
A General Framework for Augmenting Lossy Compressors
with Topological Guarantees

Nathan Gorski, Xin Liang, Hanqi Guo, Lin Yan, and Bei Wang

Fig. 1: Visualizing scientific datasets compressed with classic SZ3 and Augmented SZ3 compressors with topological controls. Each
dataset is visualized. Top: input data visualized with critical points of the contour tree, maximum are in red, minimum are in blue,
1-saddles are in orange, 2-saddles are in white. Middle: reconstructed data using SZ3. Bottom: reconstructed data using Augmented
SZ3. From left to right: Earthquake, Ionization, Isabel, Miranda, QMCPack, and Tangaroa datasets.

Abstract— Topological descriptors such as contour trees and Morse–Smale complexes are widely utilized in scientific data analysis
and visualization, with applications from materials science to climate simulations. It is thus desirable to preserve topological descriptors
when data compression is part of the scientific workflow for these applications. However, classic error-bounded lossy compressors for
volumetric data do not guarantee the preservation of topological descriptors, despite imposing strict pointwise error bounds. In this
work, we introduce a general framework for augmenting any lossy compressor to preserve the topology of the data during compression.
Specifically, our framework quantifies the adjustments (to the decomposed data) needed to preserve the contour tree and then employs
a custom variable-precision encoding scheme to store these adjustments. We demonstrate the utility of our framework in augmenting
classic compressors (such as SZ3, TTHRESH, and ZFP) and deep learning-based compressors (such as Neurcomp) with topological
guarantees.

Index Terms—Lossy compression, contour tree, topology preservation, topological data analysis, topology in visualization

1 INTRODUCTION

Modern scientific simulations generate enormous amounts of data,
sometimes on the order of terabytes per minute [6]. Data compression
helps reduce the size of data for storage and transmission in scientific
data management systems. There are two types of compression tech-
niques: lossy and lossless. Lossy compression techniques allow for
some distortion of the data to achieve smaller compressed file sizes and
have wide applicability in the compression of images [15], audio [17],
and scientific data [6]. Among them, error-bounded lossy compressors,

• Nathan Gorski is with the University of Utah. E-mails: gorski@sci.utah.edu
• Xin Liang is with the University of Kentucky. E-mail: xliang@uky.edu.
• Hanqi Guo is with the Ohio State University. E-mail: guo.2154@osu.edu.
• Lin Yan is with the Iowa State University. E-mail: linyan@iastate.edu.
• Bei Wang is with the University of Utah. E-mail: beiwang@sci.utah.edu.

such as SZ [25], ZFP [26], and TTHRESH [4], play a crucial role in
reducing the storage demand of large-scale scientific data. Not only
can such compressors significantly reduce the data volume, but also
they can control the data distortion and guarantee the validity of the
reconstructed data for post hoc analysis, based on user-defined error
bounds [28]. For instance, error-bounded lossy compressors have been
shown to improve the I/O performance dramatically without significant
degradation of the visual quality on the reconstructed (decompressed)
data (e.g., [4, 24, 53]).

In the analysis of scientific data, topological data analysis (TDA)
employs topological descriptors, such as contour trees [5] and Morse-
Smale Complexes [11], to describe, summarize, and draw conclusions
about scientific data (e.g., [2, 7, 39]); see [52] for a survey. While
error-bounded lossy compressors typically allow the user to impose
pointwise error bounds that are maintained during compression, such
compressors seldom make guarantees about how the compression will
affect the geometry and topology of the reconstructed data.

For example, Lu et al. [29] examined the impact of lossy compres-
sion on data fidelity and complex scientific data analytics. They studied

the detection of blobs, features used by fusion scientists to study the
trajectory of high-energy particles. Blobs are defined by areas with high
electric potentials, i.e., areas enclosed by contours above certain thresh-
olds. Their experiments demonstrated that as the error bound increases,
the blobs will change both in number and position. They concluded that
“lossy compression may seriously distort data, thus having a disastrous
impact on data analytics,” and therefore “determining a proper error
bound is key to performing meaningful lossy compression in science
production.” [29] We argue that determining a proper error bound is
only part of the story. It is also important to develop error-bounded
lossy compressors that explicitly preserve features of interest to domain
scientists—such as topological features—during compression.

In this paper, we introduce a general framework that augments
any lossy compressor for volumetric scalar fields in order to impose
topological control, while maintaining a user-specified pointwise error
bound. Specifically, our framework augments any lossy compressor
in order to preserve the contour tree, in terms of its critical points and
the connectivity between those critical points. Preserving the contour
tree of the reconstructed data is crucial to support a variety of post
hoc scientific visualization tasks, as the contour tree has been used for
feature extraction, tracking, comparison, and interactive contour explo-
ration (e.g., [19, 55]). Previous work by Yan et al. [51] modified the
classic SZ compressor with a customized error-controlled quantization
strategy to preserve the contour tree. Instead of modifying individ-
ual compressors [51], our general framework effectively leverages the
capabilities of a wide variety of data compressors. Additionally, as
data compressors continue to improve, our framework can be used to
augment increasingly effective compressors and thereby achieve better
results. During augmentation, our framework first computes specific
upper and lower bounds for each data point which, if maintained, will
guarantee that the contour tree is preserved and that the pointwise error
bound is maintained. It then uses a novel variable-precision encoding
scheme to store any adjustments that must be made to the output of an
augmented compressor, in order to ensure that these upper and lower
bounds are maintained. Our contributions include:

• A custom framework that calculates and stores any adjustments
that must be made to the output of an augmented compressor in
order to preserve the contour tree.

• A custom variable-precision encoding scheme to efficiently store
these adjustments.

• A systemic comparative study that evaluates five lossy compres-
sors (ZFP, SZ3, TTHRESH, Neurcomp, Cubic Spline) augmented
with topological control, and two state-of-the-art topology-
preserving compressors, across a number of scientific datasets.

2 RELATED WORK

We give a brief review of data compression for volumetric data. We then
discuss the use of contour trees in topological data analysis, followed
by related work for topology-preserving compression techniques.
Lossy compression. Lossless compression techniques allow the orig-
inal data to be perfectly reconstructed, but they usually suffer from
limited compression ratios (less than 2× according to [41]) in scientific
data and thus are not practical. As such, lossy compression is regarded
as an alternative way to reduce the unprecedented data size of scientific
data. Traditional lossy techniques such as JPEG/JPEG2000 leverage
wavelet theories and bitplane encoding to compress image data, but
they are not adept at dealing with multidimensional scientific data in
floating-point format. Recently, there has been an increasing trend to
leverage deep learning techniques, such as the autoencoder [21] and
Implicit Neural Representation (INR) [30], for data compression. An
autoencoder is a neural network composed of two components: an en-
coder and a decoder. The encoder is trained to produce low-dimensional
representations of the input data, whereas the decoder is trained to re-
construct the original input data from the output of the encoder. An
INR model trains a small neural network that can be used to recreate
the ground truth. The neural network itself is shipped as a compressed
file, and to decompress it, one must simply evaluate the network on an
appropriate input. However, these general lossy techniques lack precise
error control on the data, which limits their use on scientific data.

Error-controlled lossy compressors [4,20,26,53] have been proposed
and leveraged by the scientific computing community to reduce the
data size while controlling the distortion in the decompressed data. In
general, such compressors can be categorized into transform-based
compressors and prediction-based compressors. Transformation-based
lossy compressors rely on domain transforms for data decorrelation. For
instance, ZFP [26] divides data into small blocks and then compresses
each block independently. The compression procedure inside each
block includes exponent alignment for fixed point conversion, a near-
orthogonal domain transform, and embedded encoding. TTHRESH [4]
is another transform-based compression that leverages singular-value
decomposition to improve the decorrelation efficiency for high dimen-
sional data.

Prediction-based compressors employ prediction methods such as
interpolation to approximate the ground truth. The differences be-
tween original and predicted data are quantized and then encoded
using entropy encoding and lossless techniques. ISABELA [20], as
one of the pioneering error-controlled prediction-based compressors,
uses B-splines to predict data. SZ3 [23, 25, 53], the most recent gen-
eral release in the SZ compressor family, uses a combination of a
Lorenzo predictor [16], cubic spline interpolation, and linear interpo-
lation. In addition, AE-SZ [27] is proposed as a variation of SZ that
incorporates autoencoders in the prediction pipeline. Recently, spatial
super-resolution (SSR) models employ neural networks to accurately
upscale low-resolution representation of data as a form of interpolation.
Several volumetric scalar field compressors incorporate SSR models,
such as SSR-TVD [14] and the deep hierarchical model [50].

Contour trees. Our augmented compressors aim to preserve the con-
tour tree of an input scalar field. Contour trees capture the relationships
among contours of scalar fields. They have been used to support data
analysis and visualization tasks across diverse disciplines, such as as-
tronomy [39], fluid dynamics [2], and medicine [3, 42, 47]. They have
also been incorporated into algorithms in computer vision [32] and
visualization [19, 55] for interactive exploration of contours.

Topology-preserving compression. To the best of our knowledge,
only two compressors have been developed for data compression with
topological guarantees. The first compressor was developed by Soler et
al. [40], which we shall refer to as TopoQZ. TopoQZ allows the user to
specify a single parameter ϵ. It preserves all critical point pairs with
finite persistence greater than ϵ and eliminates all critical points with
persistence less than ϵ. TopoQZ is not designed to perfectly preserve the
contour tree. Therefore, the locations of preserved critical points may
shift slightly during compression, and the connectivity of the critical
points in the contour tree may be altered. TopoQZ also allows the user
to guarantee that the reconstructed values differ from the ground truth at
most by a user-specified error bound ξ. In the original implementation,
it was required that ξ > ϵ, but a more recent implementation allows
for ξ ≤ ϵ. This recent implementation has been incorporated into the
Topology Toolkit [31, 45].

Another topology-preserving compressor is TopoSZ [51]. TopoSZ
modifies the classic SZ pipeline to perfectly preserve the contour tree
of the ground truth data up to the persistence threshold of ϵ. That is,
the contour tree of the output of TopoSZ will be equal to that of the
ground truth after both datasets have been topologically simplified with
persistence ϵ. TopoSZ also allows the user to impose a strict error-
bound ξ, and when compared with TopoQZ, yields generally higher
compression ratios and reconstruction quality; although the algorithm
takes longer to execute. Our general framework borrows some elements
from the TopoSZ pipeline.

While it does not preserve any common topological descriptor, cpSZ
[22]—a variation of SZ—preserves the critical points of a vector field,
which is related to the contour tree. cpSZ also introduces a log-scale
quantization technique to store different error bounds for individual
points.

3 TECHNICAL BACKGROUND

3.1 Contour Tree and Persistence Simplification
Let f : X → R be a continuous scalar field defined on a simply
connected domain X. The level set of f at a threshold t ∈ R is
defined to be f−1(t). The connected components of f−1(t) are called
contours of f . Intuitively, the contour tree T (X, f) is constructed by
contracting each contour of f into a single point. Mathematically,
define an equivalence relation between a pair of points x, y ∈ X such
that x ∼ y iff they belong to the same contour. The contour tree is the
quotient space of X under the equivalence relation, T = T (X, f) :=
X/ ∼.

As t increases, the places where contours of f−1(t) appear or disap-
pear correspond to the local extrema of f and the leaves of the contour
tree. The places where contours merge or split correspond to saddles
of f and branching nodes of T . Thus, there is a one-to-one correspon-
dence between the leaves of T and the local extrema of f . However, the
only saddle points that appear are those where a merge or split occurs
in f−1(t) as t increases and other saddle points may not be vertices of
the contour tree [38]. Fig. 2 (A) and (D) visualize a scalar field and its
corresponding contour tree.

The construction of a contour tree also yields a segmentation of the
data domain X. Let ϕ : X→ T be the canonical map that maps each
datapoint x ∈ X to its equivalence class in T under ∼. If e is an edge
in T , then ϕ−1(e) is a connected region in X. Given a set of edges in a
contour tree T (see Fig. 2 E), segmenting X by the pre-image of each
edge of T under ϕ is called the contour-tree-induced segmentation,
visualized in Fig. 2 (B).

(A) (B) (C)

(D) (E) (F)

a

b

a

b

Fig. 2: (A) A 2D scalar field defined on a square domain, where scalar
field value corresponds to height. Local minima are in blue, saddles
are in white, and local maxima are in red. (B) A contour-tree-induced
segmentation of the domain. (C) The 2D scalar field after a persistence
simplification that removes a pair of a local maximum and a saddle. (D)
The contour tree of the scalar field in (A). (E) Contour tree edges are
colored to indicate the regions in the domain segmentation from (C). (F)
The contour tree of the scalar field after persistence simplification.

Persistent homology uses tools from algebraic topology to separate
topological features from noise in data. In the context of contour trees,
ordinary persistent homology pairs a local extremum (a peak or a valley)
with a nearby saddle and assigns the pair a value of persistence, which
describes the scale at which the pair disappears via a perturbation to
the function. A contour tree can be simplified by canceling pairs of
critical points below a certain persistence threshold ε. In the example
shown in Fig. 2 (B) and (E), a local extremum a is paired with a saddle
b with a persistence |f(a)−f(b)|. Assuming a persistence threshold of
ε = |f(a)−f(b)|, the pair (a, b) will be canceled based on persistence
simplification. That is, the smaller peak a is flattened out to the height
of saddle b. This corresponds to removing a branch (a, b) from the
contour tree. Such a simplification is depicted in Fig. 2 (C) and (F).

In practice, real-world data typically contain noise that creates many
small branches in the contour tree, where persistence simplification
can be used to eliminate these small branches and thereby separate
topological features from noise.

3.2 A Review on TopoSZ
Our framework builds upon a few key ingredients from TopoSZ [51].
TopoSZ, in turn, modifies the pipeline from the error-bounded lossy

compressor SZ version 1.4 [43].
Let f represent the input scalar field, and f ′ be the reconstructed

scalar field (after compression and decompression). Let T be the
contour tree of f and Tε the persistence simplified contour tree at a
threshold of ε. Let T ′ and T ′

ε be defined analogously for f ′.
SZ1.4 allows the user to specify ξ, a pointwise error bound during

compression. In turn, there are two user-defined parameters in TopoSZ:
a persistence threshold ε, and a pointwise error bound ξ. TopoSZ
guarantees the preservation of the persistence simplified contour tree
during compression while maintaining the pointwise error bound. That
is, it guarantees that Tε = T ′

ε, and |f(x)− f ′(x)| ≤ ξ for each x ∈ X.
False Cases. Yan et al. [51] introduced three types of false cases to
quantify the level of contour tree preservation: false positives, false
negatives, and false types, which are illustrated in Fig. 3. A false
positive occurs when a new edge appears in the contour tree of the
reconstructed data that does not exist in the same position of the contour
tree of the original data. A false negative occurs when an edge of the
contour tree from the original data is missing from the contour tree
of the reconstructed data. A false type occurs when the critical type
(maximum, minimum, saddle) of one or both endpoints of an edge of
the contour tree do not match between the original and reconstructed
data. TopoSZ focused on false cases involving extremum-saddle pairs.
The algorithm terminates when there are no such false cases.

(A) (B) (C) (D)

Fig. 3: Three types of false cases. (A) The original contour tree. (B) A
false positive: an extra edge is added. (C) A false negative: an edge is
missing. (D) A false type: an edge contains a critical point as its endpoint
that changes its type.

Pipeline. The TopoSZ pipeline is as follows:
Step 1: Upper and lower bound calculation. TopoSZ first calculates
Tε(X, f). For each point x ∈ X, a lower bound L(x) and an upper
bound U(x) are assigned to x according to the contour-tree-induced
segmentation and ξ. If x belongs to the segmented region corresponding
to an edge (a, b) ∈ Tε(X, f), then L(x) = min(f(a), f(b)) and
U(x) = max(f(a), f(b)). The vertices of the contour tree are stored
losslessly.
Step 2: Prediction. TopoSZ uses a Lorenzo predictor [16] to predict
the values of each datapoint based on the decompressed values of its
neighbors.
Step 3: Linear-scaling quantization. TopoSZ uses a modified linear-
scaling quantization technique to ensure that the pointwise upper and
lower bounds, as well as the global error bound ξ, are maintained for
each x ∈ X.
Step 4: Iterative upper and lower bound tightening. If the results
from Step 3 do not perfectly preserve the contour tree, that is, if there
are false cases presented in the reconstructed data, then the upper and
lower bounds are tightened around points in the segmented regions
containing the false cases, and then Step 3 is repeated. This continues
until there are no false cases.
Step 5: Lossless compression. The numbers from linear-scaling quan-
tization are encoded using Huffman Coding. The other relevant infor-
mation is stored in a binary file. All of the data is then compressed
using ZSTD [9].

We provide additional details on Step 3 and Step 4 below.
Linear-scaling quantization. SZ ensures that a strict absolute error
bound ξ is maintained using a linear-scaling quantization. In standard
linear-scaling quantization, for each point x ∈ X with a ground truth
value f(x), an initial guess for its value g(x) (e.g., from a Lorenzo
predictor) is shifted by an integer multiple of 2ξ to obtain a new value
f ′(x) such that |f ′(x)− f(x)| ≤ ξ.

This process can be conceptualized as follows. Divide the real line
into intervals of length 2ξ, where one interval is centered on g(x). The
compressor then calculates how many intervals to shift g(x), so that
it can assign a value to f ′(x) that is a distance less than ξ from f(x).
By construction, if f(x) lies in an interval of length 2ξ centered on
f ′(x), it must hold that |f(x)− f ′(x)| ≤ ξ. This process is illustrated
in Fig. 4.

Final predicted value

Actual value

<latexit sha1_base64="e29MbM9QtYLaRr0XilfJ5YFodoc=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2Ar1oVlppTqRii4cVnBPqAdSibNtKGZzJBkpGXswl9x40IRt/6GO//GTDsLbT1wuYdz7iU3xw0Zlcqyvo3Myura+kZ2M7e1vbO7Z+4fNGUQCUwaOGCBaLtIEkY5aSiqGGmHgiDfZaTljm4Sv/VAhKQBv1eTkDg+GnDqUYyUlnrmUcE7K47P4TUcJO0CVmB3TAs9M2+VrBngMrFTkgcp6j3zq9sPcOQTrjBDUnZsK1ROjISimJFprhtJEiI8QgPS0ZQjn0gnnt0/hada6UMvELq4gjP190aMfCknvqsnfaSGctFLxP+8TqS8KyemPIwU4Xj+kBcxqAKYhAH7VBCs2EQThAXVt0I8RAJhpSPL6RDsxS8vk2a5ZFdL1btyvlZJ48iCY3ACisAGl6AGbkEdNAAGj+AZvII348l4Md6Nj/loxkh3DsEfGJ8/6NySyw==</latexit>

f 0(x) = g(x) � 4⇠

<latexit sha1_base64="6+D+/4Fj2OgZDywqZEqA1Tm7+5Y=">AAAB7XicbVBNSwMxEJ31s9avqkcvwVaol7JbpHosePFYwX5Au5Rsmm1js8mSZMWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubed28rt7+weHhaPjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvpn57UeqNJPi3kxi6kd4KFjICDZWapXC8tNFqV8ouhV3DrRKvIwUIUOjX/jqDSRJIioM4VjrrufGxk+xMoxwOs33Ek1jTMZ4SLuWChxR7afza6fo3CoDFEplSxg0V39PpDjSehIFtjPCZqSXvZn4n9dNTHjtp0zEiaGCLBaFCUdGotnraMAUJYZPLMFEMXsrIiOsMDE2oLwNwVt+eZW0qhWvVqndVYv1yyyOHJzCGZTBgyuowy00oAkEHuAZXuHNkc6L8+58LFrXnGzmBP7A+fwBJAOOKA==</latexit>

f(x)

Initial predicted value

<latexit sha1_base64="Y9q0+PY+OU7p/OgJBUusnUNY24w=">AAAB7XicbVBNSwMxEJ31s9avqkcvwVaol7JbpHosePFYwX5Au5Rsmm1js8mSZMWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubed28rt7+weHhaPjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvpn57UeqNJPi3kxi6kd4KFjICDZWapWG5aeLUr9QdCvuHGiVeBkpQoZGv/DVG0iSRFQYwrHWXc+NjZ9iZRjhdJrvJZrGmIzxkHYtFTii2k/n107RuVUGKJTKljBorv6eSHGk9SQKbGeEzUgvezPxP6+bmPDaT5mIE0MFWSwKE46MRLPX0YApSgyfWIKJYvZWREZYYWJsQHkbgrf88ippVSterVK7qxbrl1kcOTiFMyiDB1dQh1toQBMIPMAzvMKbI50X5935WLSuOdnMCfyB8/kDJYuOKQ==</latexit>

g(x)

<latexit sha1_base64="J7yIfNnFMIYgig7V+89TAfdFg7c=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRjDxRHYJQY8kXjxiIh8JbEi3dKHSbTdt10g2/AcvHjTGq//Hm//GAntQ8CWTvLw3k5l5QcyZNq777eQ2Nre2d/K7hb39g8Oj4vFJW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeY3Mz9ziNVmklxb6Yx9SM8EixkBBsrtcvV/hMrD4olt+IugNaJl5ESZGgOil/9oSRJRIUhHGvd89zY+ClWhhFOZ4V+ommMyQSPaM9SgSOq/XRx7QxdWGWIQqlsCYMW6u+JFEdaT6PAdkbYjPWqNxf/83qJCa/9lIk4MVSQ5aIw4chINH8dDZmixPCpJZgoZm9FZIwVJsYGVLAheKsvr5N2teLVK/W7aqlRy+LIwxmcwyV4cAUNuIUmtIDAAzzDK7w50nlx3p2PZWvOyWZO4Q+czx+FD45o</latexit>

2⇠

Fig. 4: A standard implementation of a linear-scaling quantization.

Following this construction, each x ∈ X is assigned an integer nx

such that f ′(x) = g(x) + 2ξnx. In standard linear-scaling quantiza-
tion, these quantization numbers {nx} are encoded and stored in the
compressed file. TopoSZ specifically stores the quantization interval
for each x as a 16 bit positive integer equal to nx + 215 − 1. If nx is
such that nx + 215 − 1 is not a 16 bit positive integer, f(x) is stored
losslessly.

If the distribution of {nx} has low entropy (e.g., if {nx} are mostly
zeros), then they can be compressed to a very small size using an
entropy-based compressor, such as Huffman coding. Having more
accurate predictions g(x) generally leads to {nx} with lower entropy.

TopoSZ modifies the standard implementation of linear-scaling quan-
tization to respect the pointwise upper and lower bounds. First, it lowers
the length of each interval to ξ, down from 2ξ. Due to this modification,
there are always two (instead of one) possible choices for f ′(x) that
are at a distance ξ from f(x). During quantization, if either of these
two choices for f ′(x) is between the upper and lower bounds imposed
on x, then TopoSZ will select the valid option that is closest to f(x).
Otherwise, f(x) will be stored losslessly. Lowering the interval length
to ξ improves the chances that there will be a valid choice for f ′(x)
between L(x) and U(x).
Iterative upper and lower bound tightening. For each false case
that is detected in Step 4, TopoSZ calculates a region R of X. Then,
it tightens the upper and lower bounds U(x) and L(x) of points in
x ∈ R. The region R and how aggressively L(x) and U(x) are
tightened depends on how many times this step has been repeated. Let
n be the number of times that Step 4 has occurred, with n = 1 initially.

First, a region R is calculated. Define an m-layer neighborhood of a
point x as the set of all points y such ||x− y||∞ ≤ m. In the event of
a false positive edge e that is in T ′

ε but absent in Tε, R is initially set
equal to the region corresponding to e in the segmentation induced by
T ′
ε. R is then expanded by adding an n-layer neighborhood of R to R.

In the event of a false negative edge e′ that is present in Tε but not
T ′
ε, R is initially set equal to the region corresponding to e′ in the

segmentation induced by Tε. Let s be the saddle point which is a vertex
of e′. An n-layer neighborhood surrounding s is added to R. TopoSZ
handles false types in the same way that it handles false negatives.

Then, TopoSZ tightens the L(x) and U(x) bounds around points
x ∈ R. Let k0 = min{f(x) : x ∈ R} and kn+1 =
max{f(x) : x ∈ R}. TopoSZ calculates n + 1 intervals
[k0, k1], [k1, k2], . . . , [kn, kn+1] ⊂ R such that, for each interval I ,
approximately 1

n+1
of points x ∈ R satisfy f(x) ∈ I . Then, for each

point x ∈ R, if f(x) ∈ [ki, ki+1], then L(x) and U(x) are adjusted
according to L(x)← max(L(x), ki) and U(x)← min(U(x), ki+1).

4 METHOD

We give an overview of our framework in Sec. 4.1, followed by techni-
cal details on the novel ingredients, including the logarithmic-scaling

quantization (Sec. 4.2), the upper and lower bound tightening (Sec. 4.3),
and the lossless compression (Sec. 4.4).

4.1 Overview
We now describe our framework for augmenting any lossy compressor
(called a base compressor) to preserve contour trees and maintain strict
error bounds. Our framework requires two user-specified parameters,
a persistence threshold ε and a pointwise absolute error bound ξ. It
also requires user-specified parameters associated with the specific base
compressor being augmented.

We denote the original input data as f , and the reconstructed (de-
compressed) data as f ′. Let T be the contour tree of f , and Tϵ be T
subjected to persistent simplification with threshold ε. Let T ′ and T ′

ϵ

be defined analogously for f ′. Our framework guarantees that, for any
augmented compressor, Tε = T ′

ε and |f(x) − f ′(x)| ≤ ξ for every
x ∈ X. Starting with a standard compressor as the base compressor,
we start with a step-by-step overview of our framework.
Step 1: Upper and bound calculation. We calculate the initial point-
wise upper and lower bounds using a technique similar to the one
used by TopoSZ. If a point x lies in the segmentation region corre-
sponding to an edge (a, b), we let L(x) = min(f(a), f(b)) + ζ and
U(x) = max(f(a), f(b)) − ζ, where ζ is 0.1% of the range. We
found that adjusting by ζ leads to fewer false cases in data with very
high precision. We also adjust L(x) and U(x) as needed to ensure that
if L(x) ≤ f ′(x) ≤ U(x) then |f(x)− f ′(x)| ≤ ξ. Critical points are
stored losslessly.
Step 2: Base compressor. We apply the base compressor to the input
data f . We compress then decompress the data to assess changes that
need to be made during decompression. We refer to the compressed-
then-decompressed data as the intermediate data.
Step 3: Logarithmic-scaling quantization. We introduce a novel
quantization technique that respects the pointwise upper and lower
bounds imposed in Step 1. If possible, the entropy of the quantization
numbers {nx} will be identical to that of standard linear-scaling quanti-
zation with an interval length 2ξ. However, when necessary, individual
points are quantized with more precision to respect pointwise upper
and lower bounds without the point needing to be stored losslessly.
Step 4: Iterative upper and lower bound tightening. We iteratively
tighten the upper and lower bounds of certain data points until the
contour tree is perfectly preserved. Different from TopoSZ, our im-
plementation alters the fashion in which upper and lower bounds are
tightened in order to speed up convergence and decrease the number of
points that must be stored losslessly.
Step 5: Lossless compression. We process the quantization numbers
using a novel technique that leverages spatial correlation to reduce
their entropy. We then encode them using Huffman coding. If the
ground truth data uses a 64 bit encoding, all points that would be stored
losslessly are stored with 32 bits if this still preserves the contour
tree. The output of the base compressor, the encoded quantization
numbers, and any losslessy stored values are written to a binary file
which is further losslessly compressed using xz, a general-purpose data
compression tool available via XZ Utils [10].

4.2 Logarithmic-Scaling Quantization
We now describe our variable precision quantization technique that
preserves tight pointwise upper and lower bounds without significantly
compromising the entropy of the overall distribution of quantization
numbers. For each x ∈ X, the intermediate data contains an estimated
value g(x) for the ground truth value f(x). Let L(x) and U(x) denote
the lower and upper bounds assigned to x. To ensure that L(x) ≤
f ′(x) ≤ U(x), we assign to each x ∈ X a numerator ax ∈ R and a
precision px ∈ N. Our reconstructed value is

f ′(x) = g(x) +
2ξ · ax

2px
. (1)

To calculate each ax and px, we first set px = 0. We then look for
the value of ax satisfying

L(x) ≤ g(x) +
2ξ · ax

2px
≤ U(x)

such that |ax| is minimized. If there is no valid value of ax, we increase
px by 1 and search again. This process is repeated until a valid ax

is found. If px reaches an arbitrary threshold, we stop searching and
instead store f(x) losslessly. We set this threshold equal to 50.

When px = 0, the above process is the same as the standard linear-
scaling quantization, except that we also seek to maintain the upper and
lower bounds. Each time a linear-scaling quantization fails to identify
a valid choice for ax that yields a value of f ′(x) within the upper and
lower bounds for x, we cut the interval lengths in half by increasing px
by 1 and continue searching. When the interval lengths are smaller, it
is more likely that a valid choice of ax exists. It is also possible that
during an iteration, multiple valid choices of ax exist, so we choose the
the option with the smallest absolute value to minimize the entropy of
{ax}.

<latexit sha1_base64="Isd+oNDNdDNVGYsAINHUlr5akBQ=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbSvUiFLx4rGA/oF1KNs22odlsSLJiWfojvHhQxKu/x5v/xrTdg7Y+GHi8N8PMvEBypo3rfju5jc2t7Z38bmFv/+DwqHh80tZxoghtkZjHqhtgTTkTtGWY4bQrFcVRwGknmNzO/c4jVZrF4sFMJfUjPBIsZAQbK3XKcvB045YHxZJbcRdA68TLSAkyNAfFr/4wJklEhSEca93zXGn8FCvDCKezQj/RVGIywSPas1TgiGo/XZw7QxdWGaIwVraEQQv190SKI62nUWA7I2zGetWbi/95vcSE137KhEwMFWS5KEw4MjGa/46GTFFi+NQSTBSztyIyxgoTYxMq2BC81ZfXSbta8eqV+n211KhlceThDM7hEjy4ggbcQRNaQGACz/AKb450Xpx352PZmnOymVP4A+fzBxVNjrc=</latexit>

px = 0
<latexit sha1_base64="yqW4Ho0AoAMZyRVWOsbx+4XXaxk=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbSvUiFLx4rGA/oF1KNs22odlsSLJiWfojvHhQxKu/x5v/xrTdg7Y+GHi8N8PMvEBypo3rfju5jc2t7Z38bmFv/+DwqHh80tZxoghtkZjHqhtgTTkTtGWY4bQrFcVRwGknmNzO/c4jVZrF4sFMJfUjPBIsZAQbK3XKcvB045UHxZJbcRdA68TLSAkyNAfFr/4wJklEhSEca93zXGn8FCvDCKezQj/RVGIywSPas1TgiGo/XZw7QxdWGaIwVraEQQv190SKI62nUWA7I2zGetWbi/95vcSE137KhEwMFWS5KEw4MjGa/46GTFFi+NQSTBSztyIyxgoTYxMq2BC81ZfXSbta8eqV+n211KhlceThDM7hEjy4ggbcQRNaQGACz/AKb450Xpx352PZmnOymVP4A+fzBxbSjrg=</latexit>

px = 1
<latexit sha1_base64="R7FQ6JgaXkz1FO86pldxC1s/SKE=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmI5hgQ+6IQUsSGwsLTOQjgQvZW/ZgZW/3srtnJIT/YGOhMbb+Hzv/jQtcoeBLJnl5byYz84KYM21c99vJrK1vbG5lt3M7u3v7B/nDo6aWiSK0QSSXqh1gTTkTtGGY4bQdK4qjgNNWMLqe+a1HqjST4t6MY+pHeCBYyAg2VmoWb0tP58VevuCW3TnQKvFSUoAU9V7+q9uXJImoMIRjrTueGxt/gpVhhNNprptoGmMywgPasVTgiGp/Mr92is6s0kehVLaEQXP198QER1qPo8B2RtgM9bI3E//zOokJr/wJE3FiqCCLRWHCkZFo9jrqM0WJ4WNLMFHM3orIECtMjA0oZ0Pwll9eJc1K2auWq3eVQu0ijSMLJ3AKJfDgEmpwA3VoAIEHeIZXeHOk8+K8Ox+L1oyTzhzDHzifP/wkjg4=</latexit>

L(x)
<latexit sha1_base64="JAsjAe8lQzqaVpA6QKu8hI6iphA=">AAAB7XicbVBNTwIxEJ31E/EL9eilEUzwQnaJQY8kXjxi4gIJbEi3dKHSbTdt10gI/8GLB43x6v/x5r+xwB4UfMkkL+/NZGZemHCmjet+O2vrG5tb27md/O7e/sFh4ei4qWWqCPWJ5FK1Q6wpZ4L6hhlO24miOA45bYWjm5nfeqRKMynuzTihQYwHgkWMYGOlZskvP12UeoWiW3HnQKvEy0gRMjR6ha9uX5I0psIQjrXueG5igglWhhFOp/luqmmCyQgPaMdSgWOqg8n82ik6t0ofRVLZEgbN1d8TExxrPY5D2xljM9TL3kz8z+ukJroOJkwkqaGCLBZFKUdGotnrqM8UJYaPLcFEMXsrIkOsMDE2oLwNwVt+eZU0qxWvVqndVYv1yyyOHJzCGZTBgyuowy00wAcCD/AMr/DmSOfFeXc+Fq1rTjZzAn/gfP4ACfuOFw==</latexit>

U(x)

<latexit sha1_base64="6+D+/4Fj2OgZDywqZEqA1Tm7+5Y=">AAAB7XicbVBNSwMxEJ31s9avqkcvwVaol7JbpHosePFYwX5Au5Rsmm1js8mSZMWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubed28rt7+weHhaPjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvpn57UeqNJPi3kxi6kd4KFjICDZWapXC8tNFqV8ouhV3DrRKvIwUIUOjX/jqDSRJIioM4VjrrufGxk+xMoxwOs33Ek1jTMZ4SLuWChxR7afza6fo3CoDFEplSxg0V39PpDjSehIFtjPCZqSXvZn4n9dNTHjtp0zEiaGCLBaFCUdGotnraMAUJYZPLMFEMXsrIiOsMDE2oLwNwVt+eZW0qhWvVqndVYv1yyyOHJzCGZTBgyuowy00oAkEHuAZXuHNkc6L8+58LFrXnGzmBP7A+fwBJAOOKA==</latexit>

f(x)
<latexit sha1_base64="Y9q0+PY+OU7p/OgJBUusnUNY24w=">AAAB7XicbVBNSwMxEJ31s9avqkcvwVaol7JbpHosePFYwX5Au5Rsmm1js8mSZMWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubed28rt7+weHhaPjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvpn57UeqNJPi3kxi6kd4KFjICDZWapWG5aeLUr9QdCvuHGiVeBkpQoZGv/DVG0iSRFQYwrHWXc+NjZ9iZRjhdJrvJZrGmIzxkHYtFTii2k/n107RuVUGKJTKljBorv6eSHGk9SQKbGeEzUgvezPxP6+bmPDaT5mIE0MFWSwKE46MRLPX0YApSgyfWIKJYvZWREZYYWJsQHkbgrf88ippVSterVK7qxbrl1kcOTiFMyiDB1dQh1toQBMIPMAzvMKbI50X5935WLSuOdnMCfyB8/kDJYuOKQ==</latexit>

g(x)

<latexit sha1_base64="R7FQ6JgaXkz1FO86pldxC1s/SKE=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmI5hgQ+6IQUsSGwsLTOQjgQvZW/ZgZW/3srtnJIT/YGOhMbb+Hzv/jQtcoeBLJnl5byYz84KYM21c99vJrK1vbG5lt3M7u3v7B/nDo6aWiSK0QSSXqh1gTTkTtGGY4bQdK4qjgNNWMLqe+a1HqjST4t6MY+pHeCBYyAg2VmoWb0tP58VevuCW3TnQKvFSUoAU9V7+q9uXJImoMIRjrTueGxt/gpVhhNNprptoGmMywgPasVTgiGp/Mr92is6s0kehVLaEQXP198QER1qPo8B2RtgM9bI3E//zOokJr/wJE3FiqCCLRWHCkZFo9jrqM0WJ4WNLMFHM3orIECtMjA0oZ0Pwll9eJc1K2auWq3eVQu0ijSMLJ3AKJfDgEmpwA3VoAIEHeIZXeHOk8+K8Ox+L1oyTzhzDHzifP/wkjg4=</latexit>

L(x)
<latexit sha1_base64="JAsjAe8lQzqaVpA6QKu8hI6iphA=">AAAB7XicbVBNTwIxEJ31E/EL9eilEUzwQnaJQY8kXjxi4gIJbEi3dKHSbTdt10gI/8GLB43x6v/x5r+xwB4UfMkkL+/NZGZemHCmjet+O2vrG5tb27md/O7e/sFh4ei4qWWqCPWJ5FK1Q6wpZ4L6hhlO24miOA45bYWjm5nfeqRKMynuzTihQYwHgkWMYGOlZskvP12UeoWiW3HnQKvEy0gRMjR6ha9uX5I0psIQjrXueG5igglWhhFOp/luqmmCyQgPaMdSgWOqg8n82ik6t0ofRVLZEgbN1d8TExxrPY5D2xljM9TL3kz8z+ukJroOJkwkqaGCLBZFKUdGotnrqM8UJYaPLcFEMXsrIkOsMDE2oLwNwVt+eZU0qxWvVqndVYv1yyyOHJzCGZTBgyuowy00wAcCD/AMr/DmSOfFeXc+Fq1rTjZzAn/gfP4ACfuOFw==</latexit>

U(x)

<latexit sha1_base64="u5y6mKjNz2jUuF4VXyZBc913DiE=">AAAB7nicbVBNSwMxEJ31s9avqkcvwVasl7JbpHosePFYwX5Au5Rsmm1Ds9mQZMWy9Ed48aCIV3+PN/+NabsHbX0w8Hhvhpl5geRMG9f9dtbWNza3tnM7+d29/YPDwtFxS8eJIrRJYh6rToA15UzQpmGG045UFEcBp+1gfDvz249UaRaLBzOR1I/wULCQEWys1C6FF+Wny1K/UHQr7hxolXgZKUKGRr/w1RvEJImoMIRjrbueK42fYmUY4XSa7yWaSkzGeEi7lgocUe2n83On6NwqAxTGypYwaK7+nkhxpPUkCmxnhM1IL3sz8T+vm5jwxk+ZkImhgiwWhQlHJkaz39GAKUoMn1iCiWL2VkRGWGFibEJ5G4K3/PIqaVUrXq1Su68W61dZHDk4hTMogwfXUIc7aEATCIzhGV7hzZHOi/PufCxa15xs5gT+wPn8AYUzjlk=</latexit>

f 0(x)
<latexit sha1_base64="6+D+/4Fj2OgZDywqZEqA1Tm7+5Y=">AAAB7XicbVBNSwMxEJ31s9avqkcvwVaol7JbpHosePFYwX5Au5Rsmm1js8mSZMWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubed28rt7+weHhaPjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvpn57UeqNJPi3kxi6kd4KFjICDZWapXC8tNFqV8ouhV3DrRKvIwUIUOjX/jqDSRJIioM4VjrrufGxk+xMoxwOs33Ek1jTMZ4SLuWChxR7afza6fo3CoDFEplSxg0V39PpDjSehIFtjPCZqSXvZn4n9dNTHjtp0zEiaGCLBaFCUdGotnraMAUJYZPLMFEMXsrIiOsMDE2oLwNwVt+eZW0qhWvVqndVYv1yyyOHJzCGZTBgyuowy00oAkEHuAZXuHNkc6L8+58LFrXnGzmBP7A+fwBJAOOKA==</latexit>

f(x)
<latexit sha1_base64="Y9q0+PY+OU7p/OgJBUusnUNY24w=">AAAB7XicbVBNSwMxEJ31s9avqkcvwVaol7JbpHosePFYwX5Au5Rsmm1js8mSZMWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubed28rt7+weHhaPjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvpn57UeqNJPi3kxi6kd4KFjICDZWapWG5aeLUr9QdCvuHGiVeBkpQoZGv/DVG0iSRFQYwrHWXc+NjZ9iZRjhdJrvJZrGmIzxkHYtFTii2k/n107RuVUGKJTKljBorv6eSHGk9SQKbGeEzUgvezPxP6+bmPDaT5mIE0MFWSwKE46MRLPX0YApSgyfWIKJYvZWREZYYWJsQHkbgrf88ippVSterVK7qxbrl1kcOTiFMyiDB1dQh1toQBMIPMAzvMKbI50X5935WLSuOdnMCfyB8/kDJYuOKQ==</latexit>

g(x)(A) (B)
Fig. 5: (A) If px = 0, there are no valid quantization intervals. (B)
Increasing px to 1 allows for a valid quantization interval.

This process is illustrated in Fig. 5. (A) contains an example where
there are no valid quantization intervals in which we can place f ′(x)
to respect the upper and lower bounds. In (B), by raising the precision
px by 1, the quantization intervals are halved, giving a valid choice for
f ′(x).

When encoding the data, we store a single quantization number nx

for each x ∈ X. To calculate each nx, we first calculate a precision
cutoff kp and a cardinality cutoff kc. Any point x ∈ X is stored
losslessly if px > kp, or if the total number of points with the same
values of nx and px is less than kc. The remaining points are assigned
the single quantization number nx = ax · 2kp−px and the precision
cutoff kp is stored in the compressed output. During decompression,
the point x is assigned the value

f ′(x) = g(x) +
2ξ · nx

2kp
. (2)

Setting nx = ax · 2kp−px in Eq. (2) means that,

g(x) +
2ξ · nx

2kp
= g(x) +

2ξ · ax · 2kp−px

2kp
= g(x) +

2ξ · ax

2px
(3)

Therefore, the formulation in Eq. (2) is equivalent to the original for-
mulation of f ′ in Eq. (1).

In comparison with TopoSZ, the above variable precision technique
allows us to store fewer points losslessly overall. It also allows us to
have a quantization interval of length 2ξ, leading to a distribution of
quantization numbers with lower entropy. Our strategy employs preci-
sion and cardinality cutoffs kp and kc as it is possible that infrequent
occurrences of large quantization numbers can take more bits to encode
using our strategy than if their corresponding datapoints were stored
losslessly. This is because of the overhead involved in the Huffman cod-
ing. Our current implementation uses a greedy algorithm to calculate
locally optimal values of kp and kc, respectively.

4.3 Upper and Lower Bound Tightening
Like TopoSZ, our framework seeks to eliminate false cases involving
extremum-saddle pairs by tightening the upper and lower bounds in the
regions corresponding to these false cases in the contour-tree-induced
segmentation. However, our upper and lower bound tightening strategy
differs from that of TopoSZ in several ways. First, during the nth
iteration, we calculate 2n+1 rather than n+ 1 intervals for tightening
the upper and lower bounds, which leads to faster convergence. We
also grow our regions more slowly during the first few iterations. Em-
pirically, we have found that this leads to fewer points with very tight
upper and lower bounds.

In the case of false positives, during each step, TopoSZ only grows
the region where the upper and lower bound is tightened by adding
points adjacent to the saddle point of the false-positive edge, rather than
adding points adjacent to the entire region. Our algorithm does this
initially, but after several iterations, it switches to growing the region
by adding points that border the entire region. We have found that this
speeds up convergence when the topological regions corresponding to
false cases are very thin.

4.4 Lossless Compression
Given a list of quantization numbers, [n1, n2, . . . , nN] (for N points),
we aim to store it losslessly. We first preprocess the list to reduce its
entropy in a way that takes advantage of spatial correlation. To that
end, we subtract from each quantization number the previous one. That
is, the list to be encoded is [n1, n2 − n1, n3 − n2, . . . , nN − nN−1].

For example, if our list of quantization numbers is [1, 1, 1, 2, 2, 2],
the quantization numbers that would get stored would be
[1, 0, 0, 1, 0, 0]. Because quantization numbers tend to have similar
values to their neighbors, this transformation yields a list of numbers
with lower absolute values, and thus lower entropy. This allows the
numbers to be stored more efficiently using an entropy-based com-
pressor. While this technique is very simple, to our knowledge, our
framework is the first compression algorithm to implement it.

After this, the quantization numbers are encoded using a Huffman
coding. They are then stored along with the compressed output of
the base compressor and the losslessly stored points, and the entire
file is further compressed using the xz compressor [10]. We have
experimented with several combinations of entropy encodings and final
lossless compressors, and have found that a combination of Huffman
coding with the xz compressor leads to the best compression ratios.

5 EXPERIMENTAL RESULTS

We provide an overview in Sec. 5.1, describing the compressors and
datasets used in our experiments, highlighting the main takeaways,
and introducing the evaluation metrics. We include compressor con-
figurations and implementation details in Sec. 5.2. We then describe
in Sec. 5.3 the main utilities of our augmented compressors in pre-
serving contour trees in the reconstructed data. We evaluate a number
of augmented compressors qualitatively and quantitatively, followed
by comparison against the state-of-the-art topology-preserving com-
pressors in Sec. 5.4. We end this section with a runtime analysis in
Sec. 5.5.

5.1 An Overview of Experiments
We present a comparative analysis that evaluates five error-bounded
lossy compressors augmented using our general framework, including
the classic compressors SZ3 [25], TTHRESH [4], and ZFP [26], a
deep learning-based compressor Neurcomp [30], and a custom-built
cubic spline interpolation (CSI) model. We test these augmented
compressors—denoted as Augmented SZ3, Augmented TTHRESH,
and so on—against two state-of-the-art topology-preserving compres-
sors, TopoSZ [40] and TopoQZ [51].

We test the five augmented compressors and two topology-
preserving compressors on six volumetric datasets from scientific simu-
lations. See Tab. 1 and Appendix A for details on these datasets.

Dataset Dimension Size (MB)

Earthquake 175× 188× 50 28.2
Ionization 310× 128× 128 40.6

Isabel 500× 500× 90 105.0
Miranda 384× 384× 256 302.0

QMCPack 69× 69× 115 4.4
Tangaroa 300× 180× 200 27.0

Table 1: Scientific datasets used for compression analysis.

Highlighted results. We highlight our experimental results below.
• Applying any of the five original compressors to any of the six

datasets produces a large number of topological false cases in the

Fig. 6: Scientific datasets compressed using different augmented compressors with topological controls. From left to right: the original input dataset,
the reconstructed datasets from Augmented SZ3, Augmented TTHRESH, Augmented ZFP, Augmented Neurcomp, and Augmented CSI respectively,
that preserve the contour trees up to a persistence threshold ε = 0.04. From top to bottom: Earthquake, Ionization, Isabel, QMCPack, Tangaroa
datasets, respectively. We also display the PSNR and compression ratio next to each decompressed dataset.

reconstruction, even with a small pointwise error bound. On the
other hand, augmenting any compressor with our general framework
completely eliminates these false cases while maintaining a user-
specified error bound (Sec. 5.3).

• Augmented TTHRESH and Augmented SZ3 yield the best com-
pression ratios and the fastest runtime among all the augmented
compressors at the expense of some reconstruction quality (Sec. 5.3).

• Our augmented compressors generally produce higher compression
ratios than TopoQZ and TopoSZ with comparable reconstruction

quality and slower compression runtime (Sec. 5.4).
• The majority of the compression time is spent on computing the

contour trees. We argue that in certain use cases prioritizing storage
requirements, it is preferable to have a higher compression ratio over
a faster runtime (Sec. 5.5).

Evaluation metrics. We evaluate whether the contour tree has been
perfectly preserved in the reconstructed (decompressed) data. We also
evaluate the standard compression metrics of compression ratio and

peak signal-to-noise ratio (PSNR). We further employ topology-based
metrics of the bottleneck distances dB [8] and the Wasserstein distances
dW [12, page 183] to quantify the topological similarity between the
original data and the reconstructed data. The evaluation metrics are
described in detail in Appendix B.

In general, higher values of PSNR indicate better reconstruction
quality and lower values of dB and dW indicate higher topological
similarity. We also measure the total compression time for each com-
pressor, which includes (a) the total time to run the base compressor,
and (b) the time to augment the output of the base compressor.

5.2 Compressor Configurations and Implementation
In addition to augmenting the out-of-box base compressors SZ3,
TTHRESH, ZFP, and Neurcomp, we implement and augment our own
super-resolution compressor, a simple custom-built cubic spline interpo-
lation (CSI) model. It compresses a dataset by downsampling the data
by a user-defined ratio in each direction (called a target scale factor)
and uses a cubic spline interpolation technique for reconstruction that is
similar to the one implemented in SZ3. We also considered the Sliced
Wasserstein Autoencoder [18] used in the AE-SZ compressor [27].
However, this model is excluded from our experiments as it performed
significantly worse than the other compressors during initial tests.

We compare our augmented compressors to TopoSZ and TopoQZ.
We use the TopoQZ implementation in TTK [45]. The TTK imple-
mentation of TopoQZ incorporates ZFP [26] to improve the overall
reconstruction quality. We chose to minimize the contribution from ZFP
to maximize compression ratios at the cost of reconstruction quality.

Our general framework requires two user-defined parameters, a
persistence threshold ε and a global absolute pointwise error bound
ξ. ε represents, as a percentage of the range, the level of persistent
simplification. For example, ε = 0.01 corresponds to a persistent
simplification by 1% of the range of the scalar function. Similarly, ξ
represents the percentage of the range that will be used as an absolute
error bound.

Each base compressor takes a number of intrinsic parameters in order
to run. Both SZ3 and ZFP require an absolute error bound, denoted
as η and δ, respectively. TTHRESH takes in a target RMSE of τ .
Neurcomp requires a target compression ratio c. CSI requires a target
scale factor s. For our experiments, we set η = ξ, δ = ξ and τ = ξ.
We also set c = 100 and s = 7. We chose these configurations because
they empirically led to the highest compression ratios. It is important
to note that changing the intrinsic parameters of a base compressor
will cause it to generate different intermediate data which will be
augmented differently. As a result, while our augmented compressor
guarantees topology preservation and maintains the user-defined global
error bound, the compression results may vary.

We apply each compressor on each dataset for 11 parameter com-
binations of ε and ξ. For seven trials, we fix ξ = 0.012 and vary
ε ∈ {0.01, 0.25, 0.04, 0.08, 0.12, 0.16, 0.2}. For five trials, we fix
ε = 0.04 and vary ξ ∈ {0.004, 0.008, 0.012, 0.016, 0.02}. These
cases overlap on ε = 0.04 and ξ = 0.012. The combination of a
chosen compressor, a fixed dataset, a value of ε and ξ, is a trial. We
perform each trial on a single cluster node running an Intel Xeon Sandy
Bridge-E processor with 16 cores and 64GB of RAM. For Neurcomp,
we perform the training on an RTX 2080ti GPU with 32GB of RAM.

5.3 Comparative Analysis of Augmented Compressors
In this section, we perform a comparative analysis of five augmented
compressors, qualitatively and quantitatively. We visualize six scientific
datasets before and after compression with our augmented compressors
in Fig. 6. We also display the PSNR and compression ratio next to each
decompressed dataset. Evaluation metrics are reported in Tab. 3 and
compression and decompression times are reported in Tab. 4.

5.3.1 Topological Guarantees
When compressing a dataset with any base compressor, the contour tree
of the data is often significantly distorted with a large number of false
cases, whereas it is always perfectly preserved using our augmented
compressor.

We demonstrate the behaviors of base compressors and augmented
compressors in Fig. 1, where we visualize each dataset with the vertices
of its contour tree (which are also the critical points of the underlying
scalar fields), using a persistence threshold of ε = 0.04. On the
top row, we visualize the original data. Below that, we visualize the
reconstructed data after it has been compressed with SZ3 (second row)
and augmented SZ3 (third row). For the base compressor SZ3, we
chose η to produce compression ratios comparable to those obtained by
Augmented SZ3, with η = 0.012, and ξ = 0.012 (the configuration
shown on the third row). Comparing the middle row against the top
row, the mismatches between the vertices indicate that SZ3 does not
perfectly preserve the contour tree.

Zoomed-in views of these images for the earthquake datasets are
shown in Fig. 7. In those zoomed-in views, we can see that, for the
earthquake dataset, the base compressor SZ3 fails to predict two critical
points while altering the locations of the other critical points. We can
also observe many false cases for the ionization dataset. In comparison,
Augmented SZ3 successfully preserves all critical points of the contour
trees, as well as their underlying connectivities that are not shown.

In general, the base compressors do not preserve the contour tree
of the reconstructed data. By contrast, by comparing the top row
against the bottom row in Fig. 1, our framework is shown to perfectly
preserve the vertices of the contour tree. A figure analogous to Fig. 1
for TTHRESH is included in the supplementary material Appendix C.

As shown in Fig. 1, whereas SZ3 (and other base compressors such
as TTHRESH) may preserve the locations of many critical points, the
connectivity among these critical points is oftentimes distorted. In
Tab. 2, we report the number of false cases, including both extremum-
saddle and saddle-saddle connections in the contour tree reconstructed
with SZ3 and TTHRESH. We again use parameter configurations that
yield the same compression ratios as their augmented versions with
η = 0.012, τ = 0.012 and ξ = 0.012. Table 2 shows that these base
compressors typically produce many false cases and therefore do not
preserve the contour tree. Notably, for the Isabel dataset, SZ3 does
poorly and predicts no edges correctly in the contour tree. On the
other hand, we found no false cases of any kind across all trials when
augmenting compressors with our framework. The parameter configu-
rations used for SZ3 and TTHRESH are reported in Appendix D.

Dataset SZ3 TTHRESH Total #edges
Earthquake (24, 24, 0) (67, 67, 0) 169
Ionization (82, 86, 0) (18, 18, 0) 568

Isabel (31, 29, 0) (25, 25, 0) 29
Miranda (5, 5, 0) (0, 0, 0) 11

QMCPack (42,42,0) (34,34,0) 69
Tangaroa (49, 51, 0) (18, 18, 0) 418

Table 2: Reporting the number of false cases (false positives, false nega-
tives, false types) produced by base compressors SZ3 and TTHRESH,
respectively, together with the total number of edges of the input (ground
truth) contour tree. Contour trees are simplified with ε = 0.04.

5.3.2 Evaluation Metrics
The evaluation metrics are reported in Tab. 3 for a fixed parameter
configuration of ε = 0.04 and ξ = 0.012. We chose this parameter
configuration because a small amount of persistence simplification
preserves a large number of topological features in the input data, gen-
erating complex test cases for topology-preserving compression. For
completeness, the results across different trials and parameter con-
figurations are included in Appendix E. In this section, we compare
the different augmented compressors. We leave the comparison with
TopoQZ and TopoSZ to Sec. 5.4.
Compression ratios. As shown in Tab. 3, no single augmented com-
pressor gives the best compression ratios across all trials. While Aug-
mented TTHRESH and Augmented CSI produce the best compression
ratios in some trials, Augmented SZ3 consistently produces competi-
tive compression ratios. Augmented ZFP produces noticeably worse
compression ratios than the other compressors.

Dataset A-SZ3 A-TTHRESH A-ZFP A-Neurcomp A-CSI TopoSZ TopoQZ A-SZ3 A-TTHRESH A-ZFP A-Neurcomp A-CSI TopoSZ TopoQZ
Compression Ratio PSNR

Earthquake 101.8 111.1 45.3 90.9 95.8 50.1 70.7 48.2 49.8 55.5 50.7 51 42.6 45.7
Ionization 130.1 137.9 74.4 105.9 118.5 25.1 76 47 45.2 50.6 48.9 47.2 48.1 43.2

Isabel 77.7 29.8 25.4 100.1 63.8 37.6 30.3 49 44 62.5 57.1 46.8 49 13.4
Miranda 197.1 78.3 106.4 126.6 125.3 95.9 72.3 42.9 40.7 39.5 42.1 41.2 49.5 43.6

QMCPack 62.1 38.6 39.1 32.9 75.4 27.8 34.2 48.5 44.4 55.6 45.4 51.2 46.6 42.8
Tangaroa 29.6 16.7 27.5 30.3 35.3 24.3 27.3 49.7 47.2 60.7 52.3 53.1 48.8 4.2

Wasserstein Distance dW Bottleneck Distance dB
Earthquake 0.29 0.18 0.4 0.22 0.26 0.66 0.13 0.0099 0.0117 0.0063 0.0093 0.0082 0.0060 0.0183
Ionization 0.32 0.51 0.33 0.32 0.54 1.07 0.49 0.0109 0.0118 0.0079 0.0114 0.0120 0.0105 0.0527

Isabel 0.73 1.33 0.66 0.81 0.71 0.22 0.64 0.0104 0.0120 0.0064 0.0086 0.0115 0.0077 0.3184
Miranda – – – – – – – – – – – – – –

QMCPack 0.18 0.11 0.24 0.27 0.23 0.12 0.14 0.0117 0.0104 0.0083 0.0110 0.0115 0.0089 0.0504
Tangaroa 0.45 0.77 0.44 0.47 0.55 1.05 3.38 0.0101 0.0119 0.0075 0.0089 0.0099 0.0083 0.4219

Table 3: Evaluation metrics for five augmented compressors, together with TopoSZ and TopoQZ. All trials are conducted with ε = 0.04 and ξ = 0.012.
A-SZ3 is a shorthand for Augmented SZ3, and so on. The Miranda dataset yielded very large persistence diagrams for which dW and dB cannot be
computed in a reasonable time. In order to compute dW and dB for TopoSZ in a reasonable time, for all datasets except for QMCPack, the dW and
dB values associated with TopoSZ were calculated after persistent simplification with a threshold of 1.5e− 6.

Dataset A-SZ3 A-TTHRESH A-ZFP A-Neurcomp A-CSI TopoSZ TopoQZ A-SZ3 A-TTHRESH A-ZFP A-Neurcomp A-CSI TopoSZ TopoQZ
Total Compression and Augmentation Time Compression Time Decompression Time

Earthquake 557.1 630.8 797.9 1682.8 934.9 47 7.5 24.9 24.7 25.6 37.7 123.9 0.06 2.6
Ionization 117.2 127.8 85.2 1361.4 261.6 428.2 9.4 36.2 36.4 36.1 52.3 170.7 0.09 3.9

Isabel 1114.7 1042.2 503.9 8193.5 1757.8 367.1 75.4 169.9 167.3 163.1 257.4 776.6 0.41 26.3
Miranda 613.8 649.3 575.7 9713.9 1576.8 438.3 157.8 274.4 294.4 272 476.9 1295.7 0.68 51.4

QMCPack 9.6 14.5 9.3 181.9 23.4 11.9 0.9 3.8 4.1 3.7 9.1 18.6 0.01 0.4
Tangaroa 190.7 203.6 92.6 1606.9 357.2 314.6 13.7 44.6 45.5 44 68.1 224.9 0.12 4.4

Table 4: Compression time (including augmentation time) and decompression time for different augmented compressors, topoQZ and TopoSZ, along
with compression and decompression time, in seconds. All trials are conducted with ε = 0.04 and ξ = 0.012.

Fig. 7: Zoomed-in views of the critical points of the contour tree of the
earthquake dataset with persistent simplification ε = 0.04. Local maxima
are in red, local minima are in blue, 1-saddles are in orange, 2-saddles
are in white. Top row: earthquake. Bottom row: ionization

Reconstruction quality. In every trial, our framework successfully
maintains a pointwise error bound ξ. Augmented ZFP gives rise to the
best reconstruction quality evaluated using PSNR, dW , and dB . How-
ever, this is not surprising, as Augmented ZFP gives the lowest compres-
sion ratios. Among the remaining compressors, not a single compressor
clearly outperforms the others in terms of PSNR, although Augmented
Neurcomp and Augmented CSI appear to have a slight upper hand.
Aside from Augmented ZFP, no augmented compressor seems to have
a clear upper hand for dW or dB . SZ3, the top-performing compressor
in terms of compression ratio, is still competitive for these metrics.

In practice, we find that each round of upper and lower bound
tightening does not affect the PSNR very much, with later iterations
having minimal effect on the overall PSNR. Likewise, the points that
require significant precision to maintain their upper and lower bounds
are a small percentage of the overall volume. This is demonstrated in
Fig. 8 with a slice of the Ionization dataset. It shows a map of the error
over the course of the tightening process, as well as the final precisions
used to store each point.
Runtime analysis. There are significant differences in running time
among the augmented compressors. These times are affected by a vari-

ety of factors and the compressors with the best total time (compression
plus augmentation) are not necessarily the ones with the fastest base
compression time. This is discussed further in Sec. 5.5. However, the
two slowest compressors, Neurcomp and CSI also happen to have the
longest total compression times. Of the remaining three compressors,
there is again not a clear best-augmented compressor, although Aug-
mented ZFP appears to be the fastest, while Augmented SZ3 is slightly
faster than Augmented TTHRESH. In terms of decompression time,
Augmented CSI and Augmented Neurcomp are still the two slowest
compressors. The remaining compressors give similar times.
Highlighted results. In general, among all augmented compressors,
Augmented SZ3 appears to be the overall best base compressor for use
with our general framework. Augmented SZ3 consistently produces
high compression ratios, and has a competitive runtime. The second
best-augmented compressor appears to be Augmented TTHRESH, as it
sometimes produces higher compression ratios than Augmented SZ3
and has a comparable runtime. For the remainder of our analysis, we
will primarily focus on Augmented SZ3 and Augmented TTHRESH.

5.4 Comparison with TopoQZ and TopoSZ

Topological guarantees. Our framework can augment any lossy com-
pressor to preserve the contour tree during compression. This is the
same topological guarantee made by TopoSZ. However, this is different
from the topological control associated with TopoQZ. TopoQZ ensures
that all pairs of critical points from the contour tree are preserved above
a certain persistence threshold ε. However, because it is not intended
to preserve the contour tree, the locations and connectivity of these
critical points may be distorted after compression.
Compression ratio. In terms of compression ratio, our framework
outperforms TopoSZ and TopoQZ in almost every trial, including those
not shown in Tab. 3. While the optimal augmented compressors vary
among trials, Augmented SZ3 outperforms both TopoQZ and TopoSZ
in every trial except for a few with relatively high error bounds. Our
augmented compressors outperform TopoSZ and TopoQZ more as ε
increases, although a topology-preserving compressor is considered to
be more useful when ε is small and the number of topological features
is large.
Reconstruction quality. While our framework produces higher com-
pression ratios than TopoSZ and TopoQZ, Augmented TTHRESH
and Augmented SZ3 both produce outputs with PSNR values that are

(A) (B) (C) (D)
Fig. 8: (A-C) Error map of a slice of the Ionization dataset during first (A), second (B), and fifth/final (C) iterations of upper and lower bound tightening.
(D) Map of the precision px used to encode each data point where datapoints requiring lossless compression are colored in yellow. During this trial,
ε = 0.01 and ξ = 0.012.

comparable with TopoSZ and higher than TopoQZ. Additionally, Aug-
mented SZ3 and Augmented TTHRESH produce values of dW and dB
that are comparable to TopoSZ and TopoQZ.
Runtime analysis. In terms of compression time, Augmented SZ3
and Augmented TTHRESH have slower yet comparable compression
times compared to TopoSZ, and significantly slower times compared
to TopoQZ. It makes sense that our framework yields running times
that are comparable to TopoSZ since both frameworks have identical
topology-preserving objectives and share some key components in
their pipelines. In order to preserve the contour tree of the data, our
framework and TopoSZ both iteratively compute the contour tree of
the reconstructed data. According to Yan et al. [51], this took the
majority of the compression time for TopoSZ. As shown in Sec. 5.5,
this is also the case for our framework. Because TopoQZ does not
target the preservation of contour trees, it does not need to perform this
time-consuming task.

While our compression times are slightly slower than TopoSZ, we
argue that in many use cases, this is not a problem. The primary purpose
of compressing data is to save storage space, for which our framework
outperforms TopoSZ. Our framework often produces compressed file
sizes that are less than half the size of those produced by TopoSZ. It
should further be noted that our implementation is a prototype written
in Python, while TopoSZ was partially implemented in C++, so it
does not make sense to directly compare our runtimes. Optimizing the
implementation of our framework is a possible area of future research.

Dataset BC CT ULB Fille #I Valid LSQ AEB Total
Augmented SZ3

Earthquake 9.4 245.3 7.2 5.8 2 139.6 3.8 2.6 557.1
Ionization 14.9 10.5 10.8 8.5 3 19.2 3 3 117.2

Isabel 68.8 231.3 45.2 37.1 7 87.5 10.6 7.6 1114.6
Miranda 107.7 119.4 75.4 58.6 1 211.9 40.6 0 613.7

QMCPack 1.6 2.2 1.1 1.2 1 1.4 0.3 0 7.9
Tangaroa 19.3 10.6 14 11.6 5 20.7 4.7 3.4 196.2

Augmented TTHRESH
Earthquake 10.4 245.1 6.9 6 2 177.7 2.3 2.6 630.8
Ionization 15.8 11.5 10.7 9.1 4 14.7 3.3 2.9 127.7

Isabel 76.1 234.2 45.1 40.9 7 64.9 20.7 7.7 1042
Miranda 119.3 114.1 74.7 66.3 1 225.9 48.9 0 649.1

QMCPack 1.7 2.2 1.1 1.4 2 1.5 0.6 1.7 12.3
Tangaroa 19.7 10.8 13.1 13.2 5 19.6 6.4 3.5 200.7

Table 5: Runtime analysis for each component of the augmented frame-
work involving Augmented SZ3 and Augmented TTHRESH with ε = 0.04
and ξ = 0.012. All times are in seconds. BC: running the base compres-
sor. CT: computing the contour tree of the input data. ULB: calculating
the initial upper and lower bounds. File: outputting the binary file. #I: the
number of iterations. Valid: Average time to check that there are no false
cases. LSQ: Average time to perform logarithm-scaling quantization.
AEB: Average time to adjust the upper and lower bounds (does not occur
on final iteration).

5.5 Runtime Analysis

Asymptotic analysis. In our general framework, the majority of the
compression time is used on computing the contour trees, which is
part of the iterative error bound tightening step. During each iteration

of this, we compute the contour tree using the algorithm of Gueunet
et al. [13] and apply persistence simplification using the algorithm in
[46]. For a rectilinear mesh with n vertices, both have an average
runtime of O(n log(n)). The persistence algorithm has a worst-case
complexity of O(n3) [33], which rarely occurs in practice. Assuming
that our tightening step takes a small, constant number of iterations, then
the total runtime of our algorithm is O(n log(n)). In the worst case,
our algorithm would take O(n) iterations before all points are stored
losslessly, giving our algorithm a worse-case runtime of O(n2 log(n)).
In practice, this is also very rare.
Empirical analysis. To analyze the runtime empirically, we calculate
the amount of time for each portion of our algorithm with Augmented
SZ3 and Augmented TTHRESH, with ε = 0.04 and ξ = 0.012. These
runtimes are shown in Tab. 5.

In Tab. 5, the most time-consuming task is the computation of con-
tour trees. We compute a contour tree for the input data at the beginning
of the algorithm and for the decompressed data during each iteration
of error-bound tightening. These two runtimes are shown in Tab. 5
under the ‘CT’ and ‘Valid’ columns. The time spent on these two
computations accounts for 42− 95% of the total runtime for each trial
in Tab. 5. Similar to our analysis, Yan et al. noticed that computing
the contour tree took the largest percentage of compression time for
TopoSZ.

For most of the trials, the time to run the base compressor, shown in
the ‘BC’ column, is a relatively small percentage of the overall com-
pression time. In general, the time to run one iteration of error-bound
tightening exceeds the time to run the base compressor. On the other
hand, if a base compressor produces results that nearly preserve the
contour tree, fewer iterations are needed for the error-bound tightening
step. This suggests that the accuracy of the base compressor may have
more effect on the total time than the speed of the base compressor.

6 CONCLUSION AND DISCUSSION

We introduce a novel framework for augmenting any lossy compressor
to preserve the contour tree of a volumetric dataset while maintaining
a user-specified global error bound. To do this, our framework first
imposes topology-informed error bounds on each data point. It then iter-
atively tighten those error bounds until the contour tree is preserved. We
also introduce a novel encoding scheme that efficiently stores individual
points with variable precision and maintains these error bounds. When
our framework is used to augment state-of-the-art lossy compressors,
it is shown to preserve the contour trees of various scientific datasets.
Our augmented compressors also achieve higher compression ratios
than those obtained by existing topology-preserving compressors. Our
framework will benefit from any advancement with lossy compression,
as it can be used to augment increasingly effective lossy compressors
to achieve higher-quality topology-preserving compression.

Our framework is not without limitations, as it produces relatively
high compression times, the majority of which is spent computing
the contour tree. However, if we prioritize storage requirements, it is
preferable to have a higher compression ratio instead of a faster runtime.
Regardless, our framework would benefit from more efficient imple-
mentations, both for the contour tree computation and the encoding

scheme. We would also like to apply our framework to a larger number
of base compressors, in order to provide a user guide on selecting the
best compressor and parameter combinations for topology-preserving
compression.

REFERENCES

[1] Scientific Data Reduction Benchmarks. https://sdrbench.github.
io/. 12

[2] D. B. Aydogan and J. Hyttinen. Characterization of microstructures using
contour tree connectivity for fluid flow analysis. Journal of The Royal
Society Interface, 11(95):20131042, 2014. 1, 2

[3] D. B. Aydogan, N. Moritz, H. T. Aro, and J. Hyttinen. Analysis of
trabecular bone microstructure using contour tree connectivity. In Medical
Image Computing and Computer-Assisted Intervention–MICCAI 2013:
16th International Conference, Nagoya, Japan, September 22-26, 2013,
Proceedings, Part II 16, pp. 428–435. Springer, 2013. 2

[4] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola. Tthresh: Tensor com-
pression for multidimensional visual data. IEEE transactions on visualiza-
tion and computer graphics, 26(9):2891–2903, 2019. 1, 2, 5

[5] R. L. Boyell and H. Ruston. Hybrid techniques for real-time radar simu-
lation. In Proceedings of the 1963 Fall Joint Computer Conference, pp.
445–458. IEEE, 1963. 1

[6] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-C.
Wu, Y. Alexeev, and F. T. Chong. Use cases of lossy compression for
floating-point data in scientific data sets. The International Journal of
High Performance Computing Applications, 33(6):1201–1220, 2019. 1

[7] F. Cazals, F. Chazal, and T. Lewiner. Molecular shape analysis based upon
the morse-smale complex and the connolly function. In Proceedings of the
nineteenth annual symposium on Computational geometry, pp. 351–360,
2003. 1

[8] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence
diagrams. In Proceedings of the twenty-first annual symposium on Com-
putational geometry, pp. 263–271, 2005. 7, 12

[9] Y. Collet and M. Kucherawy. Zstandard compression and the applica-
tion/zstd media type. Technical report, Internet Engineering Task Force
(IETF), 2018. doi: 10.17487/RFC8478 3

[10] L. Collin and J. Tan. XZ Utils. https://xz.tukaani.org/xz-utils/.
4, 5

[11] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical morse com-
plexes for piecewise linear 2-manifolds. In Proceedings of the 17th Annual
Symposium on Computational Geometry, pp. 70–79. Medford, MA, USA,
2001. 1

[12] H. Edelsbrunner and J. L. Harer. Computational topology: an introduction.
American Mathematical Society, 2022. 7, 12

[13] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based augmented
merge trees with fibonacci heaps. In 2017 IEEE 7th Symposium on Large
Data Analysis and Visualization (LDAV), pp. 6–15. IEEE, 2017. 9

[14] J. Han and C. Wang. Ssr-tvd: Spatial super-resolution for time-varying
data analysis and visualization. IEEE Transactions on Visualization and
Computer Graphics, 28(6):2445–2456, 2020. 2

[15] A. J. Hussain, A. Al-Fayadh, and N. Radi. Image compression techniques:
A survey in lossless and lossy algorithms. Neurocomputing, 300:44–69,
2018. 1

[16] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak. Out-of-core
compression and decompression of large n-dimensional scalar fields. In
Computer Graphics Forum, vol. 22, pp. 343–348. Wiley Online Library,
2003. 2, 3

[17] P. Kavitha. A survey on lossless and lossy data compression methods.
International Journal of Computer Science & Engineering Technology,
7(03):110–114, 2016. 1

[18] S. Kolouri, P. E. Pope, C. E. Martin, and G. K. Rohde. Sliced-wasserstein
autoencoder: An embarrassingly simple generative model. arXiv preprint
arXiv:1804.01947, 2018. 7

[19] W. Köpp and T. Weinkauf. Temporal merge tree maps: A topology-
based static visualization for temporal scalar data. IEEE Transactions on
Visualization and Computer Graphics, 29(1):1157–1167, 2022. 2

[20] S. Lakshminarasimhan, N. Shah, S. Ethier, S.-H. Ku, C.-S. Chang,
S. Klasky, R. Latham, R. Ross, and N. F. Samatova. Isabela for effective
in situ compression of scientific data. Concurrency and Computation:
Practice and Experience, 25(4):524–540, 2013. 2

[21] H. Le, H. Santos, and J. Tao. Hierarchical autoencoder-based lossy com-
pression for large-scale high-resolution scientific data. arXiv preprint

arXiv:2307.04216, 2023. 2
[22] X. Liang, S. Di, F. Cappello, M. Raj, C. Liu, K. Ono, Z. Chen, T. Peterka,

and H. Guo. Toward feature-preserving vector field compression. IEEE
Transactions on Visualization and Computer Graphics, 2022. 2

[23] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello.
Error-controlled lossy compression optimized for high compression ratios
of scientific datasets. In 2018 IEEE International Conference on Big Data
(Big Data), pp. 438–447. IEEE, 2018. 2

[24] X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello.
Improving performance of data dumping with lossy compression for sci-
entific simulation. In 2019 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 1–11, 2019. doi: 10.1109/CLUSTER.2019.
8891037 1

[25] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian, J. Deng,
J. C. Calhoun, D. Tao, et al. Sz3: A modular framework for composing
prediction-based error-bounded lossy compressors. IEEE Transactions on
Big Data, 9(2):485–498, 2022. 1, 2, 5

[26] P. Lindstrom. Fixed-rate compressed floating-point arrays. IEEE transac-
tions on visualization and computer graphics, 20(12):2674–2683, 2014. 1,
2, 5, 7

[27] J. Liu, S. Di, K. Zhao, S. Jin, D. Tao, X. Liang, Z. Chen, and F. Cappello.
Exploring autoencoder-based error-bounded compression for scientific
data. In 2021 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 294–306. IEEE, 2021. 2, 7

[28] Y. Liu, S. Di, K. Zhao, S. Jin, C. Wang, K. Chard, D. Tao, I. Foster,
and F. Cappello. Optimizing error-bounded lossy compression for sci-
entific data with diverse constraints. IEEE Transactions on Parallel and
Distributed Systems, 33(12):4440–4457, 2022. doi: 10.1109/TPDS.2022.
3194695 1

[29] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki, S. Klasky,
M. Wolf, T. Liu, et al. Understanding and modeling lossy compression
schemes on hpc scientific data. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 348–357, 2018. 1, 2

[30] Y. Lu, K. Jiang, J. A. Levine, and M. Berger. Compressive neural represen-
tations of volumetric scalar fields. In Computer Graphics Forum, vol. 40,
pp. 135–146. Wiley Online Library, 2021. 2, 5

[31] T. B. Masood, J. Budin, M. Falk, G. Favelier, C. Garth, C. Gueunet, P. Guil-
lou, L. Hofmann, P. Hristov, A. Kamakshidasan, C. Kappe, P. Klacansky,
P. Laurin, J. A. Levine, J. Lukasczyk, D. Sakurai, M. Soler, P. Steneteg,
J. Tierny, W. Usher, J. Vidal, and M. Wozniak. An overview of the topol-
ogy toolkit. In I. Hotz, T. Bin Masood, F. Sadlo, and J. Tierny, eds.,
Topological Methods in Data Analysis and Visualization VI, pp. 327–342.
Springer International Publishing, Cham, 2021. 2

[32] S. Mizuta and T. Matsuda. Description of digital images by region-based
contour trees. In International Conference Image Analysis and Recogni-
tion, pp. 549–558. Springer, 2005. 2

[33] D. Morozov. Persistence algorithm takes cubic time in the worst case.
BioGeometry News, Department of Computer Science, Duke University,
Durham, NC, 2005. 9

[34] K. Olsen, S. Day, B. Minster, R. Moore, Y. Cui, A. Chourasia,
M. Thiebaux, H. Francoeur, P. Maechling, S. Cutchin, and K. Nunes. The
IEEE SciVis Contest. http://sciviscontest.ieeevis.org/2006/,
2006. 12

[35] K. Olsen, S. Day, J. Minster, Y. Cui, A. Chourasia, D. Okaya, P. Maechling,
and T. Jordan. Terashake2: Spontaneous rupture simulations of m w 7.7
earthquakes on the southern san andreas fault. Bulletin of the Seismological
Society of America, 98(3):1162–1185, 2008. 12

[36] M. Pont, J. Vidal, J. Delon, and J. Tierny. Wasserstein distances, geodesics
and barycenters of merge trees. IEEE Transactions on Visualization and
Computer Graphics, 28(1):291–301, 2021. 12

[37] S. Popinet, M. Smith, and C. Stevens. Experimental and numerical study of
the turbulence characteristics of airflow around a research vessel. Journal
of Atmospheric and Oceanic Technology, 21(10):1575–1589, 2004. 12

[38] G. Reeb. Sur les points singuliers d’une forme de pfaff completement
integrable ou d’une fonction numerique [on the singular points of a com-
pletely integrable pfaff form or of a numerical function]. Comptes Rendus
Acad. Sciences Paris, 222:847–849, 1946. 3

[39] P. Rosen, A. Seth, E. Mills, A. Ginsburg, J. Kamenetzky, J. Kern, C. R.
Johnson, and B. Wang. Using contour trees in the analysis and visual-
ization of radio astronomy data cubes. In Topological Methods in Data
Analysis and Visualization VI: Theory, Applications, and Software, pp.
87–108. Springer, 2021. 1, 2

[40] M. Soler, M. Plainchault, B. Conche, and J. Tierny. Topologically con-

https://sdrbench.github.io/
https://sdrbench.github.io/
https://doi.org/10.17487/RFC8478
https://xz.tukaani.org/xz-utils/
https://doi.org/10.1109/CLUSTER.2019.8891037
https://doi.org/10.1109/CLUSTER.2019.8891037
https://doi.org/10.1109/TPDS.2022.3194695
https://doi.org/10.1109/TPDS.2022.3194695
http://sciviscontest.ieeevis.org/2006/

trolled lossy compression. In 2018 IEEE Pacific Visualization Symposium
(PacificVis), pp. 46–55, 2018. 2, 5

[41] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and A. Choud-
hary. Data compression for the exascale computing era-survey. Supercom-
puting frontiers and innovations, 1(2):76–88, 2014. 2

[42] A. Szymczak. A categorical approach to contour, split and join trees
with application to airway segmentation. In Topological Methods in Data
Analysis and Visualization: Theory, Algorithms, and Applications, pp.
205–216. Springer, 2010. 2

[43] D. Tao, S. Di, Z. Chen, and F. Cappello. Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 1129–1139. IEEE,
2017. 3

[44] R. Taylor, A. Chourasia, D. Whalen, and M. L. Norman. The IEEE SciVis
Contest. http://sciviscontest.ieeevis.org/2008/, 2008. 12

[45] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The
Topology ToolKit. IEEE Transactions on Visualization and Computer
Graphics, 2017. https://topology-tool-kit.github.io/. 2, 7

[46] J. Tierny and V. Pascucci. Generalized topological simplification of scalar
fields on surfaces. IEEE transactions on visualization and computer
graphics, 18(12):2005–2013, 2012. 9

[47] L. Wang, Q. Guo, J. Zhao, S. Zhang, and L. Yang. The fast contour
tree-based medical volume rendering method. Journal of Medical Imaging
and Health Informatics, 8(7):1451–1455, 2018. 2

[48] W. Wang, C. Bruyere, B. Kuo, and T. Scheitlin. The IEEE SciVis Contest.
http://sciviscontest.ieeevis.org/2004/, 2004. 12

[49] D. Whalen and M. L. Norman. Ionization front instabilities in primordial
h ii regions. The Astrophysical Journal, 673(2):664, 2008. 12

[50] S. W. Wurster, H. Guo, H.-W. Shen, T. Peterka, and J. Xu. Deep hierarchi-
cal super resolution for scientific data. IEEE Transactions on Visualization
and Computer Graphics, 2022. 2

[51] L. Yan, X. Liang, H. Guo, and B. Wang. Toposz: Preserving topology in
error-bounded lossy compression. IEEE Transactions on Visualization
and Computer Graphics, 2023. 2, 3, 5, 9

[52] L. Yan, T. B. Masood, R. Sridharamurthy, F. Rasheed, V. Natarajan, I. Hotz,
and B. Wang. Scalar field comparison with topological descriptors: Prop-
erties and applications for scientific visualization. Computer Graphics
Forum (CGF), 40(3):599–633, 2021. 1

[53] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello.
Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation. In Proceedings of IEEE 37th International
Conference on Data Engineering (ICDE), pp. 1643–1654, 2021. 1, 2

[54] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and F. Cappello.
Sdrbench: Scientific data reduction benchmark for lossy compressors. In
2020 IEEE international conference on big data (Big Data), pp. 2716–
2724, 2020. 12

[55] J. Zhou and M. Takatsuka. Automatic transfer function generation using
contour tree controlled residue flow model and color harmonics. IEEE
Transactions on Visualization and Computer graphics, 15(6):1481–1488,
2009. 2

http://sciviscontest.ieeevis.org/2008/
https://topology-tool-kit.github.io/
http://sciviscontest.ieeevis.org/2004/

A DETAILS ON THE DATASETS

We include details on each dataset used in our experiments. All data
was normalized to a range of [0, 1] before compression.

The Earthquake dataset originates from a TeraShake 2 earthquake
simulation [35] and has been part of the 2006 IEEE Visualization
Design Contest [34]. The dataset used in this paper was obtained from
the public data repository of Pont et al. used for their publication [36].
The data was preprocessed by Pont et al. and came with a single field.
It represents one time step of a simulation of an earthquake at the San
Andreas fault. Specifically, we used time step 011700. The details of
the preprocessing can be found on the repository.

The Ionization dataset originates from an ionization front simulation
by Whalen and Norman [49] and has been featured in the 2008 IEEE
Visualization Design Contest [44]. The simulation is done with 3D
radiation hydrodynamical calculations of ionization front instabilities
in which multifrequency radiative transfer is coupled to the primordial
chemistry of eight species [49]. The single time step used in this paper
comes from cluster 2, time step 0125 and was obtained from the same
repository as the Earthquake dataset. It also was preprocessed and came
with a single field. The details of the preprocessing can be found on
the repository.

The Isabel dataset originates from a hurricane simulation from the
National Center for Atmospheric Research, and has been included in
the 2004 IEEE Visualization Design Contest [48]. While the original
dataset has a size of 500 × 500 × 100, we truncate the dataset to
500 × 500 × 90 in order to avoid land regions that contain no data
values. We used the wind speed field.

The Miranda dataset comes from the hydrodynamics code for large
turbulence simulations conducted by Lawrence Livermore National
Laboratory. We used the density field.

The QMCPack dataset comes from the QMCPACK performance
test conducted by Argonne National Laboratory. Only the 145th orbital
out of 288 was used for testing, for which only a single field is provided.

Both the Miranda and QMCPack datasets come from the SDR Bench
[54] and have been accessed from the SDR Bench website [1]. These
datasets involve contributions from the DOE NNSA ECP project and
the ECP CODAR project.

The Tangaroa dataset comes from a single time frame simulating
the wind flow around a 3D model of the Research Vessel Tangaroa
[37]. The magnitude of the wind velocity is used as the scalar field of
interest.

B EVALUATION METRICS

We evaluated our tests on several metrics. We measured compression
ratio, compression time, and peak signal-to-noise ratio (PSNR), which
are common metrics for evaluating compressors.

The compression ratio is the size of the uncompressed file divided by
the size of the compressed file, and higher compression ratios indicate
smaller compressed file sizes.

PSNR is a number that measures reconstruction quality. If R is the
range of the data and M is the mean squared error of our reconstruction,
the PSNR is defined as:

PSNR = 10 log10

(
R2

M

)
(4)

In general, higher PSNR values indicate higher Reconstruction qual-
ity. We also measure the bottleneck distance [8] and Wasserstein
distance [12, page 183].

To define the Wasserstein and Bottleneck distances, suppose that f
and f ′ are two scalar fields that yield persistence diagrams D and D′

which include their diagonal. If φ : D → D′ represents any bijection,
and q ≥ 1, we define the q-Wasserstein distance Wq as:

Wq(D,D′) =

[
inf

φ:D→D′

∑
p∈D

||p− φ(p)||q∞

] 1
q

(5)

For our evaluation, we set dW = W2 and dB = W∞. In particular:

W∞(D,D′) = inf
φ:D→W ′

sup
p∈D
||p− φ(p)||∞ (6)

In general, lower values of Wq for any q ≥ 1 indicate that the per-
sistence diagrams D and D′ are more similar. This in-turn means that
the datasets that produced D and D′ are more topologically similar.

C PRESERVATION OF VERTICES OF CONTOUR TREE

Volume renderings of data compressed with TTHRESH and Augmented
TTHRESH which are analogous to those in Fig. 1 are shown in Fig. 9.

D PARAMETER CONFIGURATIONS USED FOR FIGURES AND
TABLES

In order to generate Fig. 1, Fig. 9, and Tab. 2, we needed to identify
parameter settings for the absolute error bound parameter η of SZ3
and the RMSE target parameter τ for TTHRESH which produced
compression ratios comparable to Augmented SZ3 with η = 0.012
and TTHRESH with τ = 0.012 after augmenting with ξ = 0.012 and
ϵ = 0.04. The values for η and τ which produce these comparable
compression ratios are reported below.

Dataset SZ3 η TTHRESH τ
Earthquake 9.14e-4 3.84e-4
Ionization 3.75e-4 9.89e-6
Isabel 2.58e-3 1.46e-4
Miranda 6.45e-5 4.58e-8
QMCPack 1.76e-4 9.52e-6
Tangaroa 1.88e-4 2.49e-5

Table 6: Parameter configurations used to obtain Fig. 1, Fig. 9, and
Tab. 2.

E DISTRIBUTIONS OF EXPERIMENTAL RESULTS

In our experiments, we measured each evaluation metric on each dataset
augmented with each compressor for 11 different evaluation metrics.
Here we include boxplots for each combination of a compressor and
dataset indicating the distribution of each evaluation metric across all of
the parameter configurations. The distributions for various evaluation
metrics are shown in the tables below as follows: compression ratio:
Tab. 7; PSNR: Tab. 8; Wasserstein distance: Tab. 9; bottleneck distance:
Tab. 10; compression time: Tab. 11; decompression time: Tab. 12.

The Miranda dataset produced persistence diagrams that were very
large for which dB and dW cannot be computed in reasonable time,
so we did not calculate dB and dW for any trials involving Miranda.
In order to compute dW and dB for TopoSZ in reasonable time, for
all datasets except QMCPack, the dW and dB values associated with
TopoSZ were calculated after persistent simplification with a threshold
of 1.5e− 6.

Fig. 9: Scientific datasets with vertices of contour trees when compressed with TTHRESH versus Augmented TTHRESH. (Top row) Vertices of the
contour tree from the input data. (Middle row) Vertices of the contour tree from the reconstructed data using TTHRESH. (Bottom row) Vertices of the
contour tree from the reconstructed data using augmented TTHRESH. Critical points are colored according to critical type. Red: maximum. Blue:
minimum. White: saddle.

Table 7: Distributions of Compression Ratio across all trials.

dataset A-SZ3 A-TTHRESH A-ZFP A-Neurcomp A-CSI TopoSZ TopoQZ

Earthquake
74.5

95.3 127.3
128.5

33.3 101.2

55.8
96.2 124.0

124.7

34.3 111.5

43.2
44.246.1

46.231.7

32.1

58.9

60.645.6

62.4
79.7 105.3

106.7

31.0 90.8

66.3
84.1 110.2

111.0

33.1 95.8

20.0
35.450.1

69.3

104.249.1

57.2
69.883.6

91.6

27.0 70.7

Ionization
68.6

125.5 288.9
318.1

139.3

85.0
116.5 233.5

248.1

147.2

61.3
73.7 89.1

89.6

81.2

69.3
97.8 231.9

248.1

107.1

80.2
109.8 215.1

232.2

121.4

13.6
22.3 35.4

49.0

24.9

58.2
71.7 101.5

101.7

146.580.5

Isabel
25.6
76.4 780.5

780.9

81.4

15.8
26.5

50.0

33.5

25.1
25.3

27.320.0

21.8

31.9

32.026.3

39.0
99.6 284.0

284.4

101.0

26.3
59.1 195.0

195.1

62.8

30.7
33.7

38.7

18.6 24.1 37.6

22.6
29.334.3

36.6

21.8 47.232.1

Miranda
187.9
194.7 203.7

215.6

166.2 197.0

77.3
77.8

81.0

18.0 79.5

104.5
105.6 106.5

106.6

87.1

133.9

134.0106.4

126.6
131.6160.2

176.6

361.8132.5

122.6
123.8130.7

134.5

89.1 112.2 144.3127.0

80.6
90.5 97.9

98.2

95.9

72.2
72.3

74.9

58.4 81.4 104.772.7

QMCPack
54.1

57.3 62.5
64.546.1

46.2 61.5

29.1
32.1 39.3

44.0

54.138.6

32.0
36.4 39.5

43.930.6

30.7 38.9

24.3
29.6 33.9

34.3

32.9

51.1
65.9 76.7

79.7

75.4

8.6
11.8 27.9

34.2

26.1

32.4
34.2 37.4

38.3

45.236.5

Tangaroa
17.7
26.9 55.3

68.2 103.6

123.231.2

11.3
16.7 26.7

36.7

18.1

23.1
27.0 30.3

30.8

28.6

17.9
29.4 52.9

84.3

91.430.2

23.6
34.5 50.5

69.0

35.2

18.7
21.5 25.4

26.1

7.5

37.6

40.224.3

2.1
2.2 27.3

27.8

18.5

Table 8: Distributions of PSNR across all trials.

dataset A-SZ3 A-TTHRESH A-ZFP A-Neurcomp A-CSI TopoSZ TopoQZ

Earthquake
47.6
48.1

49.6 52.5 54.7

56.848.2

48.3
48.950.7

51.2 53.4

56.149.4

53.9
55.557.0

58.7

53.0

63.5

64.955.8

49.5
50.3 52.3

53.0 56.4

56.950.6

49.4
50.4 52.6

53.4 57.4

57.850.7

43.9
36.9

39.3

46.4

47.6 56.042.6

45.5
45.6 45.7

45.8

45.7

Ionization
44.2

47.0 50.4
50.6

56.849.9

45.2
45.8
46.3

36.1 41.4 48.8 55.045.6

46.7
50.6 59.5

61.5

56.8

45.1
49.0 52.7

56.2

51.7

47.2
48.7

50.943.2

44.7 56.548.0

45.4
47.9 49.8

51.8

43.2 58.148.6

39.7
39.8 43.2

43.2

43.2

Isabel
48.8
48.9 49.7

49.9

45.4 51.8 56.649.6

41.8
43.2 44.9

47.3

40.1 53.143.6

57.0
62.1 71.5

72.2

63.8

54.3
56.3 61.8

61.8

58.1

45.3
46.347.4

48.6

44.2 49.2 53.946.5

48.849.244.5

46.5 52.6 58.749.1
13.4

Miranda
42.642.9

38.8 46.1 52.242.8

40.641.636.3

38.2 44.2

45.8

50.040.7

35.0

37.0 43.0 49.139.5

38.5
40.644.2

46.1

35.1 53.441.7

41.236.7

38.6 44.7 50.741.1

49.3
49.349.6

50.0

35.2 44.4 58.949.5
43.6

QMCPack
48.448.643.6

45.9 51.8 58.048.5

44.2
44.4
44.540.8

47.6 53.444.3

50.9
53.6 56.4

60.5

65.655.4

45.4
45.5
45.6

47.9 53.345.4

50.6
51.5
52.5

47.7 54.0 58.951.2

45.6
46.6 48.1

48.3

42.1 50.9 58.347.7

41.18
41.2842.84

42.8537.52

37.54 42.84

Tangaroa
46.2

48.451.2
52.7

58.349.7

44.6
45.1 48.7

50.5

55.546.5

55.7
58.861.6

62.4

69.160.0

49.8
51.1 53.2

54.0

57.652.1

50.2
51.4 54.2

55.8

60.252.5

48.3
48.6

49.343.8

46.1 51.9 58.348.9
4.2

Table 9: Distributions of Wasserstein Distance across all trials.

dataset A-SZ3 A-TTHRESH A-ZFP A-Neurcomp A-CSI TopoSZ TopoQZ

Earthquake
0.218
0.2320.288

0.3280.13

0.135 0.236

0.084
0.142 0.187

0.192

0.179

0.1
0.27 0.44

0.54

0.4

0.1
0.17 0.22

0.25

0.21

0.123
0.2060.264

0.305

0.116 0.251

0.58
0.580.66

0.670.17

0.34 0.990.65

0.1318
0.132

0.1362

0.13880.1339

Ionization
0.29
0.3 0.33

0.340.16

0.23 0.40.470.32

0.38
0.4 0.54

0.61

0.51

0.11
0.14 0.34

0.53

0.22

0.26
0.29
0.320.19 0.37

0.430.3

0.42
0.490.54

0.540.22

0.750.52

0.31
0.53 1.35

2.01

0.88

0.44
0.49 0.56

0.620.69

0.740.49

Isabel
0.2
0.28 0.76

0.91

0.37

0.57
0.98

1.5

1.29

0.11
0.68

1.51

0.53

0.13
0.14 0.89

1.56

0.64

0.21
0.31 0.84

1.19

0.59

0.06
0.13

0.45 0.97

1.260.17

0.27 0.88

0.64

QMCPack
0.16
0.17

0.180.05

0.12 0.240.17

0.105
0.11

0.116

0.069 0.1490.1760.113

0.22 0.250.06

0.15 0.330.410.24

0.268
0.2680.274

0.2740.153

0.23 0.3280.27

0.220.230.06

0.3 0.370.23

0.06
0.10.14

0.2

0.04 0.240.12

0.14
0.142

0.1450.17

0.2010.142

Tangaroa
0.17

0.31 0.45
0.55

0.680.41

0.32
0.67 0.91

1.03

0.77

0.17
0.33 0.54

0.8

0.42

0.29
0.40.52

0.58 0.77

1.020.46

0.2
0.42 0.63

0.9

0.53

0.2
0.49 1.1

1.95

0.92

0.87
1.99 3.38

4.35

5.893.38

Table 10: Distributions of bottleneck distance across all trials.

dataset A-SZ3 A-TTHRESH A-ZFP A-Neurcomp A-CSI TopoSZ TopoQZ

Earthquake
0.0039

0.0085 0.012
0.0123

0.0103
0.004

0.0074

0.01720.0117

0.00580.0065

0.004 0.00920.0064

0.009
0.0105

0.01230.0039

0.01480.0094

0.0032 0.0117

0.01390.0082

0.006
0.0066

0.0073

0.0023 0.010.006
0.02170.0183

Ionization
0.01050.01150.004

0.01550.0112 0.004

0.00790.0142

0.01990.0119

0.004
0.00790.0108

0.0119

0.0085

0.0106
0.0112

0.0120.004

0.01620.0117

0.0040.0079

0.0160.012

0.0073
0.0095

0.0112

0.0038 0.01560.0105

0.0801

0.09820.0527

Isabel
0.0088
0.0099

0.0107

0.0039 0.0150.0105

0.0038

0.007

0.0144

0.01660.012

0.00580.0064

0.0038 0.00990.006

0.0061
0.00830.0102

0.0117

0.0039 0.009
0.0039

0.008 0.0153

0.01980.0115

0.0038
0.0060.0077

0.0078

0.01110.0068

0.1682

0.3184

QMCPack

0.004

0.0073

0.01710.0117

0.0072
0.0097

0.0115

0.004 0.01980.011

0.0063
0.00780.0097

0.0118

0.0039 0.0083

0.00390.008 0.013

0.01590.011

0.0066
0.0095

0.0118

0.004 0.01910.0115

0.0089
0.0114
0.0117

0.0038 0.01780.0093

0.0519

0.0631 0.08050.0504

Tangaroa
0.0079
0.00970.0117

0.01320.004

0.01540.0109

0.0113
0.012
0.0123

0.0074 0.01560.0119

0.0038
0.00740.0101

0.0111

0.0088

0.0074
0.0089 0.0119

0.0135

0.0113

0.0076
0.00930.0117

0.0121

0.004 0.01610.0108

0.0039
0.00760.0103

0.0128

0.0083

0.154

0.4219

Table 11: Distributions of compression time across all trials. Times measured in seconds.

dataset A-SZ3 A-TTHRESH A-ZFP A-Neurcomp A-CSI TopoSZ TopoQZ

Earthquake
44.4
89.4 618.1

992.8

503.1

42.6
79.6 632.4

994.6

366.5

39.4
40.6 555.5

797.9

466.5

1070.0
1094.3 2054.3

2076.0

1683.0

132.2
145.6 983.4

1240.7

821.6

32.0
35.348.4

49.3

4301.945.7

7.27
7.37 7.52

7.68

7.47

Ionization
56.6
84.5134.4

163.1

1301.8119.2

56.8
102.9157.8

207.4

931.7130.6

74.8
76.9 84.9

86.8

1385.183.8

1262.8
1306.61363.5

1369.7

10722.81339.8

190.9
222.0272.4

291.4

6347.6252.4

39.7
225.9457.4

627.1

930.7392.5

9.1
9.1 9.3

9.5

9.2

Isabel
244.9
247.5 1117.5

1552.3

695.0

259.6
278.3 867.7

1110.7

586.4

243.7
253.3 504.4

538.0

490.0

7314.9
7321.4 8130.6

8214.7

8101.9

838.3
847.1 1865.0

2380.0

1513.9

146.3
147.1425.7

483.1

7324.9367.5

72.3
73.173.8

74.3 75.4

75.673.5

Miranda
486.4
582.4661.7

779.6

2175.3607.3

524.9
625.0898.9

938.3

4504.0642.2

562.5
563.4 592.0

604.6

479.3 855.6578.9

9692.9
9708.79786.0

9799.0

11914.49767.5

1489.5
1577.41846.9

1873.1

2319.5

2354.1

1611.8

438.3
439.2466.7

480.0

1328.8443.6

153.0
155.8158.7

162.7

157.8

QMCPack
9.6
9.9 13.3

13.7

10.6

10.1
10.9 14.3

15.0

11.1

9.2
9.410.0

10.5

13.29.7

181.9
182.8 184.5

184.6 189.1

191.3183.9

23.4
24.1 27.3

27.7

24.8

10.3
11.0665.8

665.8

2422.7

2549.7

3746.714.7

0.87
0.9 0.93

0.94

1.050.91

Tangaroa
73.6
106.3 225.3

316.0

193.5

77.2
113.7 218.6

241.3

183.6

71.2
77.1114.0

153.5

262.8

292.4

95.3

1567.8
1604.8 1713.7

1823.1

1925.31657.2

243.1
314.5375.7

429.8

654.9355.5

53.4
216.1 843.5

1331.4

25828.7326.2

13.5
13.6 14.6

15.6

14.1

Table 12: Distributions of decompression time across all trials. Times measured in seconds.

dataset A-SZ3 A-TTHRESH A-ZFP A-Neurcomp A-CSI TopoSZ TopoQZ

Earthquake
23.9

24.2 24.8
25.2

24.4

24.1
24.4 24.9

25.4

25.824.7

23.8
24.2 24.7

24.9

25.624.5

37.4
37.7 38.3

39.0

39.337.9

118.5
120.2 123.0

125.4

121.9

0.06
0.063 0.067

0.068

0.066

2.575
2.5872.614

2.63

2.692.599

Ionization
34.0

35.1 36.8
37.8

36.3

34.9
35.7 36.7

37.8

36.2

35.6
35.836.3

36.9

34.6 36.1

52.3
53.4 55.6

56.2

54.2

170.7
173.0177.1

179.3

183.6174.5

0.091
0.0940.101

0.104

0.1220.096

3.817
3.846 3.866

3.868

3.9283.862

Isabel
155.0

157.7 163.3
169.9

162.0

159.9
162.4 167.0

172.7

174.0163.7

153.1
157.9 163.7

168.7

160.0

248.6
253.6 259.8

267.1

256.4

774.6
778.5 788.2

790.9

810.9781.7

0.41
0.414 0.437

0.459

0.4760.436

26.1
26.3 26.9

27.3

26.5

Miranda
256.6

264.8 272.7
275.1

268.5

276.1
279.8287.0

294.4

217.3 309.5282.1

264.5
268.9 274.9

275.4

270.6

464.6
474.9484.9

496.0

477.7

1270.6
1289.21304.1

1321.6

1249.9 1345.61295.0

0.67
0.6730.68

0.69

0.7010.674

50.1
50.5 51.2

52.1

50.9

QMCPack
3.7

3.83 3.94
4.07

3.88

3.9
3.95 4.05

4.15

4.0

3.66
3.69 3.77

3.88

3.71

8.6
9.0 11.9

12.3

9.2

18.2
18.4 18.7

18.9

19.418.6

0.0097
0.00990.0105

0.0112

0.0120.01

0.433
0.437 0.442

0.45

0.419 0.439

Tangaroa
43.6

44.4 45.8
47.7

45.7

44.1
45.1 47.2

49.0

45.7

44.0
44.645.1

45.8

46.744.8

67.1
68.4 69.8

70.5

69.4

216.4
219.3 225.2

227.5

221.7

0.117
0.12 0.132

0.144

0.124

4.315
4.35 5.176

5.258

4.437

	Introduction
	Related Work
	Technical Background
	Contour Tree and Persistence Simplification
	A Review on TopoSZ

	Method
	Overview
	Logarithmic-Scaling Quantization
	Upper and Lower Bound Tightening
	Lossless Compression

	Experimental Results
	An Overview of Experiments
	Compressor Configurations and Implementation
	Comparative Analysis of Augmented Compressors
	Topological Guarantees
	Evaluation Metrics

	Comparison with TopoQZ and TopoSZ
	Runtime Analysis

	Conclusion and Discussion
	Details on the Datasets
	Evaluation Metrics
	Preservation of Vertices of Contour Tree
	Parameter Configurations used for Figures and Tables
	Distributions of Experimental Results

