 16.15 61.67 9299 0.63% 37 0.003408 35.34 22147
Augmented TTHRESH
QMCPack 023 034 021 045 0.77% 0 0.0 022 145
Tangaroa 334 22 279 192 0.77% 18 0.0001 159 11.84
Earthquake 1.53 156 1.25 333 0.65% 4 0.0001 0091 8.58
Tonization 1.93 154 2.08 8.09 148% 5 00120 124 1494
Isabel 13.13 4.62 9.01 1024 054% 1 0.0666 5.62 42.69
Miranda 12.73 156.48 17.73 153.69 2.33% 0 0.0 724  347.87
NYX 57.87 687.03 132.49 15838.88 0.82% 89  97.82 37.52 27286.05
S3D 66.35 27.89 67.27 5651 1.14% 47 0.0136 32.11 250.79
SCALE-LETKF|69.21 16.10 60.00 193.18 0.54% 46 0.0032 29.71 368.35

Table 4: Runtime analysis for each component of the augmented frame-
work involving Augmented ZFP and Augmented TTHRESH with e = 0.04
and £ = 0.012. All times are in seconds. BC: running the base compres-
sor. CT: computing the contour tree of the input data. ULB: calculating
the initial upper and lower bounds. Grow: time growing the contour tree
of the reconstructed data. %B: percent of branches in the reconstructed
contour tree whose growth was recomputed. #FC: number of false cases
corrected after upper and lower bounds are set. Fix: average time to fix
a false case, excluding regrowing branches. File: average time to write
the compressed output to a file.

6 CONCLUSION AND DISCUSSION

We introduce a novel framework for augmenting any lossy compressor
to preserve the contour tree of a volumetric dataset while maintaining
a user-specified global error bound. To do this, our framework first
imposes topology-informed upper and lower bounds on each data point.
It then progressively tightens those bounds until the contour tree is
preserved. We also introduce a novel encoding scheme that efficiently
stores individual points with variable precision and maintains these
upper and lower bounds. When our framework is used to augment
state-of-the-art lossy compressors, it is shown to preserve the contour
trees of various scientific datasets. Our augmented compressors also
achieve higher compression ratios and reconstruction quality than those
obtained by existing topology-preserving compressors in comparable
or faster time. Our framework will benefit from any advancement with
lossy compression since it can be used to augment increasingly effective
lossy compressors to achieve better topology-preserving compression.

Our framework is not without limitations. The compression times
are longer than the base compressors. This difference gets worse as the
topological complexity of the data increases. However, in some use-
cases, topological preservation is preferable to run time. Regardless,
our framework would benefit from more efficient or parallel imple-
mentations for the contour/merge tree computation and the encoding
scheme.
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A DETAILS ON THE DATASETS

We include details on each dataset used in our experiments. Some
datasets are accessed from the SDR Bench [63], available at [1].
Datasets accessed from the SDR Bench may involve contributions
from the DOE NNSA ECP project and the ECP CODAR project.

The QMCPACK dataset (accessed from the SDR Bench) comes
from the QMCPACK performance test using the QMCPACK continuum
quantum Monte Carlo simulation [24,26]. Only the 145th orbital out
of 288 is used for testing, for which only a single field is provided. The
dataset is normalized to [0, 1] before compression.

The Tangaroa dataset comes from a single time frame simulating
the wind flow around a 3D model of the Research Vessel Tangaroa [46].
The magnitude of the wind velocity is used as the scalar field of interest.
The dataset is normalized to [0, 1] before compression.

The Earthquake dataset originates from a TeraShake 2 earthquake
simulation [44] and has been part of the 2006 IEEE Visualization
Design Contest [43]. The dataset used in this paper is obtained from
the public data repository of Pont et al. used for their publication [45].
The dataset is preprocessed by Pont et al. and comes with a single field.
It represents one time step of a simulation of an earthquake at the San
Andreas fault. Specifically, we use time step 011700. The details of the
preprocessing can be found on the repository. The dataset is normalized
to [0, 1] before compression.

The Ionization dataset originates from an ionization front simulation
by Whalen and Norman [58] and has been featured in the 2008 IEEE
Visualization Design Contest [53]. The simulation is done with 3D
radiation hydro-dynamical calculations of ionization front instabilities
in which multi-frequency radiative transfer is coupled to the primordial
chemistry of eight species [58]. The single time step used in this paper
comes from cluster 2, time step 0125 and is obtained from the same
repository as the Earthquake dataset. It is preprocessed and comes with
a single field. The details of the preprocessing can be found on the
repository. The dataset is normalized to [0, 1] before compression.

The Isabel dataset originates from a hurricane simulation from the
National Center for Atmospheric Research, and has been included in
the 2004 IEEE Visualization Design Contest [57]. While the original
dataset has a size of 500 x 500 x 100, we truncate the dataset to
500 x 500 x 90 in order to avoid land regions that contain no data
values. We use the wind speed field. The dataset is normalized to [0, 1]
before compression.

The Miranda dataset (accessed from the SDR Bench) comes from
the hydrodynamics code for large turbulence simulations conducted by
Lawrence Livermore National Laboratory. We use the density field.

The Nyx dataset (accessed from the SDR Bench) comes from the
Nyx cosmological simulation [2]. We use the dark matter density field.

The S3D dataset comes from the S3D turbulence simulation soft-
ware [55]. This dataset is derived from data from the SDR Bench. We
compute the field as the magnitude of the velocity, as derived from the
velocity z, y, and z components provided. We use its parameter setting
1.7e x 1072,

The SCALE-LETKF dataset (accessed from the SDR Bench)
comes from the Local Ensemble Transform Kalman Filter (LETKF)
data assimilation package for the SCALE-RM weather model [35]. We
use the QV field which is up-sampled to double precision.

B EVALUATION METRICS

We evaluate our trials on several metrics. We measure compression
ratio, compression time, and peak signal-to-noise ratio (PSNR), which
are common metrics for evaluating compressors.

The compression ratio is the size of the uncompressed file divided by
the size of the compressed file, and higher compression ratios indicate
smaller compressed file sizes. Related to this, the bit-rate is the number
of bits used to compress a single data point. For floating point data, it
is either equal to 32 divided by the compression ratio, or 64 divided by
the compression ratio, depending on if the dataset is respectively single
or double precision.

Peak signal-to-noise ratio (PSNR) is a number that measures re-
construction quality. If R is the range of the data and M is the mean

squared error of our reconstruction, the PSNR is defined as:

R2
PSNR = 10log;, (M) . 3)
In general, higher PSNR values indicate higher reconstruction quality.
We also measure the bottleneck distance [9] and Wasserstein distance
[14, page 183] to quantify the amount of topological control.

To define the Wasserstein and bottleneck distances, suppose that
f and f’ are two scalar fields that yield persistence diagrams D and
D’ respectively; see [15] for an introduction to persistent homology.
If o : D — D’ represents any bijection, and ¢ > 1, we define the
g-Wasserstein distance W, as:

1
a
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WQ(DvD,): DD’
p:D— oD

For our evaluation, we set dw = W> and dp = W. In particular:

Wee (D, D)

= inf su — o 5
ity SR Il = e ()l ®

In general, lower values of W, for any ¢ > 1 indicate that the per-
sistence diagrams D and D’ are more similar. This in-turn means that
the datasets that produced D and D’ are more topologically similar.
To compute dw and dp in reasonable time, we report approximate
values [25] with 1% error that were computed after persistence simpli-
fication with a threshold of 1.5 x 10~° times the range of the data.

C ANALYSIS OF COMPRESSION AND DECOMPRESSION TIMES

We provide compression times for the base compressor versus the aug-
mented compressors in Appendix C.1. We provide a detailed analysis
of decompression times in Appendix C.2.

C.1 Compression Times

We give the run times (in seconds) of each base compressor versus
the augmented compressor in Tab. 5. Each augmented compressor
is abbreviated as A-ZFP, A-SZ3, etc. Times are for ¢ = 0.04 and
& = 0.012. The parameter settings for each base compressor are the
same as those used prior to the augmentation (see Appendix D for
specifics).

C.2 Decompression Time

We provide a breakdown of the decompression times into multiple
stages for the Augmented ZFP and Augmented TTHRESH on each
dataset in Tab. 6. For comparison, the decompression times for TopoSZ
are as follows: QMCPACK: 0.01s; Tangaroa: 0.12s; Earthquake:
0.07s; Ionization: 0.10s; Isabel: 0.41s; and Miranda: 0.67s.

The decompression pipeline of an augmented compressor first de-

compresses a compressed file using XZ with a tar archive, and uses
Huffman to decode the quantization numbers. Then, it decompresses
the compressed file using the base decompressor (run as a separate
process), and augments the result using the quantization numbers. Fi-
nally, it saves the output. As shown in Tab. 6, no individual stage of
the decompression pipeline dominates the others in terms of run time,
although running the base decompressor and augmentation takes longer
times.
Comparison to TopoSZ. Our decompression times (using augmented
compressors) are much slower than TopoSZ for several reasons. First,
the decompression pipeline of TopoSZ does not involve any augmenta-
tion; whereas our pipeline runs a base decompressor and augments the
result. Augmentation increases the I/O overhead, as our augmentation
layer must read in the output of the base decompressor, which is much
larger than the single compressed file read in by TopoSZ. Second, for
lossless compression, we decompress using XZ, whereas TopoSZ uses
ZSTD, which is much faster; see Tab. 7 for a comparison. Further-
more, because we must store the output of the base decompressor and
the augmentation layer, we must combine both files into a tar archive.
Extracting this tar archive takes additional time. Finally, the code for
our decompression pipeline is not optimized and has room for a more
efficient implementation.



Dataset ZFP  A-ZFP SZ3  A-SZ3 CSI A-CSI TTHRESH A-TTHRESH | Neurcomp  A-Neurcomp
QMCPACK 0.04 1.3 0.05 1.37 0.03 1.21 0.16 1.49 1633.42 1640.44
Tangaroa 0.24 9.79 0.34 11.26 0.99 9.46 1.69 12.11 26.20 63.17
Earthquake 0.35 7.42 0.24 7.47 0.14 7.16 1.16 8.86 1021.93 1042.63
Ionization 0.24 8.96 0.34 10.24 0.20 14.31 1.27 15.29 1195.47 1222.28
Isabel 0.73 34.85 1.00 36.30 3.47 43.53 7.73 43.30 7009.20 7151.38
Miranda 1.31 22575 225 28579 1.36 250.63 8.61 353.24 8865.54 9377.60
S3D 528 21486 | 7.27  258.83 5.25 178.04 53.10 258.56 31976.49 34663.49
Nyx 1.78 107275 | 6.14 1147.18 | 2146 5716.34 31.74 25596.02 87230.00 29991.31
SCALE-LETKF | 499 22658 | 8.01  402.86 5.73 347.17 49.83 375.18 37072.43 41227.85

Table 5: Compression times (in seconds) for each base compressor versus each augmented compressor on each dataset. Augmented compressors

are abbreviated as A-ZFP, A-SZ3, etc.

Dataset [Lossless Load Base Augment Save Clean Total
Augmented ZFP
QMCPACK 0.03 001 003 001 001 0.04 0.14
Tangaroa 0.11  0.07 0.10 0.11 0.04 0.05 048
Earthquake 0.06 007 0.11 006 005 0.04 0.39
Ionization 0.08 0.10 0.14 0.08 0.06 0.04 0.5
Isabel 026 021 032 036 0.12 0.05 1.33
Miranda 027 069 076 062 036 0.07 2.78
Nyx 1.18 138 212 237 138 0.09 8.52
S3D 222 238 270 273 124 0.15 11.42
SCALE-LETKF| 157 2.66 290 254 145 0.14 11.26
Augmented TTHRESH
QMCPACK 0.03 0.02 006 001 001 0.04 0.16
Tangaroa 0.08 007 058 0.11 0.05 0.05 0.94
Earthquake 0.05 007 030 006 0.05 0.05 0.8
Ionization 0.06 0.11 048 0.09 0.07 0.05 0.85
Isabel 0.10 023 1.77 036 0.13 0.05 2.64
Miranda 021 072 247 065 038 0.08 4.5
Nyx 1.02 137 421 228 072 0.10 9.7
S3D 148 246 861 254 136 0.14 16.59
SCALE-LETKF| 096 2.73 13,57 249 148 0.15 21.39

Table 6: Run times (in seconds) associated with the decompression
pipeline for Augmented ZFP and Augmented TTHRESH with e = 0.04
and £ = 0.012. Lossless: time to losslessly decompress with XZ, tar
archive, and Huffman coding. Load: time spent loading data from files.
Base: time to decompress using the base decompressor. Augment: time
spent augmenting the output of the base decompressor. Save: time
spent saving the result to a RAW binary file. Clean: time spent deleting
files using system calls.

Dataset X7 ZSTD| XZ ZSTD
Compressor A-ZFP |A-TTHRESH
QMCPACK [0.02 0.02 |0.02 0.01
Earthquake [0.04 0.02 |{0.03 0.02
Ionization [0.04 0.02 |0.03 0.02
Tangaroa 0.07 0.02 |0.05 0.03
Isabel 0.21 0.04 |0.07 0.03
Miranda 0.18 0.05 |0.12 0.05
SCALE-LETKF|1.33 0.15 [0.76 0.11
S3D 1.94 0.16 [1.28 0.11
Nyx 0.78 0.12 |0.65 0.11

Table 7: Lossless decompression time (in seconds) for the output of
augmented ZFP (listed as A-ZFP) and augmented TTHRESH (listed as
A-TTHRESH) for each dataset using XZ versus ZSTD.

D COMPRESSOR PARAMETER SETTINGS

We discuss the parameter settings associated with base and aug-
mented compressors. The parameter settings during augmentations
are described in Appendix D.1. The parameter settings for ZFP and
TTHRESH used to generate Fig. 1, Fig. 7, and Tab. 2 are given in Ap-
pendix D.2.

D.1 Parameter Settings During Augmentation

When augmenting ZFP, SZ3, and TTHRESH, to preserve a pointwise
error bound &, we set the error bound & of ZFP to be 5¢, the error bound
1 of SZ3 to be 0.25¢, and the target PSNR 7 of TTHRESH to be 0.05¢.

It seems intuitive that setting 6 = n = 7 = £ would be optimal. We
provide a brief justification for why our strategy works better.

In the case of TTHRESH and SZ3, these parameter settings cause the
base compressors to preserve data with higher reconstruction quality.
If the base compressor returns higher quality compression, then our
topology-preserving framework will need to make fewer adjustments
in order to preserve the contour tree. We have found that the extra
storage space used by the base compressors to create higher quality
intermediate data is outweighed by the space saved by storing fewer
adjustments, causing compression ratios to increase. In addition to
improved compression ratios, if the intermediate data more closely
resembles the input (ground truth) data, there will be fewer false cases,
leading to lower augmentation time. Further, if the intermediate data
is closer to the input data, then after augmentation, the decompressed
data will also be closer to the input data, leading to a higher PSNR.

ZFP is very conservative when it comes to error bounds and actually
preserves an error bound much lower than the maximum error bound
set by the user. We notice empirically that by multiplying the maximum
error bound for ZFP by five, this raises the actual error bound preserved
by ZFP up to something closer to &, allowing for ZFP to produce higher
compression ratios while still yielding intermediate data of acceptable
reconstruction quality. Surprisingly, we observe that setting § very
high, such as § = 50¢ yields even higher compression ratios than
& = 5. On the other hand, the compression ratios are not too high
such that ZFP obtains a comparative advantage in terms of compression
ratio, and the compression times are slow enough that ZFP loses its
comparative advantage on time efficiency. Therefore, we determine
that 0 = 5¢ is the best parameter setting for ZFP.

D.2 Parameters for Equivalent Compression Ratios

In order to generate Fig. 1, Fig. 7, and Tab. 2, we need to identify
parameter settings for the absolute error bound parameter § of ZFP and
the RMSE target parameter 7 for TTHRESH which produce compres-
sion ratios comparable to Augmented ZFP and Augmented TTHRESH
with € = 0.04 and £ = 0.012. The values for ¢ and 7 that produce
these comparable compression ratios are reported in Tab. 2.

Dataset ZFP o TTHRESH 7
QMCPACK 3.11e-2  7.96e-6
Tangaroa 3.60e-2  2.15e-4
Earthquake 3.60e-2  3.66e-4
Ionization 498e-2 3.51e-4
Isabel 1.25e-1  2.62e-4
Miranda 2.28e-1  6.66e-5
Nyx 1.97e-3  1.97e-3
S3D 3.08e-5 3.43e-7
SCALE-LETKF | 9.00e-4 2.95e-6

Table 8: Parameter configurations used to obtain Fig. 1, Fig. 7, and
Tab. 2.

In some cases, the parameter configuration for ZFP is higher than
0.012. ZFP is very conservative in terms of error bounds, and for
each of those trials, the actual error bound that is maintained is likely
significantly lower than the stated maximum error bound.



E ALGORITHMIC DETAILS

We describe how the initial upper and lower bounds are computed
in Appendix E.1. We provide an illustration for the false case detection
process in Appendix E.2, followed by special cases in Appendix E.3.
We describe the specifics surrounding the tightening process, including
a comparison with TopoSZ in Appendix E.4.

E.1 Initial Upper and Lower Bounds

To compute the initial upper and lower bounds U (x) and L(z) for
z € X, we aim to locate an edge ab of the simplified contour tree 7.
satisfying f(a) < f(z) < (b). Recall that a contour tree T of the
data (X, f) arises from a quotient map 7 : (X, f) — (X/~, f). The
contour tree 7% is defined analogously. With an abuse of notation, we
use 7(x) to represent the image of x under a quotient map 7 (when
 is clear from the context). For instance, in Fig. 10, 7(z) on the left
arises from the quotient map defining 7', whereas 7(z) on the right
comes from the quotient map defining 7-.

Case A: As illustrated in Fig. 10, let ¢’ = a’b’ be an edge of T
whose segmentation region contains z; that is, m(z) € €. If f(a’) <
f(z) < f(V'), then we set ab := a’b’. Otherwise, we need to locate ab
with some care, following Case B below.

T
Fig. 10: An illustration of Case A.

Case B: We begin with the join and split trees of f, denoted as .J and
S, respectively. Let J., Se, and T denote the joint, split, and contour
trees of f., respectively. J. and S. combine to form the simplified
contour tree T.. In Case B, if an edge in J that contains 7(z) was
removed after persistent simplification, then 7 () maps to the saddle
of the removed branch. We first compute edges €’; and e’s from J. and
S. respectively as follows.

To compute €’;, we first find an edge e of J. whose segmentation
region contains z. That is, 7w(z) € es. Suppose that e s has endpoints
71 and j2. We then consider two cases for x.

Case B.1: f(j1) < f(x) < f(j2). In this case, we set €; = e.
As shown in Fig. 11, x belongs to the segmentation region of edge
j1jz in Jg, ie., w(x) € jije, and f(j1) < f(z) < f(j2); so we set

ef] =ejg = jljg.
Jo
o))
- f ()
/.X
Je
Fig. 11: An illustration of Case B.1.

Case B.2: f(z) < f(j1). In this case, let m be the lowest leaf that
descends from ey in J.. Then there exists a unique path connecting
71 with m that contains a sequence of descendant edges e, ea, ...,
and so on. There exists exactly one edge e, with endpoints a; and
bi, such that f(ax) < f(z) < f(br). We set €', = ex. As shown
in Fig. 12, we see that « belongs to the segmentation region for edge
jije in Ty, but f(j1) > f(x). We identify the edge ey, = joj1 such
that f(jo) < f(z) < f(j1). Thus, we instead set €’; = joj1.

J2
\g? J.(@)
(@)
J

4/ K A
J Je

Fig. 12: An illustration of Case B.2.

We compute an edge e's from S. similarly to €’;. Let R’; and R’ be
the segmentation region of €’; and €5 respectively. Then R; N R will
intersect the segmentation region of a single edge ab of 7%, and edge
ab will satisty f(a) < f(z) < f(b). We then set L(z) = f(a) + ¢
and U(z) = f(b) — ¢, where ¢ = 1075 f(a) — f(b)|, as described in
Sec. 4.1.

E.2 False Case Detection

In Sec. 4.3, we introduce false case detection as part of the progressive
upper and lower bound tightening process. We illustrate Case (I), Case
(II.a) and Case (IL.b) respectively in Fig. 13.

We grow a minimum m until it reaches some saddle s. In Case
(D), we handle the situation where s is unpaired. In Case (II), we
handle the situation where s has already been paired with another local
minimum m’. As a result, m must pair with some other saddle s” with
(') > f(s).

In Case (ILa), | f(m) — f(s)| > e. It follows that | f (m) — f(s")| >
€. As a result, we know that m has s as its parent in the simplified join
tree. In case (ILb), | f(m') — f(s)| < e. Thus, the edge m’s is not part
of the simplified join tree. Instead, we search for some new saddle s’
that is the parent of s. Then, we can check the cases (I) and (II) again.

Fig. 13: From left to right: illustrations of Cases (l), (Il.a) and (ll.b) of the
false case detection process respectively.

E.3 Special Cases

There are a number of special cases that must be handled during upper
and lower bound tightening. Let f represent the ground truth scalar
field. Let f’ be the decompressed scalar field. Recall that the upper
and lower bound tightening step works on computing the contour tree
of f’. Let T be the merge tree of f, and let T be T after persistence
simplification. Let 7" and T be defined analogously for f’.

When applicable, assume that we are working with the join tree. All
cases apply analogously for the split tree.

Simulation of Simplicity. It is possible that points may have the same
scalar field value, making the function non-Morse. To resolve this issue,
we use Simulation of Simplicity [16]. If points x and y have the same
scalar field value, we break the tie by treating « as larger if its value is
stored in memory after that of y (assuming a Fortran order).
Higher-order saddles. In a typical merge tree, each interior node
(saddle) is connected to exactly two local minima. However, it is
possible to have monkey saddles (i.e., saddles that are connected to
three local minima) and higher-order saddles (i.e., saddles with more
than three local minima connections).

To obtain the correct pairings involving higher-order saddles, we
proceed as follows. Let s be an interior saddle point. Let N be the set
of neighbors of saddle s. Let L(s) = {z € N : f'(z) < f'(s)} be
the lower link of s. When the growth of a local minimum m terminates



at s, we verify whether each point in the lower link L(s) has already
been visited during the growth of some child of s (including possibly
m). If every point in L has not yet been visited, then we pair m with
s. Otherwise, m must pair with some other saddle s’. This strategy is
adapted from the merge tree algorithm of Gueunet et al. [17].
Out-of-order growth. Let s be an interior saddle point. Let m; and
e be its children in the join tree, and assume that f(m1) > f(ma2).
Thus, s should pair with m. In some specific cases, it is possible
that the growth of my will reach saddle s before m,. This can lead
to problems with persistence pairing. This situation can occur if, for
example, m; is first grown to reach some other saddle s’; then, ms is
grown to reach s and pairs with s. Finally, due to a false case, m1 must
be re-grown, and when it is re-grown, its growth now terminates at s.

We handle this situation as follows. Let s be an interior saddle

point that has already been paired with points {m; }. Let m be a new
point whose growth just terminated at s. If, for some ¢, we have that
f(mi) < f(m), then an out-of-order growth occurs. To resolve this
issue, we treat it as a false positive. Similarly, if the growth of m
terminates at s, but s has already been grown as well, then this also
signifies an out-of-order growth. We likewise treat this case as a false
positive.
Simultaneous false positive and false negative. Suppose that when
growing a minimum m, we discover that edge ms € T, but ms ¢ T.
As aresult, ms represents a false positive. Further, suppose that there
exists some saddle s’ such that ms’ € T.. When this occurs, ms’ is
a false negative. Therefore, m is associated with both a false positive
and a false negative. Let R, be the set of points associated with false
positive ms. Let R, be the set of points associated with false negative
ms’. In this case, we tighten the error bounds around all points in the
region R = R, U R,,.

When computing the average time per false case fixed in Tab. 4, we
treat this instance as a single false case (rather than two) as it is handled
the same way as a single false case, except that R is larger. In the ‘FC’
column this case is marked as a false positive.

E.4 Upper and Lower Bound Tightening

In this section, we give a detailed summary of the upper and lower
error bound tightening process of TopoSZ, and compare it against our
progressive bound tightening process.

TopoSZ Bound Tightening. For each false case that is detected,
TopoSZ calculates a region R of X. Then, it tightens the upper and
lower bounds U(x) and L(x) of points in z € R. The region R and
how aggressively L(z) and U(z) are tightened depends on how many
iterations are conducted to eliminate false cases. Let n be the num-
ber of iterations (for Step 4 of TopoSZ), with n = 1 initially. Let f
represent the input (ground truth) scalar field, and let f’ represent the
decompressed scalar field. Let 7' and T" respectively represent their
contour trees. Let T and T_ respectively represent the contour trees
after persistence simplification with a threshold €.

First, a region R is calculated. Define an m-layer neighborhood of
a point z as the set of all points y such ||z — y||cc < m. In the event
of a false positive edge €’ that is present in 7% but not 7%, R is initially
set equal to the region corresponding to e’ in the segmentation induced
by T.. Let s’ be the saddle point that is a vertex of /. An n-layer
neighborhood surrounding s’ is added to R.

In the event of a false negative edge e that is in T but absentin 7%, R
is initially set equal to the region corresponding to e in the segmentation
induced by T7. R is then expanded by adding an n-layer neighborhood
of R. TopoSZ handles false types in the same way that it handles false
negatives.

Then, TopoSZ tightens the L(x) and U(z) bounds around points

x € R. Let ko = min{f(z) z € R} and kpny1 =
max{f(z) : = € R}. TopoSZ calculates n + 1 intervals
[ko, k1], [k1, k2], - [Icn, knt+1] C R such that, for each interval

1, approxnnately of points € R satisfy f(xz) € I. For each
point € R, if f( xJS € [ki, kiy1], then L(z) and U(x) are adjusted
according to L(x) <— max(L(z), k;) and U (x) < min(U(x), ki+1)-
Difference with our framework. In our progressive error tightening
procedure, we compute the regions R in mostly the same manner as

TopoSZ, but with changes. First, because we work with merge trees,
we use the merge-tree-induced segmentation, rather than the contour-
tree-induced segmentation.

Second, in the case of a false positive, we do not grow the region
around the saddle for the first three iterations; and in the case of a
false negative, we do not grow the region for the first three iterations.
We have found that this strategy leads to less points with tighter error
bounds. On the other hand, we divide R into 2" intervals, rather
than n + 1, as we have found that this leads to faster convergence.
Additionally, if a false positive persists for at least six iterations, we
instead handle it the same way as a false negative. We have found that
this also leads to faster convergence.

F COMPRESSOR CONFIGURATIONS AND RECONSTRUCTION
QUALITY CURVES

The TTK implementation of TopoQZ is tightly coupled with ZFP, which
relies on two parameters: the persistence threshold e and the pointwise
error bound ( associated with ZFP. This gives rise to a total pointwise
error upper-bounded by e + ¢. Admittedly, this bound may not be tight
and we estimate the pointwise error bound of TopoQZ to be lower-
bounded by max{e, ¢} and upper-bounded by e + ¢. Decreasing this
bound will generally improve the run time of TopoQZ.

We create plots demonstrating the trade off between bit-rate and re-
spectively PSNR, Wasserstein distance dw and bottleneck distance dp
for each augmented compressor, as well as TopoQZ and TopoSZ. Plots
for Earthquake and QMCPACK are included in Fig. 8. Plots for the
Tangaroa, Ionization, and Isabel datasets are included in Fig. 14. For
the larger datasets, we are unable to compute the topological distances
dw and dp using reasonable computational resources. To that end,
for the Miranda, S3D, and SCALE-LETKF datasets, we only include
plots of bit-rate vs PSNR, which can be found in Fig. 14. In the latter
two large datasets (S3D and SCALE-LETKF), Augmented Neurcomp
performs very poorly, and is an outlier. Thus, we do not plot its perfor-
mance curves. For the Nyx dataset, because each individual trial has
such a long run time, we do not generate any such curves. Some of the
topological distances dw and dp could not be computed in reasonable
time due to the large size or topological complexity of the dataset, thus
are not plotted.

Most of the data is obtained for the augmented compres-
sors and TopoSZ by setting ¢ = 0.04 and varying & €
{0.003, 0.006,0.009, 0.012,0.015,0.018}. For TopoSZ, in order to
obtain a wide range of values, we set e = 0.04 and vary ¢ € { 0.003,
0.11,0.22,0.33, 0.44, 0.55 }.

However, for roughly half of the curves associated with the aug-
mented compressors, we use different values of £ due to a peculiarity
that we observe. Under normal circumstances, if a compressor uses
more bits to encode each data point (i.e., the bit-rate is higher), then
it can more accurately reconstruct the data. In some cases, however,
we notice a negative correlation between bit-rate and reconstruction
quality. This is unusual for compressors.

We do not know precisely why this trend sometimes occurs. We offer
one possible explanation. For each z € X, let U(x) and L(z) denote
the initial upper and lower bounds, respectively, for =, before error
bound tightening. Recall that, before error bound tightening, it holds
that f(x) — € < L(X) < f/(x) < U(X) < f(x) + £. Therefore, as
¢ decreases, the initial guess f’(z) will become more accurate. Thus,
as & decreases, more of the contour tree will be preserved before the
tightening step, and less tightening will occur. In practice, we notice
that error bound tightening does not affect PSNR very much, but it does
increase the bit-rate. As a result, if less error bound tightening occurs,
then the bit-rate could be lower for lower values of £. We notice that
when £ becomes very small, increasing ¢ always leads to increased
bit-rate.

For each combination of a dataset and a compressor, we ensure
that every time & increases, the bit-rate also decreases. In order
to do this, we sometimes need to vary ¢ for values other than the
standard 0.003 through 0.018. To choose values for £, we typically
search for new, lower values of £. However, for Augmented Neur-
comp, due to its very long run times, we simply use a subset of



{0.003, 0.006, 0.009,0.012,0.015, 0.018} for which increasing & al-
ways leads to decreasing bit-rate. We handle TopoSZ and TopoQZ
similarly to Augmented Neurcomp when the run times are long. The
values of £ used to generate the plots are shown in Tab. 9.
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G ADDITIONAL EXPERIMENTS: PARAMETER VARIATIONS AND
ABLATION STUDY

We describe additional experimental results with parameter variations
and ablation studies. We describe the results by varying € and £ in Ap-
pendix G.1 and Appendix G.2 respectively. We describe ablation stud-
ies for logarithmic-scaling quantization and progressive error bound
tightening in Appendix G.3. We only include results for the Earthquake
and Ionization datasets due to space constraints. The trends reported
are consistent across all datasets tested. In all plots of compression and
decompression times, we omit the results of augmented Neurcomp as
it is much slower than the other augmented compressors.

G.1

We measure the effect of varying the persistence threshold ¢ on
each of our six evaluation metrics for each augmented compres-
sor on each dataset (except Nyx). We fix £ = 0.012 and vary
e € {0.02,0.03,0.04,0.05,0.06,0.07}. The results for the Earth-
quake and Ionization datasets are shown in Fig. 16.

We observe that there is a clear positive correlation between € and
compression ratio. This trend is reasonable: when ¢ is larger, the
simplified contour tree becomes simpler, and thus less precision is
required to preserve the contour tree, leading to a high compression
ratio. There is no clear correlation between € and any other evaluation
metrics.

Experiments with Varying Persistence Threshold

Dataset Compressor | Error Bounds
QMCPACK SZ3 0.0006, 0.00108, 0.00156, 0.00204, 0.00252
QMCPACK TTHRESH | 0.0005, 0.0006, 0.0007, 0.0008, 0.0009, 0.001
QMCPACK TopoSZ 0.002, 0.003, 0.006, 0.009, 0.012, 0.015
Tangaroa ZFP 0.0001, 0.0005, 0.001, 0.003, 0.006, 0.009
Tangaroa SZ3 0.0005, 0.00075, 0.001, 0.002, 0.003, 0.006
Tangaroa CSI 0.0005, 0.001, 0.0015, 0.002, 0.003, 0.006
Tangaroa TTHRESH | 0.001, 0.0015, 0.002, 0.003, 0.006, 0.009
Tangaroa Neurcomp 0.003, 0.006, 0.009
Earthquake SZ3 0.001, 0.002, 0.003, 0.006, 0.009, 0.012
Earthquake CSI 0.001, 0.002, 0.003, 0.006, 0.009, 0.012
Earthquake TTHRESH | 0.001, 0.002, 0.003, 0.006, 0.009, 0.012
Earthquake Neurcomp 0.003, 0.006
ITonization ZFP 0.001, 0.003, 0.006, 0.009, 0.012, 0.015
Tonization SZ3 0.001, 0.002, 0.003, 0.006, 0.009, 0.012
ITonization Neurcomp 0.003, 0.006, 0.009, 0.012
Tonization TopoSZ 0.003, 0.006, 0.009, 0.012
Isabel CSI 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.006
Isabel TTHRESH | 0.002, 0.003, 0.004, 0.005, 0.006, 0.009;

Only 0.003 is shown for dw and dp.
Isabel TopoSZ Only 0.003 is shown for dw and dp
Miranda TTHRESH | 0.002, 0.003, 0.006, 0.009, 0.012, 0.015
S3D ZFP 0.00005, 0.0001, 0.0002, 0.0003, 00005, 0.0007
S3D SZ3 0.0001, 0.00025, 0.0003, 0.0004, 0.0005, 0.001
S3D CSI 0.00008, 0.0001, 0.0003, 0.0005, 0.0007, 0.002
S3D TTHRESH | 0.003, 0.006, 0.009
SCALE-LETKF ZFP 0.0005, 0.0008, 0.001, 0.002, 0.003, 0.006
SCALE-LETKF  SZ3 0.001, 0.002, 0.003, 0.006, 0.009, 0.012
SCALE-LETKF  CSI 0.001, 0.003, 0.006, 0.009, 0.012, 0.015
SCALE-LETKF TTHRESH | 0.002, 0.003, 0.004, 0.005, 0.006, 0009

Table 9: Parameter configurations used to generate Fig. 8, Fig. 14, and
Fig. 15 if they are different from the default values.

G.2 Experiments with Varying Pointwise Error Bound

We measure the effect of varying the pointwise error bound & on each
of our six evaluation metrics for each augmented compressor on four
datasets (QMCPACK, Tangaroa, Earthquake, and Ionization). We fix
€ = 0.04 and vary £ using the same values that were used to measure
the trade-off between reconstruction quality and compression ratio. See
Appendix F for specific parameter values.

The results are shown in Fig. 17. There is a clear positive correla-
tion between £ and compression ratio. This trend is logical, as less
information should need to be stored in order to maintain a higher error
bound. Likewise, there is a clear negative trend between £ and recon-
struction quality in terms of each PSNR, Wasserstein distance, and
bottleneck distance. This trend is also logical as a higher error bound
means that the reconstructed data does not need to be as faithful to the
ground truth data. There is no clear trend between £ and compression
or decompression time.

G.3 Ablation Study

In our framework, there are two main components: logarithmic-scaling
quantization and progressive bound tightening. We perform an ablation
study to separately justify the benefits of these two components, in
comparison with TopoSZ, which utilizes linear-scaling quantization and
iterative bound tightening. We independently analyze each of the six
evaluation metrics across five datasets, for all augmented compressors.

In addition to studying iterative bound tightening based on the con-
tour tree (as is used by TopoSZ), we also implement an iterative bound
tightening based on the merge tree for the ablation study, where we iter-
atively tighten the upper and lower bounds until there are no false cases
in the join and split trees respectively. For linear-scaling quantization,
we use quantization intervals of width £ (like in TopoSZ), rather than
the standard width of 2&.

The results of the ablation study are shown in Fig. 18. The aug-
mented compressors are given by A-ZFP, A-SZ3, etc. In each line chart,
columns whose label start with ‘Lin’ use linear-scaling quantization,
whereas columns whose label starts with ‘Log’ use logarithmic-scaling
quantization. Columns whose labels end with ‘ItrCT, ‘It'MT,” and
‘Prog’ refer to trials that use contour-tree-based iterative tightening,
merge-tree-based iterative tightening, and progressive tightening re-
spectively. For compression times, we omit the time collected for
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Fig. 17: Each of the six evaluation metrics measured for the Earthquake and lonization datasets for each lossy compressor as ¢ varies. We fix

e = 0.04. The augmented compressors are given as A-ZFP, A-SZ3, etc.

Ionization dataset using CSI and Log/ItrCT as it was much higher than
the times reported by other compressors and configurations.

In Fig. 18, we can see that logarithmic-scaling quantization always
produces a higher compression ratio than linear-scaling quantization.
Progressive or iterative tightening do not noticeably affect the com-
pression ratio. The PSNR is essentially constant across each trial,
although logarithmic-scaling quantization typically produces slightly
lower PSNR values than linear-scaling quantization. The Wasserstein
distance is similar across trials, but sometimes we observe slight in-
creases to Wasserstein distance when using logarithmic-scaling quan-
tization rather than linear-scaling quantization. We do see large fluc-
tuations in the bottleneck distance between trials, and sometimes
logarithmic-scaling quantization leads to an increase. However, across
all trials there is no clear pattern.

In terms of compression time, we can see that progressive bound
tightening outperforms iterative bound tightening in every trial. Also,
it appears that iterative tightening based on the contour tree outper-
forms iterative tightening based on the merge trees in most trials. This
trend suggests that the primary benefit of tightening based on the join
and split trees is that doing so enables progressive tightening strate-
gies. When progressive tightening is used, using logarithmic-scaling
quantization sometimes leads to slightly longer run times than linear-
scaling quantization. Neither the tightening strategy or the quantization
strategy appear to offer any advantage or disadvantage in terms of
decompression time.

H VisSuAL ARTIFACTS DUE TO Lossy COMPRESSION

Lossy compressors allow for some distortion of the data to achieve
smaller compressed file sizes. Since we work with augmented lossy
compressors, we might observe visual artifacts in the decompressed
data due to the distortion introduced during the compression process.
Some artifacts become more visible depending on the choice of transfer
functions during volume rendering.

If the visualization is particularly sensitive to small changes in the
transfer function, the decompressed data can appear lighter or darker
than the input (ground truth) when visualized with the same transfer
function. This typically occurs when one region of a volume has
relatively uniform values.

We include visualizations of the visual artifacts for five datasets for
augmented TTHRESH in Fig. 19. We cannot find volume renderings
that produce noticeable artifacts for the remaining four datasets. We
do not consider Neurcomp as its augmented model preforms the worst.
The remaining augmented compressors yield similar artifacts. The
Miranda dataset appears to contain the most visual artifacts, where a
turbulent front divides two nearly uniform regions.



[ y— N 045 —= 0.012 == 50 T e e
S 120 ] 55‘ + '\\\, o ,/‘*‘*1 ,F — /\ Ol g > o9
ki ; === 9] v g in 2 Pl w6
100 i [ = [ 8 e 74 / H
0.40 < 0.010 i [} AN
g g 80 / [ e ] %55 [ =2 S 3 5 *—o——¢ I i _® g / \ E
2 / ~ B e s 1 0 o —®—— %) / = 30 VAN ya i 5
g a o ifig-—e—-e| 54 a A9 a :—o—-&r [ 8k o \ .
T 0 [m—— =2 035{6 oo 0.0081% 1 g ¢ \ / l \ g4
£ 5 4wfe—e——€// 0 5, a o—o—-0 B \ ; 20 ARy -
i< g 0—0—4/:/ BN E= =g e -e -0 ®© . o ] =2 g =N ,//./ AN S |e-e-e-g_—g--0
ﬁ E 20{g oo w0 . 2 030({% o e-e--8| @ 006 St \\\.,// U E! 3
O ole-—e--e oo [ *-0—0-0—0-0 O |o-o-0-0-"%
o A & o o A & .o & & o A & o A& e A S o A & o
NGO & S C e s C O s CEE LS EEEE S
RO & & ¥ N 4 & ¥ SR & RO & ¥ & K & ¥ o & & ¥
o -~ —-9 *—0—0—-0—0 -0 ———9 . —o= — o -
2 160 »/’ 60 0 0% //:_,.,, m00120 e AR /I Gso A ‘/’\\ G |o-o N
& / — 2 050 s o iR Py / - i Fa o °
140 / m 55 G /7 € 001151, /4 L @ 40{ 7 i c
c S L ) T Se—e—o——e—o—-0 8 o045(0-—0-——6/ © oo e-ievei-e i 7 £
o Q10 /3_;4:; R . i S S 7] 7 3 VAN £ iy / \ Fsie g0y oo
=2 % = g _e— _ 2 i A . ~——@—
T 2100 Vi < ————t 0 04018230~ ~% Qoo / ) of 30 Ve al o
N 5 $=3==0 &50 Te—e—e| 0035 + ¢ /1N / g‘zo '_‘\ Y AT g“ = ——0-——¢—®
= 80 Y — 7 et
§ € P —1 go.ao & o.0105 A S :,}\\\*,,'t e 9
o < A4 @ W9 N
= O Pe—e-—e" Ble-o-eo-—0-o-9 0.25{9-—9——@ * -9 - 10 i g D3e-—e—e_o -9
O & & O &L & & © A O & L0 E L@ & L0 S L & Lo & @ AL Lo
L EE§ & ETS S E &S e E S & ESS ¢ & E &
IR RSN IR NN AR ) S E e IR & NN
N (\\\\9‘)\9@\\9 & \0@9 S OQ&O&Q&Q\\P Qo\(o\veq\?g\yo & V‘,@Vo&yo &0\5,@\9@\ S

~®-A-ZFP -®-A-SZ3 -e-A-CS| -e-ATTHRESH -e-A-Neurcomp

Fig. 18: Each of the six evaluation metrics measured for the Earthquake and lonization datasets for each lossy compressor in an ablation study.
Augmented compressors are given as A-ZFP, A-SZ3, etc. Run times from augmented Neurcomp, and those from augmented CSI are excluded as
they are much higher compared to the others. Each point on the z-axis represents a combination of one quantization strategy (linear-scaling vs
logarithmic-scaling) and one tightening strategy: iterative with contour trees such as in TopoSZ; iterative with merge trees; or progressive bound
tightening. Lin: linear scaling quantization. Log: logarithmic-scaling quantization. Prg: progressive upper and lower bound tightening. ItrCT:
contour-tree based iterative upper and lower bound tightening. lterMT: merge-tree based iterative upper and lower bound tightening.
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Fig. 19: Volume renderings of decompressed scientific datasets when compressed with augmented TTHRESH versus the input (ground truth), using
transfer functions designed to produce the maximal visual difference between the two. Top row: volume renderings of the input data. Bottom row:

volume renderings of the decompressed data after compression with Augmented TTHRESH. Datasets from left to right: QMICPACK, Earthquake,
Miranda, S3D, and Nyx.
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